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Abstract: A computational fluid dynamics (CFD) model was coupled with an advanced statistical
strategy combining the response surface method (RSM) and the propagation of error (PoE) approach
to optimize and test the robustness of the co-firing of ammonia (NH3) and coal in a fluidized bed
reactor for coal phase-out processes. The CFD model was validated under experimental results
collected from a pilot fluidized bed reactor. A 3k full factorial design of nine computer simulations
was performed using air staging and NH3 co-firing ratio as input factors. The selected responses
were NO, NH3 and CO2 emissions generation. The findings were that the design of experiments
(DoE) method allowed for determining the best operating conditions to achieve optimal operation.
The optimization process identified the best-operating conditions to reach stable operation while
minimizing harmful emissions. Through the implementation of desirability function and robustness,
the optimal operating conditions that set the optimized responses for single optimization showed
not to always imply the most stable set of values to operate the system. Robust operating conditions
showed that maximum performance was attained at high air staging levels (around 40%) and through
a balanced NH3 co-firing ratio (around 30%). The results of the combined multi-optimization process
performance should provide engineers, researchers and professionals the ability to make smarter
decisions in both pilot and industrial environments for emissions reduction for decarbonization in
energy production processes.

Keywords: ammonia; computational fluid dynamics; decarbonization; co-firing; optimization;
robustness

1. Introduction

The release of greenhouse gases, particularly CO2, has resulted in global warming,
posing a significant threat to human survival and sustainable development [1]. As of 2020,
coal-fired power plants remained the dominant source of global electricity, constituting
approximately 41% [2]. Although the retirement of coal-fired power plants is a gradual
process in the transition towards carbon neutrality, these plants continue to play a crucial
role in several countries, such as China, Japan, and India. Projections indicate that by
2030, coal-fired power plant capacity and electricity generation in China will still represent
approximately 32.2% and 45.9%, respectively [3]. Moreover, in response to the gas shortage
arising from the conflict between Russia and Ukraine, several European countries and
regions reinstated previously closed coal-fired power plants in June 2022. The substitution
of coal with ammonia (NH3) represents a strategy to decrease the carbon content in the fuel
stream, resulting in reduced emissions from coal-fired power plants. Initially introduced
by Japan [4], this approach has garnered significant interest from nations heavily reliant on
coal-fired power plants [5].
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Ammonia co-firing holds great importance in the context of transitioning to cleaner
energy sources and reducing greenhouse gas emissions. By introducing ammonia as a
co-firing agent alongside coal, the overall carbon footprint of energy generation can be
significantly reduced [6]. Ammonia is considered a promising fuel additive due to its
high hydrogen content, which enhances combustion efficiency and reduces the emission
of pollutants such as nitrogen oxides (NOx). The use of ammonia as a co-firing agent
can therefore contribute to the achievement of stricter environmental regulations and air
quality standards [7]. Furthermore, ammonia is readily available and can be produced
from renewable energy sources, such as wind or solar power, through the process of
electrolysis. This aspect aligns with the intention to decarbonize energy systems and
achieve sustainability goals [8,9].

In the optimization process of ammonia co-firing, it is essential to investigate the
impact of varying operational parameters, such as the air staging and ammonia-to-coal
ratio [6]. Understanding the interactions between these parameters and their influence on
the combustion process is crucial for achieving optimal performance and maximizing the
benefits of co-firing. Air staging plays a pivotal role in controlling combustion kinetics
and temperature distribution within the furnace [6]. By strategically introducing air at
different stages, it is possible to manage peak temperatures, control flame characteristics,
and enhance overall combustion efficiency. Simultaneously, the ammonia-to-coal ratio
significantly affects the combustion chemistry and emissions profile. Properly balancing
this ratio is essential to harness the benefits of ammonia as a clean fuel, minimizing NOx
emissions while ensuring complete combustion. By integrating these aspects into the study,
a comprehensive assessment of the optimization potential and robustness of ammonia
co-firing in a pilot-scale fluidized bed reactor can be achieved.

Zhao et al. [3], focused on the integration of ammonia–coal co-firing technology
into coal-fired power plants to reduce carbon emissions and support renewable energy
integration. Using optimization models and simulations based on different power system
scenarios, they analyzed the economic and environmental performance of the system with
varying renewable energy shares. The results demonstrate that coal-fired power plants
configured with green ammonia co-firing can significantly reduce operating costs, carbon
emissions, and renewable energy curtailment compared to standalone batteries or fuel cells.

