Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = ammonia co-firing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 2324 KiB  
Proceeding Paper
Development of Autonomous Unmanned Aerial Vehicle for Environmental Protection Using YOLO V3
by Vijayaraja Loganathan, Dhanasekar Ravikumar, Maniyas Philominal Manibha, Rupa Kesavan, Gokul Raj Kusala Kumar and Sarath Sasikumar
Eng. Proc. 2025, 87(1), 72; https://doi.org/10.3390/engproc2025087072 - 6 Jun 2025
Viewed by 404
Abstract
Unmanned aerial vehicles, also termed as unarmed aerial vehicles, are used for various purposes in and around the environment, such as delivering things, spying on opponents, identification of aerial images, extinguishing fire, spraying the agricultural fields, etc. As there are multi-functions in a [...] Read more.
Unmanned aerial vehicles, also termed as unarmed aerial vehicles, are used for various purposes in and around the environment, such as delivering things, spying on opponents, identification of aerial images, extinguishing fire, spraying the agricultural fields, etc. As there are multi-functions in a single UAV model, it can be used for various purposes as per the user’s requirement. The UAVs are used for faster communication of identified information, entry through the critical atmospheres, and causing no harm to humans before entering a collapsed path. In relation to the above discussion, a UAV system is designed to classify and transmit information about the atmospheric conditions of the environment to a central controller. The UAV is equipped with advanced sensors that are capable of detecting air pollutants such as carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), ammonia (NH3), hydrogen sulfide (H2S), etc. These sensors present in the UAV model monitor the quality of air, time-to-time, as the UAV navigates through different areas and transmits real-time data regarding the air quality to a central unit; this data includes detailed information on the concentrations of different pollutants. The central unit analyzes the data that are captured by the sensor and checks whether the quality of air meets the atmospheric standards. If the sensed levels of pollutants exceed the thresholds, then the system present in the UAV triggers a warning alert; this alert is communicated to local authorities and the public to take necessary precautions. The developed UAV is furnished with cameras which are used to capture real-time images of the environment and it is processed using the YOLO V3 algorithm. Here, the YOLO V3 algorithm is defined to identify the context and source of pollution, such as identifying industrial activities, traffic congestion, or natural sources like wildfires. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
Show Figures

Figure 1

29 pages, 4275 KiB  
Article
CFD-Assisted Design of an NH3/H2 Combustion Chamber Based on the Rich–Quench–Lean Concept
by Gonçalo Pacheco, José Chaves, Miguel Mendes and Pedro Coelho
Energies 2025, 18(11), 2919; https://doi.org/10.3390/en18112919 - 2 Jun 2025
Viewed by 987
Abstract
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This [...] Read more.
Ammonia (NH3) and hydrogen (H2) are considered promising fuels for the power sector’s decarbonization. Their combustion is capable of producing energy with zero direct CO2 emissions, and ammonia can act as a stable energy H2 carrier. This study numerically investigates the design and implementation of staged combustion of a mixture of NH3/H2 by means of CFD simulations. The investigation employed the single-phase flow RANS governing equations and the eddy dissipation concept (EDC) combustion model, with the incorporation of a detailed kinetic mechanism. The combustion chamber operates under the RQL (rich–quench–lean) combustion regime. The first stage operates under rich conditions, firing mixtures of ammonia in air, enriched by hydrogen (H2) to enhance combustion properties in a swirl and bluff-body stabilized burner. The secondary stage injects additional air and hydrogen to mitigate unburnt ammonia and NOx emissions. Simulations of the first stage were performed for a thermal input ranging from 4 kW to 8 kW and flames with an equivalence ratio of 1.2. In the second stage, additional hydrogen is injected with a thermal input of either 1 kW or 2 KW, and air is added to adjust the global equivalence ratio to 0.6. Full article
(This article belongs to the Section I2: Energy and Combustion Science)
Show Figures