Other previous research conducted on the co-firing of ammonia and coal has primarily
concentrated on investigating combustion characteristics and the emissions of nitrogen
oxides (NOx). Wang and Sheng [10] explored the potential of co-firing ammonia with
coal in pulverized coal-fired power plants to reduce CO2 emissions. The findings indicate
that co-firing up to 20% ammonia is feasible without significantly affecting the boiler
performance. However, at higher ratios (30% and 40%), the heat transfer distribution to
boiler heat exchangers is compromised, leading to issues such as over-temperature of
superheated steam, under-temperature of reheated steam, and reduced thermal efficiency.

In their study, Nagatani et al. [4] assessed the feasibility of ammonia co-firing in
a 1000 MW coal-fired boiler. Their findings demonstrated that incorporating ammonia
co-firing primarily necessitates the addition of an ammonia supply system, while the
remaining infrastructure can be utilized with no significant modifications under the exist-
ing conditions.

Hiroki et al. [11] conducted experiments to assess the co-firing of ammonia with
pulverized coal in a 10 MWth combustion facility using a swirl burner. Their findings
demonstrated that co-firing ratios of up to 20% allowed for the effective limitation of NOx
emissions to levels comparable to those observed during pure coal firing. Additionally,
they successfully maintained a stable flame by supplying ammonia through the center of
the coal burner.

In addition to experimental investigations, cost-effective numerical simulations have
been utilized to explore the co-firing of ammonia in coal-fired facilities [2,6,12–14]. These
simulations capture the observed experimental outcomes at lower co-firing ratios while
examining the combustion performance and NOx formation at higher ratios. The findings of
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these studies confirm that co-firing ammonia at lower ratios maintains similar combustion
performance to coal combustion [2,6]. However, as the co-firing ratios exceed 40%, both
fuel burnouts may significantly deteriorate, although it is still possible to achieve low NOx
emissions [2,13].

Achieving optimized operational conditions for complex systems is facilitated by em-
ploying sophisticated combinations of numerical and statistical methodologies, including
design of experiments (DoE) and response surface methods (RSM) [15,16]. DoE addresses
several factors concurrently, as opposed to altering them one at a time. This approach offers
a significant advantage by successfully accounting for multiple interactions among the
factors. Furthermore, it markedly diminishes the required number of experimental runs
needed to derive meaningful insights from the data. Integrating the propagation of error
(PoE) into this strategy enhances the analysis by systematically quantifying uncertainties
and error propagation, providing a more comprehensive understanding of the reliability of
the optimized operational conditions [17,18].

This work not only contributes to the scientific understanding of co-firing processes
but also provides valuable insights for industry and policymakers in their pursuit of cleaner
and more sustainable energy solutions. To the best of our knowledge, no existing literature
addresses optimization and robustness techniques specifically applied to ammonia and coal
co-firing in a pilot-scale fluidized bed reactor. Consequently, to bridge this gap in the current
body of research and to explore the optimization potential while ensuring robustness in
co-firing processes, this study presents an advanced statistical approach combining RSM
and PoE. To accomplish this, a 2D Eulerian–Lagrangian model is developed within the
Ansys Fluent framework. The mathematical model is validated using experimental data
obtained from pilot-scale co-firing runs. Based on the experimental and numerical results,
the optimal operating conditions are determined for ammonia and coal co-firing. Finally,
the system’s performance is enhanced by addressing the robust operating conditions for
minimizing NO, NH3 and CO2 emissions generation for coal phase-out co-firing processes.

2. Materials and Methods
2.1. Experimental Setup

The experiments were conducted in a pilot-scale bubbling fluidized bed reactor, which
was thermally insulated. The reactor had dimensions of 0.25 m in internal diameter and
2.3 m in height. The combusting facility is illustrated in Figure 1. Operating conditions such
as coal feed rates, airflow rates, temperature, and flue gas composition were monitored
through a computer-based control and data acquisition system. Coal was fed at the surface
of the bed, 0.35 m above the distributor plate at a varying feeding rate of 17–50 g/min.
Bituminous coal, with a density of 1346 kg/m3, was used as fuel, and its properties are
further detailed in [6]. The reactor received a total airflow rate of 250 NL/min. The primary
dry atmospheric airflow entered through the distributor plate at the bottom of the bed.
Before entering the reactor vessel, the air stream was preheated. The fluidization speed
ranged between 0.28 and 0.32 m/s, depending on the operating conditions. A secondary-
stage airflow was set about 0.30 m above the bed surface. The excess air and air staging were
established by adjusting the coal feed and secondary air flow rates. Air staging involved
the primary air at the bottom accounting for 100%, 80%, and 60% of the total combustion air.
Steady-state coal combustion experiments were conducted at three excess air levels (10%,
25%, and 50%) and three operating temperatures (1023 K, 1098 K, and 1173 K). To maintain
the desired temperature range, eight water-cooled probes were strategically placed along
the bed, while nine water-cooled sampling probes, located at different heights along the
reactor (two immersed in the bed and seven along the reactor freeboard), monitored the
temperature and pressure inside the reactor throughout all experimental runs. Gas samples
were collected and analyzed using a series of detectors. including paramagnetic (O2), non-
dispersive infrared (CO2, CO, N2O, SO2), chemiluminescence (NO) and flame ionization
(hydrocarbons) detectors. Further information on the experimental setup can be found
in [19].
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Figure 1. Detailed schematic of the experimental combustion unit: dashed line—electric circuit;
continuous line—pneumatic circuit; A—primary air heating system; B—sand bed; C—bed solids
level control; D—bed solids discharge; E—bed solids discharge silo; F—propane burner system;
G—coal addition port; H—airflow meter; I—control and command unit (UCC2); J—PC; K—coal
feeder; L—gas sampling probe (water cooled probes); M—Exhaust duct; N, O, Q, R—Command and
gas distribution units; P—gas sampling pump; PC—computer data acquisition and control system; S,
T, U, V, W, X, Y—automatic online gas analyzers for determination of O2, CO2, CO, N2O, NO, SO2,
and HC; Z—electronic command unit; UCD0, UCD1, UCD2, UCD3—electro-pneumatic command
and gas distribution units; UCE1—electronic command unit.

2.2. Design of Experiments Applied to Ammonia Co-Firing

DoE refers to a structured approach aimed at evaluating the connection between input
factors (also known as input variables) that influence a specific process and its correspond-
ing outputs (response variables). This cause-and-effect relationship furnishes essential
insights for effectively managing process inputs in order to optimize the desired output.
In the context of this study, the factors are organized within a three-level full factorial
experimental design, where each factor is varied at three levels (3k). The mathematical
model governing this three-level design space is expressed as follows [16]:

Yijk = µ+ Ai + Bi + ABij + Ck + ACik + BCik + ABCik + ϵijk (1)

where each factor is set as a nominal factor and ϵ defines the error term.
The input factors for ammonia–coal co-firing include the air staging and the ammonia

co-firing ratio. Each process involves these 2 selected input factors varied at three levels,
resulting in a 3k full factorial design totaling 9 runs. The data applied here correspond
to a set of experimental runs and numerical simulations already validated in a previous
study [6]. Regarding the DoE design, an augmentation in the number of simulations has
been implemented. Notably, the newly generated data points reside within the previously
validated extreme conditions in [6], enhancing the robustness of our findings and instilling
a heightened level of confidence in the results. Table 1 provides the complete factorial
design implemented for each co-firing process, displaying all possible combinations of the
selected factors. All other operating conditions remain unchanged. The selected responses
for each process encompass NO, NH3, and CO2.
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Table 1. Description of 3k full factorial design with respective factors and ranges.

Runs Air Staging NH3 Co-Firing Ratio

1 0 0
2 20 0
3 40 0
4 0 20
5 20 20
6 40 20
7 0 40
8 20 40
9 40 40

3. Mathematical Model

The 2D numerical model that was developed utilizes a Eulerian–Lagrangian approach,
where the gas phase is treated within the Eulerian framework, while the solid phase
is handled separately using the Lagrangian approach. In the Lagrangian scheme, the
solid fuel particles are assumed to be volatile materials, char, and ash, represented by
spherical particles with a specified size distribution. The interactions between the gas
and solid phases are directly accounted for by considering mass exchange (resulting
from heterogeneous chemical processes), momentum (due to drag between phases), and
energy. For the turbulence model, the k-ε realizable model was chosen, as it provides
improved predictions compared to the standard k-ε model, which is already robust and
reasonably accurate. Table 2 provides a brief overview of the governing equations used in
the model. The chemical reactions model and corresponding rate coefficients employed in
the simulations are summarized in Table 3. Additional details concerning the mathematical
model can be found elsewhere [6]. Table 4 shows the main solver setting procedure
overview for the mathematical model.

Table 2. Governing equations.

Conservation Equations

Energy (gas phase):
∂
∂t

(
αgρghg

)
+∇·
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αgρg

→
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)
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)
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)
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.
Q + Sh +

.
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)
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(
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)
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(
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)
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dTi
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4
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4ρid
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24
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dt

Turbulence Model

Kinetic energy:
∂
∂t (ρk) + ∂

∂xj

(
ρkuj

)
= ∂

∂xj

[(
µ+ µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε− YM + Sk

Dissipation rate:
∂
∂t (ρε) +

∂
∂xj

(
ρεuj

)
= ∂

∂xj

[(
µ+ µt

σε

)
∂ε
∂xj

]
+ ρC1Sε − ρC2

ε2

k+
√

vε+C1ε
ε
k C3εGb + Sε



Energies 2024, 17, 2130 6 of 18

Table 3. Chemical reactions model.