Graphical abstract

26 pages, 4267 KiB  
Review
Ammonia-Based Clean Energy Systems: A Review of Recent Progress and Key Challenges
by Mengwei Sun, Zhongqian Ling, Jiani Mao, Xianyang Zeng, Dingkun Yuan and Maosheng Liu
Energies 2025, 18(11), 2845; https://doi.org/10.3390/en18112845 - 29 May 2025
Viewed by 883
Abstract
Ammonia is gaining increasing attention as a zero-carbon fuel and hydrogen carrier, offering high energy density, mature liquefaction infrastructure, and strong compatibility with existing energy systems. This review presents a comprehensive summary of the recent advances in ammonia-based clean energy systems. It covers [...] Read more.
Ammonia is gaining increasing attention as a zero-carbon fuel and hydrogen carrier, offering high energy density, mature liquefaction infrastructure, and strong compatibility with existing energy systems. This review presents a comprehensive summary of the recent advances in ammonia-based clean energy systems. It covers the fuel’s physicochemical properties, green synthesis pathways, storage and transport technologies, combustion behavior, NOX formation mechanisms, emission control strategies, and safety considerations. Co-firing approaches with hydrogen, methane, coal, and DME are evaluated to address ammonia’s low reactivity and narrow flammability limits. This paper further reviews engineering applications across power generation, maritime propulsion, and long-duration energy storage, drawing insights from current demonstration projects. Key technical barriers—including ignition delay, NOX emissions, ammonia slip, and economic feasibility—are critically examined. Finally, future development trends are discussed, highlighting the importance of integrated system design, low-NOX combustor development, solid-state storage materials, and supportive policy frameworks. Ammonia is expected to serve as a strategic energy vector bridging green hydrogen production with zero-carbon end-use, facilitating the transition to a sustainable, secure, and flexible energy future. Full article
Show Figures

Figure 1

18 pages, 3713 KiB  
Article
Estimation of Biomass Burning Emissions in South and Southeast Asia Based on FY-4A Satellite Observations
by Yajun Wang, Yu Tian and Yusheng Shi
Atmosphere 2025, 16(5), 582; https://doi.org/10.3390/atmos16050582 - 13 May 2025
Cited by 2 | Viewed by 710
Abstract
In recent years, frequent open biomass burning (OBB) activities such as agricultural residue burning and forest fires have led to severe air pollution and carbon emissions across South and Southeast Asia (SSEA). We selected this area as our study area and divided it [...] Read more.
In recent years, frequent open biomass burning (OBB) activities such as agricultural residue burning and forest fires have led to severe air pollution and carbon emissions across South and Southeast Asia (SSEA). We selected this area as our study area and divided it into two sub-regions based on climate characteristics and geographical location: the South Asian Subcontinent (SEAS), which includes India, Laos, Thailand, Cambodia, etc., and Equatorial Asia (EQAS), which includes Indonesia, Malaysia, etc. However, existing methods—primarily emission inventories relying on burned area, fuel load, and emission factors—often lack accuracy and temporal resolution for capturing fire dynamics. Therefore, in this study, we employed high-resolution fire point data from China’s Feng Yun-4A (FY-4A) geostationary satellite and the Fire Radiative Power (FRP) method to construct a daily OBB emission inventory at a 5 km resolution in this region for 2020–2022. The results show that the average annual emissions of carbon (C), carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), non-methane organic gases (NMOGs), hydrogen (H2), nitrogen oxide (NOX), sulfur dioxide (SO2), fine particulate matter (PM2.5), total particulate matter (TPM), total particulate carbon (TPC), organic carbon (OC), black carbon (BC), ammonia (NH3), nitric oxide (NO), nitrogen dioxide (NO2), non-methane hydrocarbons (NMHCs), and particulate matter ≤ 10 μm (PM10) are 178.39, 598.10, 33.11, 1.44, 4.77, 0.81, 1.02, 0.28, 3.47, 5.58, 2.29, 2.34, 0.24, 0.58, 0.43, 0.99, 1.87, and 3.84 Tg/a, respectively. Taking C emission as an example, 90% of SSEA’s emissions come from SEAS, especially concentrated in Laos and western Thailand. Due to the La Niña climate anomaly in 2021, emissions surged, while EQAS showed continuous annual growth at 16.7%. Forest and woodland fires were the dominant sources, accounting for over 85% of total emissions. Compared with datasets such as the Global Fire Emissions Database (GFED) and the Global Fire Assimilation System (GFAS), FY-4A showed stronger sensitivity and regional adaptability, especially in SEAS. This work provides a robust dataset for carbon source identification, air quality modeling, and regional pollution control strategies. Full article
Show Figures

Figure 1

18 pages, 6929 KiB  
Article
Characterising the Chemical Composition of Bushfire Smoke and Implications for Firefighter Exposure in Western Australia
by Kiam Padamsey, Adelle Liebenberg, Ruth Wallace and Jacques Oosthuizen
Fire 2024, 7(11), 388; https://doi.org/10.3390/fire7110388 - 28 Oct 2024
Cited by 2 | Viewed by 2286
Abstract
This study evaluates bushfire smoke as a workplace hazard for firefighters by characterising its chemical composition and potential health risks in Western Australia. Portable Fourier Transform Infrared (FTIR) spectrometry was used to measure airborne chemical concentrations at prescribed burns across five regions, including [...] Read more.
This study evaluates bushfire smoke as a workplace hazard for firefighters by characterising its chemical composition and potential health risks in Western Australia. Portable Fourier Transform Infrared (FTIR) spectrometry was used to measure airborne chemical concentrations at prescribed burns across five regions, including peat (acid sulphate) fire events. Samples were collected during both flaming and smouldering phases, as well as in perceived “clear” air resting zones. Results indicated that carbon monoxide (CO) was the dominant gas, reaching concentrations of 205 ppm at the fire front, followed by nitrogen monoxide (26 ppm) and methane (19 ppm). Peat fires produced distinct profiles, with ammonia (21.5 ppm) and sulphur dioxide (9.5 ppm) concentrations higher than those observed in typical bushfires. Smouldering phases emitted higher chemical concentrations than flaming phases 75% of the time. Even clear air zones contained measurable chemicals, with CO levels averaging 18 ppm, suggesting that firefighters are not free from exposure during rest periods. These findings highlight the need for fit-for-purpose respiratory protective equipment (RPE) and improved rest protocols to minimise exposure. The study underscores the importance of comprehensive health monitoring programs for firefighters to mitigate long-term health risks. Full article
(This article belongs to the Special Issue Patterns, Drivers, and Multiscale Impacts of Wildland Fires)
Show Figures

Figure 1

20 pages, 3634 KiB  
Article
Process Optimization and Robustness Analysis of Ammonia–Coal Co-Firing in a Pilot-Scale Fluidized Bed Reactor
by João Sousa Cardoso, Valter Silva, Jose Antonio Chavando, Daniela Eusébio and Matthew J. Hall
Energies 2024, 17(9), 2130; https://doi.org/10.3390/en17092130 - 29 Apr 2024
Cited by 1 | Viewed by 1211
Abstract
A computational fluid dynamics (CFD) model was coupled with an advanced statistical strategy combining the response surface method (RSM) and the propagation of error (PoE) approach to optimize and test the robustness of the co-firing of ammonia (NH3) and coal in [...] Read more.
A computational fluid dynamics (CFD) model was coupled with an advanced statistical strategy combining the response surface method (RSM) and the propagation of error (PoE) approach to optimize and test the robustness of the co-firing of ammonia (NH3) and coal in a fluidized bed reactor for coal phase-out processes. The CFD model was validated under experimental results collected from a pilot fluidized bed reactor. A 3k full factorial design of nine computer simulations was performed using air staging and NH3 co-firing ratio as input factors. The selected responses were NO, NH3 and CO2 emissions generation. The findings were that the design of experiments (DoE) method allowed for determining the best operating conditions to achieve optimal operation. The optimization process identified the best-operating conditions to reach stable operation while minimizing harmful emissions. Through the implementation of desirability function and robustness, the optimal operating conditions that set the optimized responses for single optimization showed not to always imply the most stable set of values to operate the system. Robust operating conditions showed that maximum performance was attained at high air staging levels (around 40%) and through a balanced NH3 co-firing ratio (around 30%). The results of the combined multi-optimization process performance should provide engineers, researchers and professionals the ability to make smarter decisions in both pilot and industrial environments for emissions reduction for decarbonization in energy production processes. Full article
(This article belongs to the Section I3: Energy Chemistry)
Show Figures