Reactions Arrhenius Reaction Rates

Volatiles combustion [20]

R1(coal) = CxHyOz + (x + y/4 − z/2)O2 → xCO2 + (y/2)H2O r1 = 657, 000Texp
(
−8.02×107

T

)[
CxHyOz

]0.5
[O2]

Homogeneous reactions

H2 combustion [21]:
R3 = H2 + 0.5O2 ↔ H2O r3 = 5.69 × 1011exp

(
−1.47×108

T

)
[H2][O2]

0.5

CO combustion [22]:
R4 = CO + 0.5O2 → CO2 r4 = 1.93 × 1013T−2exp

(
−1.26×108

T

)
[CO][O2]

0.5

Water–gas shift [21]:
R5 = CO + H2O ↔ CO2 + H2 r5 = 2.75 × 109exp

(
−8.36×107

T

)
[CO][H2O]

NH3 combustion [23]:
R6 = NH3 + O2 → NO + H2O + 0.5H2 r6 = 350T7.65exp

(
−5.24×108

T

)
[NH3][O2]

R7 = NH3 + NO → N2 + H2O + 0.5H2 r7 = 4.24 × 105T5.3exp
(
−3.5×108

T

)
[NH3][NO]

NH3 pyrolysis [24]:
R8 = NH3 → 0.5N2 + 1.5H2 r8 = 0.185T1.25exp

(
−6.9×107

T

)
[NH3]

Heterogeneous reactions

Char combustion [25]:
R9 = C(s) + 0.5O2 → CO r9 = 0.052exp

(
−6.1×107

T

)
Boudoir reaction [26]:
R10 = C(s) + CO2 → 2CO r10 = 0.0732exp

(
−1.125×108

T

)
Water–gas reaction [25]:
R11 = C(s) + H2O → CO + H2 r11 = 0.0782exp

(
−1.15×108

T

)

Table 4. Main solver settings overview.

Item Model or Parameter

General conditions Pressure-based
Time Steady
Scheme Simple
Discretization 1st order upwind
Species Species Transport/Finite-rate/Eddy-dissipation
Discrete Phase Model Interaction w/Continuous Phase/Surface Injections
Radiation Discrete Ordinates (DO)
Devolatilization Two-competing-rates
Absorption Coefficient wsggm-domain-based
Vaporization Temperature (K) 773
Particle-Scattering Factor/Emissivity 0.15
Swelling factor 1.4
NH3 combustion
Pre-exponential factor (kgm−2 Pa−1 s−1) R6 (4.0 × 106); R7 (1.8 × 108); R8 (0.185)
Activation energy (kJ/mol) R6 (32,000); R7 (27,000); R8 (6.9 × 107)

4. Results
4.1. Model Validation

Figure 2a demonstrates the model’s accuracy in predicting NO concentrations across
different reactor heights during coal combustion under air staging conditions (80% pri-
mary air). To accurately gauge the influence of the discretization process on the solution,
initiating a mesh sensitivity analysis is imperative to capture the reactor’s performance
comprehensively. Four meshes were established, uniformly divided into square cells with
a refinement ratio of 2. These meshes were tailored to encompass the experimental NO
concentration distribution across the reactor height. The simulations were conducted for
bituminous coal, aligning with the experimental conditions featuring 80% primary air
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and an operational temperature of 1098 K [27]. Concerning mesh convergence, coarser
meshes (mesh 1 and 2) exhibited an underestimation of NO concentration, particularly for
lower reactor heights, consequently leading to inaccurate assumptions and inconclusive
outcomes. Contrarily, finer meshes yielded more accurate results, albeit at the cost of
increased computational time. Thus, a balance must be struck between precision and
computational resources. Both mesh 3 and 4 effectively projected the experimental NO
concentration outcomes throughout the reactor’s height, demonstrating satisfactory mesh
convergence. Considering the notable similarity between mesh 3 and 4, and considering
the heightened computational demands of the denser mesh 4, mesh 3 with a cell count of
80,200 emerges as the optimal choice for this study. Figure 2b depicts the mesh applied in
this study.
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To further ensure the reliability of these predictions, the validation process needs to
be extended to encompass a wide range of variables. Figure 3a,b provide a comparison
between experimental and numerical outcomes for CO2 and CO concentrations at varying
vertical heights and radial distances. These simulations followed the experimental parame-
ters, using 100% primary air and an operational temperature of 1098 K [19]. Similarly to the
results for NO concentration, the model exhibited a commendable ability to predict CO2
and CO concentrations at different reactor positions, with notable concordance between
numerical and experimental values. The closeness to the line in CO2 concentration signifies
reduced error variance, while CO concentration displays close agreement between experi-
mental and numerical values. Having successfully validated the model for coal combustion
in a pilot-scale reactor, the study proceeded to investigate coal and NH3 co-firing within the
same system. The research group has already previously validated the model for composi-
tions up to 80% ammonia [6]. In this particular case, due to the intricacies of the DoE, we
conducted simulations for new data points, ensuring they remained within the prescribed
limits outlined in the referenced article. This approach underscores a considerable level of
confidence in the simulation outcomes for these mixtures.