Figure 1

23 pages, 15722 KiB  
Article
Experimental Research into an Innovative Green Propellant Based on Paraffin–Stearic Acid and Coal for Hybrid Rocket Engines
by Grigore Cican, Alexandru Paraschiv, Adrian Nicolae Buturache, Andrei Iaroslav Hapenciuc, Alexandru Mitrache and Tiberius-Florian Frigioescu
Inventions 2024, 9(2), 26; https://doi.org/10.3390/inventions9020026 - 29 Feb 2024
Cited by 2 | Viewed by 3099
Abstract
This study focuses on an innovative green propellant based on paraffin, stearic acid, and coal, used in hybrid rocket engines. Additionally, lab-scale firing tests were conducted using a hybrid rocket motor with gaseous oxygen as the oxidizer, utilizing paraffin-based fuels containing stearic acid [...] Read more.
This study focuses on an innovative green propellant based on paraffin, stearic acid, and coal, used in hybrid rocket engines. Additionally, lab-scale firing tests were conducted using a hybrid rocket motor with gaseous oxygen as the oxidizer, utilizing paraffin-based fuels containing stearic acid and coal. The mechanical performance results revealed that the addition of stearic acid and coal improved the mechanical properties of paraffin-based fuel, including tensile, compression, and flexural strength, under both ambient and sub-zero temperatures (−21 °C). Macrostructural and microstructural examinations, conducted through optical and scanning electron microscopy (SEM), highlighted its resilience, despite minimal imperfections such as impurities and micro-voids. These characteristics could be attributed to factors such as raw material composition and the manufacturing process. Following the mechanical tests, the second stage involved conducting a firing test on a hybrid rocket motor using the new propellant and gaseous oxygen. A numerical simulation was carried out using ProPEP software to identify the optimal oxidant-to-fuel ratio for the maximum specific impulse. Following simulations, it was observed that the specific impulse for the paraffin and for the new propellant differs very little at each oxidant-to-fuel (O/F) ratio. It is noticeable that the maximum specific impulse is achieved for both propellants around the O/F value of 2.2. It was observed that no hazardous substances were present, unlike in traditional solid propellants based on ammonium perchlorate or aluminum. Consequently, there are no traces of chlorine, ammonia, or aluminum-based compounds after combustion. The resulting components for the simulated motor include H2, H2O, O2, CO2, CO, and other combinations in insignificant percentages. It is worth noting that the CO concentration decreases with an increase in the O/F ratio for both propellants, and the differences between concentrations are negligible. Additionally, the CO2 concentration peaks at an O/F ratio of around 4.7. The test proceeded under normal conditions, without compromising the integrity of the test stand and the motor. These findings position the developed propellant as a promising candidate for applications in low-temperature hybrid rocket technology and pave the way for future advancements. Full article
Show Figures

Figure 1

22 pages, 1331 KiB  
Review
The Allam Cycle: A Review of Numerical Modeling Approaches
by Fabrizio Reale
Energies 2023, 16(22), 7678; https://doi.org/10.3390/en16227678 - 20 Nov 2023
Cited by 6 | Viewed by 4194
Abstract
In recent years supercritical CO2 power plants have seen a growing interest in a wide range of applications (e.g., nuclear, waste heat recovery, solar concentrating plants). The Allam Cycle, also known as the Allam-Fetvedt or NET Power cycle, seems to be one [...] Read more.
In recent years supercritical CO2 power plants have seen a growing interest in a wide range of applications (e.g., nuclear, waste heat recovery, solar concentrating plants). The Allam Cycle, also known as the Allam-Fetvedt or NET Power cycle, seems to be one of the most interesting direct-fired sCO2 cycles. It is a semi-closed loop, high-pressure, low-pressure ratio, recuperated, direct-fired with oxy-combustion, trans-critical Brayton cycle. Numerical simulations play a key role in the study of this novel cycle. For this reason, the aim of this review is to offer the reader a wide array of modeling solutions, emphasizing the ones most frequently employed and endeavoring to provide guidance on which choices seem to be deemed most appropriate. Furthermore, the review also focuses on the system’s performance and on the opportunities related to the integration of the Allam cycle with a series of processes, e.g., cold energy storage, LNG regasification, biomass or coal gasification, and ammonia production. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 4367 KiB  
Article
Study on Mechanisms of NOx Formation and Inhibition during the Combustion of NH3/CH4 and NH3/CO Mixtures
by Yongbo Du, Siyu Zong, Chang’an Wang, Yongguan Wang, Qiang Lyu, Yaodong Da and Defu Che
Appl. Sci. 2023, 13(21), 11847; https://doi.org/10.3390/app132111847 - 30 Oct 2023
Cited by 4 | Viewed by 2240
Abstract
Ammonia is an ideal renewable, carbon-free fuel and hydrogen carrier, which produces nitrogen and water after complete combustion in the presence of oxygen. However, ammonia has low reactivity, slow flame-propagation speed, and carries risks of high nitrogen oxide (NOx) emissions. Co-firing [...] Read more.
Ammonia is an ideal renewable, carbon-free fuel and hydrogen carrier, which produces nitrogen and water after complete combustion in the presence of oxygen. However, ammonia has low reactivity, slow flame-propagation speed, and carries risks of high nitrogen oxide (NOx) emissions. Co-firing ammonia with an industrial by-product gas (with CH4 and CO being the main combustible materials) is a cost-effective and convenient method of improving the combustion characteristics of ammonia, but attention still needs to be paid to the NOx generation. Currently, the research on NOx formation during co-firing of ammonia with other fuel gases is still insufficient. In this study, a high-temperature furnace reaction system was used to investigate the NOx formation and inhibition mechanisms during the combustion of NH3/CH4 and NH3/CO mixtures. By varying the ammonia blending ratio, excess air coefficient (α), temperature, residence time, and fuel concentration, the key factors influencing NOx generation and inhibition were further analyzed. The results showed that when α was no less than 1, the production of NOx initially increased and then decreased with an increasing proportion of ammonia in the fuel gas. Within the temperature range of 900 °C to 1500 °C, the amount of NOx generated during the combustion of the mixed gas gradually decreased with the increase in temperature. Under the conditions of NH3/CH4 and NH3/CO, the emissions of NOx were higher than those during pure ammonia combustion. Full article
(This article belongs to the Special Issue Advances in Combustion and Renewable Energy)
Show Figures

Figure 1

19 pages, 5524 KiB  
Article
Interaction of Filth Flies and Epigeal Arthropods with Soil Nitrogen and Gas Emissions in Grazing Systems under a Legacy of Low Fertilization
by Natalia Espinoza, Dorcas H. Franklin, Miguel Cabrera, Nancy C. Hinkle, Lawton Stewart and Anish Subedi
Sustainability 2023, 15(16), 12572; https://doi.org/10.3390/su151612572 - 18 Aug 2023
Cited by 1 | Viewed by 1254
Abstract
During the summers of 2021 and 2022, we conducted a study in four Georgia Piedmont pastures to assess the effect of the presence of filth flies and epigeal arthropods on carbon and nitrogen emissions and soil nitrogen retention from lax rotational grazing systems [...] Read more.
During the summers of 2021 and 2022, we conducted a study in four Georgia Piedmont pastures to assess the effect of the presence of filth flies and epigeal arthropods on carbon and nitrogen emissions and soil nitrogen retention from lax rotational grazing systems under a legacy of low fertilization. Carbon dioxide (CO2), nitrous oxide (N2O), and ammonia (NH3) emissions were measured from dung on days 0, 4, 8, and 15 following depositions. Soil and manure samples were collected on days 0 and 16 and analyzed for ammonium (NH4+), nitrate (NO3), plant-available nitrogen (PAN), and potentially mineralizable nitrogen (PMN). Manure samples were analyzed for total Kjeldahl nitrogen (TKN). The numbers of filth flies ovipositing and emerging from manure, fire ants, and epigeal arthropods around the manure were determined. Our results indicated that more than 12 ovipositing filth flies per manure pat can reduce PMN by up to 14.7 kg of nitrogen per hectare, while an increase in the biodiversity and abundance of predators may help to increase PAN and PMN in grazing systems, as well as decrease the number of emerging filth flies. Full article
(This article belongs to the Special Issue Biodiversity, Biologic Conservation and Ecological Sustainability)
Show Figures