Furthermore, the research group boasts substantial expertise in developing mathemat-
ical models that describe thermochemical processes across diverse feedstocks, experimental
scenarios, and scales [16,28,29].



Energies 2024, 17, 2130 8 of 18

Energies 2024, 17, 2130 8 of 20 
 

 

  

(a) (b) 

Figure 2. (a) Evaluation of mesh sensitivity concerning the distribution of NO concentration across 

the reactor height; (b) representation of mesh 3 with 80,200 cells. 

To further ensure the reliability of these predictions, the validation process needs to be 

extended to encompass a wide range of variables. Figure 3a,b provide a comparison 

between experimental and numerical outcomes for CO2 and CO concentrations at varying 

vertical heights and radial distances. These simulations followed the experimental 

parameters, using 100% primary air and an operational temperature of 1098 K [19]. Similarly 

to the results for NO concentration, the model exhibited a commendable ability to predict 

CO2 and CO concentrations at different reactor positions, with notable concordance between 

numerical and experimental values. The closeness to the line in CO2 concentration signifies 

reduced error variance, while CO concentration displays close agreement between 

experimental and numerical values. Having successfully validated the model for coal 

combustion in a pilot-scale reactor, the study proceeded to investigate coal and NH3 co-

firing within the same system. The research group has already previously validated the 

model for compositions up to 80% ammonia [6]. In this particular case, due to the intricacies 

of the DoE, we conducted simulations for new data points, ensuring they remained within 

the prescribed limits outlined in the referenced article. This approach underscores a 

considerable level of confidence in the simulation outcomes for these mixtures. 

 
 

(a) (b) 

Figure 3. Contrast between experimental and numerical data across distinct conditions: (a) vertical 

positions spanning 18 to 168 cm for CO2 concentration, and (b) radial extents ranging from 0 to 14 

cm for CO concentration. 

Figure 3. Contrast between experimental and numerical data across distinct conditions: (a) vertical
positions spanning 18 to 168 cm for CO2 concentration, and (b) radial extents ranging from 0 to 14 cm
for CO concentration.

In addition to gas concentrations, evaluating the model’s competence in forecasting the
fluidization process involves illustrating the variance between experimental and numerical
fluidization curves, as depicted in Figure 4. These curves quantify the pressure distribution
within the bed by incrementally raising the superficial air velocity until the minimum
fluidization velocity is reached. An internally developed user-defined function (UDF)
routine was applied to reduce disparities between experimental and numerical fluidization
outcomes, enhancing the accuracy and predictability of the mathematical model. This rou-
tine operates by adjusting the default constant values of the solid-phase velocity coefficient
to ensure accurate prediction of bed behavior. Findings indicate that in the absence of the
UDF routine, the model tends to overestimate fluidization curves, particularly at lower
velocities, leading to larger deviations from experimental results. These notable deviations
at lower speeds are attributed to the minimal movement of solid fractions at such velocities,
compounded by the Fluent database model’s inability to account for such low-entropy
behaviors [29]. Overall, the numerical model demonstrated a favorable alignment with the
fluidization behavior of the pilot-scale reactor.
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4.2. Statistical Model Validation

Following good statistical practices, it is recommended that empirical models be kept
as simple as possible. Additional terms should only be introduced if they contribute to
explaining variations beyond what is already accounted for [30]. A convenient tool for
determining the extent to which polynomial terms should be added to the empirical model
is the sequential model sum of squares (SMSS). SMSS yields p-values for the sources of
terms in the model. The results of the SMSS analysis for NO generation are presented in
Table 5. Similar analyses were conducted for all other responses under consideration.

Table 5. Sequential model sum of squares for NO generation.

Source Sum of Squares F-Value p-Value

Mean vs. total 2.976 × 105 - -
Linear vs. mean 70,482.17 27.05 0.0005

2FI vs. linear 4489.00 5.82 0.0525
Quadratic vs. 2FI 3813.86 9.33 0.0312

Cubic vs. quadratic 748.33 10.82 0.0846
Residual 69.14 - -

Total 3.772 × 105 - -

Table 5 shows that both the linear terms (A and B) and the quadratic terms (A2 and B2)
have small p-values, indicating that they can explain the variation in the process. The table
also shows the F-value, and larger F-values suggest more significant factors and higher
variability, similar to small p-values. When p-values are higher than 0.1, the terms are
not considered significant on their own. The cubic terms are aliased, so including them
is not recommended. The quadratic model also covers linear and interaction terms (AB),
making it the preferable choice. The empirical model is created using Eulerian–Lagrangian
numerical simulations. With computer-based simulations, the same solution is consistently
obtained under specific operating conditions. In such cases, the idea of replicates loses
its significance. Statistical measures like lack of fit do not offer useful data for analysis in
these situations.