Figure 1

17 pages, 678 KiB  
Article
Experimental Study on the Effect of Hydrogen Addition on the Laminar Burning Velocity of Methane/Ammonia–Air Flames
by Ahmed Yasiry, Jinhua Wang, Longkai Zhang, Hongchao Dai, Ahmed A. A. Abdulraheem, Haroun A. K. Shahad and Zuohua Huang
Appl. Sci. 2023, 13(10), 5853; https://doi.org/10.3390/app13105853 - 9 May 2023
Cited by 14 | Viewed by 3948
Abstract
Variations in methane–ammonia blends with hydrogen enrichment can modify premixed flame behavior and play a crucial role in achieving ultra-low carbon emissions and sustainable energy consumption. Current combustion units may co-fire ammonia/methane/hydrogen, necessitating further investigation into flame characteristics to understand the behavior of [...] Read more.
Variations in methane–ammonia blends with hydrogen enrichment can modify premixed flame behavior and play a crucial role in achieving ultra-low carbon emissions and sustainable energy consumption. Current combustion units may co-fire ammonia/methane/hydrogen, necessitating further investigation into flame characteristics to understand the behavior of multi-component fuels. This research aims to explore the potential of replacing natural gas with ammonia while making only minor adjustments to equipment and processes. The laminar burning velocity (LBV) of binary blends, such as ammonia–methane, ammonia–hydrogen, and hydrogen–methane–air mixtures, was investigated at an equivalence ratio of 0.8–1.2, within a constant volume combustion chamber at a pressure of 0.1 MPa and temperature of 298 K. Additionally, tertiary fuels were examined with varying hydrogen blending ratios ranging from 0% to 40%. The results show that the laminar burning velocity (LBV) increases as the hydrogen fraction increases for all mixtures, while methane increases the LBV during blending with ammonia. Hydrogen-ammonia blends are the most effective mixture for increasing LBV non-linearly. Enhancement parameters demonstrate the effect of ternary fuel, which behaves similarly to equivalent methane in terms of adiabatic flame temperature and LBV achieved at 40% hydrogen. Experimental data for neat and binary mixtures were validated by different kinetics models, which also showed good consistency. The ternary fuel mixtures were also validated with these models. The Li model may qualitatively predict well for ammonia-dominated fuel. The Shrestha model may overestimate results on the rich side due to the incomplete N2Hisub-mechanism, while lean and stoichiometric conditions have better predictions. The Okafor model is always overestimated. Full article
(This article belongs to the Special Issue Advances in Combustion and Renewable Energy)
Show Figures

Figure 1

23 pages, 3080 KiB  
Article
Numerical Simulation of Selective Non-Catalytic Reduction Denitrification Process in Precalciner and the Effect of Natural Gas Injection on Denitrification
by Yu Yang, Guangya Wang, Jie Wang, Xu Zuo and Hongtao Kao
Processes 2023, 11(5), 1377; https://doi.org/10.3390/pr11051377 - 2 May 2023
Cited by 2 | Viewed by 2327
Abstract
Cement production is the third largest source of nitrogen oxides (NOx), an air pollutant that poses a serious threat to the natural environment and human health. Reducing NOx emissions from cement production has become an urgent issue. This paper aims [...] Read more.
Cement production is the third largest source of nitrogen oxides (NOx), an air pollutant that poses a serious threat to the natural environment and human health. Reducing NOx emissions from cement production has become an urgent issue. This paper aims to explore and investigate more efficient denitrification processes to be applied in NOx reduction from precalciner. In this study, firstly, the flow field, temperature field, and component fraction in the precalciner are studied and analyzed using numerical simulation methods. Based on this, the influence of the reductant injection height and amount on the SNCR was studied by simulating the selective non-catalytic reduction (SNCR) process in the precalciner. The effect of natural gas on the NOx emissions from the precalciner was also investigated. The simulation results showed that, with the increase in height, the NOx concentration in the precalciner decreased, then increased, then decreased, and then increased again. The final NOx concentration at the exit position was 531.33 ppm. In the SNCR denitrification process, the reductant should be injected in the area where the precalciner height is 26–30 m so that the reductant can fully react with NOx and avoid the increase of ammonia escape. The NSR represents the ratio of reductant to NOx, and the results show that the larger the NSR is, the higher the denitrification rate is. However, as the NSR approaches 2, the denitrification rate slows down and the ammonia escape starts to increase. Therefore, according to the simulation results, the NSR should be kept between 1 and 1.6. The denitrification rate reached the maximum value of 42.62% at the optimal condition of 26 m of reductant injection height and 1.6 of NSR. Co-firing of natural gas with pulverized coal can effectively reduce the NOx generation in the furnace. The denitrification rate reached the maximum value of 32.15% when the natural gas injection amount was 10%. The simulation results of natural gas co-combustion and SNCR combined denitrification showed that combined denitrification was better than natural gas co-combustion or SNCR denitrification. Under the condition of NSR of 1 and natural gas injection of 10%, the denitrification rate increased by 29.83% and 31.64% compared to SNCR-only or co-combustion-only denitrification, reaching 61.98%, respectively. Moreover, less reductant is used in co-denitrification, so the problem of excessive ammonia emissions can be avoided. The results of this study provide useful guidance for denitrification process development and NOx reduction in cement production. Full article
Show Figures

Figure 1

13 pages, 2099 KiB  
Article
Reduced Mechanism for Combustion of Ammonia and Natural Gas Mixtures
by Aniket R. Khade, Vijaya D. Damodara and Daniel H. Chen
Clean Technol. 2023, 5(2), 484-496; https://doi.org/10.3390/cleantechnol5020025 - 12 Apr 2023
Viewed by 4809
Abstract
A fuel mixture of ammonia and natural gas as a low-carbon alternative for future power generation and transportation is an attractive option. In this work, a 50-species reduced mechanism, NH3NG, suitable for computational fluid dynamics simulations (CFD), is developed for ammonia–natural [...] Read more.
A fuel mixture of ammonia and natural gas as a low-carbon alternative for future power generation and transportation is an attractive option. In this work, a 50-species reduced mechanism, NH3NG, suitable for computational fluid dynamics simulations (CFD), is developed for ammonia–natural gas cofiring while addressing important emission issues, such as the formation of nitrogen oxides (NOx), soot, carbon monoxide, and unburnt methane/ammonia. The adoption of reduced mechanisms is imperative not only for saving computer storage and running time but also for numerical convergence for practical applications. The NH3NG reduced mechanism can predict soot emission because it includes soot precursor species. Further, it can handle heavier components in natural gas, such as ethane and propane. The absolute error is 5% for predicting NOx and CO emissions compared to the full Modified Konnov mechanism. Validation with key performance parameters (ignition delay, laminar flame speed, adiabatic temperature, and NOx and CO emissions) indicates that the predictions of the reduced mechanism NH3NG are in good agreement with published experimental data. The average prediction error of 13% for ignition delay is within typical experimental data uncertainties of 10–20%. The predicted adiabatic temperatures are within 1 °C. For laminar flame speed, the R2 between prediction and data is 0.985. NH3NG over-predicts NOx and CO emissions, similar to all other literature methods, but the NOx predictions are closer to the experimental data. Full article
(This article belongs to the Special Issue Green and Sustainable Chemistry for Energy Application)
Show Figures