Nevertheless, other measures such as R2, R2
adj and R2

pred remain valuable. R2 assesses
how effectively the model can accurately fit the experimental data or, in the current scenario,
the computer-based simulations. However, R2 can occasionally be misleading, leading to
overfitting of the data. R2

adj addresses this issue by providing a more dependable tool to

evaluate the quality of data fitting. R2
pred evaluates how effectively the model can refit the

data when one point is missing. When these measures are sufficiently close, it indicates
a high-quality fit. Table 6 displays the results of these additional measures. Once again,
the quadratic model emerges as the most valuable option, displaying a high-quality fit of
the model due to the closer resemblance between the two R2 coefficients. As anticipated,
the cubic model is aliased, making it an impractical choice. Additionally, an alternative
statistical tool used to measure the signal-to-noise ratio is Adeq-Precision. Adeq-Precision
comparatively addresses the predicted value extent at the design points to the average
prediction error. A ratio greater than 4 (27.6638 was obtained in this study) means that the
selected model is reliable for navigating under the design space.

Table 6. Model summary statistics.

Source R2
adj R2

pred

Linear 0.8527 0.7056
2FI 0.9127 0.8101

Quadratic 0.9769 0.8900
Cubic 0.9961 0.8778
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The higher-order polynomial determined by the SMSS suggested that the quadratic
model provided the best fit with the experimental data, including linear (A, B), interaction
(AB), and quadratic (A2, B2) terms to depict the variation of the process. A and B terms
suited the air staging and NH3 co-firing ratio factors, respectively. The final empirical
model for predicting NO generation, in coded form, is given by:

NO = 156.86 − 79.50A − 73.67B + 33.50AB + 39.79A2 − 13.71B2 (2)

The coded form equation is valuable for understanding the relative impact of the
factors, as indicated by their coefficients. Positive coefficients imply that an increase in the
factor leads to a corresponding increase in the response. In this representation, high levels
of the factors are coded as +1, and low levels are coded as −1 by default.

Once the empirical model is chosen and before applying it to create the response
surface, it is vital to perform an analysis of variance (ANOVA) to determine whether all
terms should be included. According to the ANOVA results data shown in Table 7, the
model’s F-value of 77.10 implies the model is significant, and there is only a 0.05% chance
that an F-value this large could occur due to noise. p-Values less than 0.05 indicate model
terms are significant. In this case, A, B, AB, A2 are significant model terms. Values greater
than 0.1 indicate the model terms are not significant. If there are many insignificant model
terms (not counting those required to support hierarchy), model reduction may improve
the model.

Table 7. ANOVA data.

Source Sum of Squares F-Value p-Value

Model 78,785.02 77.10 0.0005
A-Air staging 37,921.50 185.55 0.0002

B-NH3 co-firing ratio 32,560.67 159.32 0.0002
AB 4489.00 21.97 0.0094
A2 3693.44 18.07 0.0131
B2 438.86 2.15 0.2167

To assess the model’s appropriateness, the final step involves scrutinizing residuals
for any irregularities. In essence, the disparities (residues) between the experimental data
and the computed model are examined to distinguish whether the residuals represent mere
noise or if there are discernible patterns. Figure 5 illustrates the normal probability plotted
against external studentized residuals. Externally studentized residuals are particularly
useful for identifying influential observations and outliers that might not be apparent when
considering the dataset as a whole. This method allows for assessing the impact of each
data point on the model. The process of studentization is pivotal for accurately estimating
residuals and adjusting for varying leverage in design points. If the residuals conform to a
normal distribution, they should align with the red line. As seen in Figure 5, the model
behaves as expected for a normal plot of residuals, reaffirming the assumption of normality.

Additionally, a highly beneficial diagnostic tool involves plotting the residuals against
the predicted response. Figure 6 showcases a random scatter, reinforcing the utility of
the developed empirical model. Residuals should exhibit a random scatter around zero,
suggesting that the model adequately captures the underlying relationships in the data.
Moreover, the results suggest that there is no need to contemplate transforming the re-
sponses through alternative mathematical functions such as logarithmic or square root
transformations. The same procedure was applied to the other responses, all of which
exhibited minor deviations from normality and constancy of variance. As a result, they
can be deemed suitable for describing the behavior of the respective responses within the
experimental design space.
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4.3. Single-Response Optimization

Performing a large-scale experimental procedure incurs substantial costs, and when
a model can adeptly replicate co-firing responses, it opens avenues for significant cost
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savings. Concurrently, the model helps circumvent logistical challenges associated with
experimental work. Despite its predictive capability, CFD models fall short in straight-
forwardly determining the optimal operating conditions. To address this limitation, our
CFD model was synergistically coupled with an RSM, and nine computer simulations were
systematically conducted, wherein variations in air staging and NH3 co-firing ratio were
implemented according to a DoE approach while keeping all other parameters constant.
For each simulation, responses such as NO, NH3 and CO2 emissions generation were
computed. Collating this information, an RSM was employed, fitting the data using the
second-order empirical model validation in the previous subsection.