Figure 1

14 pages, 2241 KiB  
Article
Evaluating the Effect of Ammonia Co-Firing on the Performance of a Pulverized Coal-Fired Utility Boiler
by Shulei Wang and Changdong Sheng
Energies 2023, 16(6), 2773; https://doi.org/10.3390/en16062773 - 16 Mar 2023
Cited by 11 | Viewed by 5139
Abstract
Ammonia (NH3), as a derivative of hydrogen and energy carrier, is regarded as a low-carbon fuel provided that it is produced from a renewable source or a carbon abated process of fossil fuel. Co-firing ammonia with coal is a promising option [...] Read more.
Ammonia (NH3), as a derivative of hydrogen and energy carrier, is regarded as a low-carbon fuel provided that it is produced from a renewable source or a carbon abated process of fossil fuel. Co-firing ammonia with coal is a promising option for pulverized coal-fired power plants to reduce CO2 emission. Applying the co-firing in an existing pulverized coal-fired boiler can achieve satisfying combustion performance in the furnace but may affect the boiler performance. In the present work, a thermal calculation method was employed to evaluate the impact of ammonia co-firing on the boiler performance of an existing 600 MW supercritical utility boiler, covering the co-firing ratio range up to 40% (on heat basis). The calculations indicated that, as compared to sole coal combustion, co-firing ammonia changed the volume and composition and consequently the temperature and heat transfer characteristics of the flue gas. These resulted in increased variations in the heat transfer performance of the boiler with increasing of the co-firing ratio. The evaluations revealed that co-firing up to 20% ammonia in the existing boiler is feasible with the boiler performance not being considerably affected. However, the distribution of the heat transferred from the flue gas to boiler heat exchangers is significantly deteriorated at higher ratios (30% and 40%), resulting in over-temperature of the superheated steam, under-temperature of the reheated steam and considerable reduction in boiler thermal efficiency. It implies retrofits on the heat exchangers required for accommodating higher ratio co-firing in the existing boiler. The comparison study showed that co-firing 20% ammonia provides a superior boiler performance over co-firing 20% biomass producing gases and blast furnace gas. Full article
Show Figures

Figure 1

17 pages, 4218 KiB  
Article
Estimating Emissions from Crop Residue Open Burning in Central China from 2012 to 2020 Using Statistical Models Combined with Satellite Observations
by Rong Li, Xinjie He, Hong Wang, Yi Wang, Meigen Zhang, Xin Mei, Fan Zhang and Liangfu Chen
Remote Sens. 2022, 14(15), 3682; https://doi.org/10.3390/rs14153682 - 1 Aug 2022
Cited by 15 | Viewed by 3379
Abstract
Crop residue open burning has significant adverse effects on regional air quality, climate change, and human health. Emissions from crop residue open burning estimated by satellites are underestimated in central China due to long-term cloud cover and the limitation of spatial-temporal resolution of [...] Read more.
Crop residue open burning has significant adverse effects on regional air quality, climate change, and human health. Emissions from crop residue open burning estimated by satellites are underestimated in central China due to long-term cloud cover and the limitation of spatial-temporal resolution of satellites. In this study, we used a statistical-based method to investigate the crop residue open burning emissions in central China from 2012 to 2020. The open burning proportion (OBP) of residue, updated annually by the Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m active fire product (VNP14IMG), and the latest observed emission factors (EFS) were used to improve the accuracy of the estimated emissions. Annual emissions of pollutants were allocated into 0.1° × 0.1° spatial grid cells using fire counts and land cover data. The results showed that the total emissions of black carbon (BC), organic carbon (OC), sulfur dioxide (SO2), nitric oxide (NOX), carbon monoxide (CO), carbon dioxide (CO2), fine particles (PM2.5), coarse particles (PM10), ammonia (NH3), methane (CH4) and non-methane volatile organic compound (NMVOC) were 34.84, 149.72, 41.06, 90.11, 2640.97, 78,094.91, 485.17, 481.05, 35.21, 246.38 and 499.59 Gg, respectively. The largest contributor of crop residue open burning was rice, followed by wheat, rapeseed and corn, with the contribution rates of 35.34–64.07%, 15.78–34.71%, 9.12–25.56%, and 5.69–14.06%, respectively. The pollutants emissions exhibit large annual variation, with the highest emissions in 2013 and a remarkable decrease from 2013 to 2015 under strict control measures. Since 2015, the emissions remained at a low level, which shows that air quality control policies play a role in recent years. The result indicates that using OBP updated by satellite active fire product in a statistical-based method can help to get more accurate and reliable multi-year emissions. Full article
Show Figures

Figure 1

Back to TopTop