Figure 7a–c show the response contour plots for NO, NH3 and CO2 generation, re-
spectively, as a function of the most significant factors (air staging and NH3 co-firing ratio)
after running an optimization algorithm for a single response.
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The significant impact of air staging on NO emissions, as demonstrated in Figure 7a,
corroborates the recognized efficacy of air staging in NO control. The observed rapid 50%
reduction in NO emissions at a 20% staged airflow is in line with reported mitigation
ranges in the literature [31]. The fuel-rich/O2-lean conditions induced by air staging inhibit
NO formation through NH3+O2 reactions, showcasing the higher the air staging level, the
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smaller the fuel-NH3 fraction converted into NO. The elongated reduction zone upstream
of the second airflow inlet, created by air staging, allows more time for the NH3 combustion
reaction to occur, further reducing NO yield [6].

In Figure 7b, the NH3 generation reveals a maximum response of around 25 ppm at a
40% NH3 co-firing ratio and 0% air staging. This configuration corresponds to the absence
of air staging, emphasizing the specific conditions under which optimal NH3 generation
is achieved. As the NH3 co-firing ratio increases, there is a gradual rise in the amount of
unreacted NH3. While the NH3 co-firing ratio yielding the lowest NO emissions coincides
with this relatively high NH3 co-firing ratio, it introduces challenges related to NH3 slip.
Increasing NH3 injection may offer benefits in NO reduction, but it simultaneously elevates
the risk of unburned NH3. Achieving a balance in the NH3/NO ratio is imperative to
enhance NH3 reactivity and consequently diminish NH3 slip in the unburned streams.
This delicate equilibrium is vital for optimizing both NO reduction and NH3 combustion
efficiency [32].

In Figure 7c, the observed trends in CO2 generation with varying NH3 co-firing ratios
align with established literature, corroborating the effectiveness of NH3 injection for CO2
reduction, as increased NH3 co-firing ratio leads to a discernible decrease in CO2 emissions.
This aligns with the premise that NH3, being devoid of carbon, replaces coal in combustion,
directly reducing CO2 emissions. Furthermore, NH3 injection inhibits CO oxidation to CO2,
emphasizing its dual role in emission reduction [6,13].

4.4. Desirability Function

The previous analysis was performed considering a single response. However, co-
firing processes require the ability to lead with several restrictions and multiple goals.
Usually, a balance must be struck between yields, energy savings, or other desired outcomes.
To address multiple goals, it is necessary to consolidate them into a unified function,
commonly known as an objective function. Derringer and Suich [33] propose employing the
desirability concept to assess the success of combining multiple responses. The desirability
(D) can be computed using the following formula:

D =

(
n

∏
i=1

di

) 1
n

where di represents the desirability of each response and D is the overall desirability ranging
from 0 to 1 (with 1 indicating the most desirable condition). Before computing desirability
values, specific goals for each selected response (maximize, minimize, bounded within
certain values, or equal to a fixed value) need to be defined, along with assigning different
weights if certain variables are more critical than others. Table 8 outlines the goals for
each response under various simulation scenarios, based on typical operational responses
while maintaining the goal of minimizing NO, NH3 and CO2 emissions generation [6,12].
Figure 8 illustrates the optimal operating conditions and response values derived from a
comprehensive analysis of five different responses. Here, the dot on each ramp function
graph indicates the optimal level of the parameter. According to the results, to minimize
NO, NH3 and CO2 emissions, air staging should be kept close to 40% and NH3 co-firing
ratio around 32% (the numbers below the ramp graphs refer to the dot position in the ramp).
Here, a desirability value of 0.807 suggests that the corresponding operating condition or
response is relatively close to the target or optimal value. In this purview, the desirability
analysis considers the intricate interplay between air staging and NH3 co-firing ratio,
meeting the trends derived from previous findings [2,6,13,34]. Previous studies reveal
that NH3 co-firing can significantly reduce CO2 emissions by up to 26%. Notably, the
desirability analysis emphasizes maintaining an NH3 co-firing ratio close to 32%, aligning
with the observed trend of gradually decreasing NO emissions by up to 40% within the
20–80% NH3 co-firing ratio range. This underscores the pivotal role of the NH3 co-firing
ratio in achieving optimal emissions reduction. Simultaneously, the desirability analysis
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underscores the importance of air staging, corroborating earlier findings that a 20% air
staging alone resulted in a 50% reduction in NO emissions. The recommended air stage of
approximately 40% signifies the critical influence of controlled air injection on minimizing
NO emissions. Altogether, the desirability analysis offers a systematic approach, balancing
the NH3 co-firing ratio and air staging, to achieve a desirable and environmentally friendly
operational range for ammonia–coal co-firing processes.

Table 8. Optimization scenario based on different combined response targets.

Response Optimization

Air staging 0–40
NH3 co-firing ratio 0–40

NO Minimize
NH3 Minimize
CO2 Minimize
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Indeed, this methodology proves crucial for assessing co-firing processes where tailor-
ing responses based on changing input conditions becomes essential. In complex systems
like co-firing processes, where various factors and responses need to be considered si-
multaneously, desirability offers a systematic approach to balance conflicting goals and
find a compromise solution. The desirability function allows researchers and engineers to
evaluate and compare different sets of operational parameters, considering trade-offs and
finding an optimal operating point that aligns with multiple performance criteria. Notably,
the optimal operating conditions differ from those obtained through single-response op-
timization, showcasing the adaptability and versatility of this approach. The weighting
given to each variable is contingent upon the researcher’s objectives. In this instance, we
simulated a scenario to illustrate the method’s practical utility.



Energies 2024, 17, 2130 15 of 18

4.5. Robust Operating Conditions

In the context of optimizing ammonia–coal co-firing processes, a robust analysis of
operating conditions was conducted to address uncertainties and enhance system stability.
Following the initial single optimization, where the desired operational target range was
established for optimal responses, a concern arose regarding potential acute response
peaks within the optimal conditions. To address this, a robust optimization approach
was employed, integrating the PoE method. PoE methods aim to identify factor settings
that minimize the transmission of variation from factors not entirely under control to the
response. Optimal settings, reducing the transmission of variation, enhance the robustness
of the process against fluctuations in input factors. Essentially, PoE methods utilize partial
derivatives to identify regions of low slope on the response surface. To implement PoE
techniques, two key components are necessary: a second-order hierarchical response
surface model and estimated standard deviations for the numerical factors [34].

In the PoE analysis, uncertainties in the optimization data were considered by assessing
the robustness of the selected operating conditions to variations in input factors. The PoE
method quantifies the propagation of uncertainties through the system and provides
valuable insights into the stability of optimal conditions. The PoE method is also known for
being particularly adept at systematically accounting for error propagation and uncertainty
in a deterministic manner [34]. For the PoE analysis, error propagation was computed
based on a standard deviation of 2 for the selected input factors. To effectively govern the
system, meticulous control over input errors is paramount, as these errors serve as the
conduits for variation. It is imperative to emphasize that maintaining precision in the input
leads to reduced uncertainty in the outcomes. Nevertheless, this pursuit of precision comes
with associated costs, such as investment in more sophisticated equipment and resources.
Importantly, the extent of control over factors directly influences the transmitted variation.
The data source considered was obtained from the historical data gathered from previous
ammonia–coal co-firing works [2,6,13].

Figure 9a–c present the PoE contour plots for NO, NH3, and CO2 generation (in
optimal conditions), respectively, as a function of their input factors (air staging and NH3
co-firing ratio). These contour plots combine the optimization procedure with the robust
conditions and depict the most stable operating conditions to reach the utmost performance
of the NO, NH3, and CO2 response by providing the operating range that minimizes
the variation transmitted to the response from the input factor. PoE contour plots offer
insightful perspectives on the sensitivity and robustness of the ammonia–coal co-firing
system concerning NO, NH3, and CO2 generation at optimal conditions, considering
variations in air staging and NH3 co-firing ratio. For NO generation (Figure 9a), the
smallest PoE measured at higher air staging and lower NH3 co-firing ratio indicates a more
stable and robust operating region for minimizing NO emissions. As for the substantial PoE
observed for lower air staging and NH3 co-firing ratio, these suggest heightened sensitivity
and uncertainty in NO emissions within these parameter ranges.

For NH3 generation (Figure 9b), the smallest PoE spans the entire air staging range (0%
to 40%). underscoring a relatively stable operating region for minimizing NH3 emissions.
As expected, the lowest PoE point occurs at 40% air staging and 0% NH3 co-firing ratio,
representing an exceptionally robust condition for NH3 reduction.

Turning to CO2 generation (Figure 9c), the largest PoE sets around 40% air staging
and 0% NH3 co-firing ratio, suggesting heightened sensitivity in CO2 emissions within this
parameter space. Conversely, the smallest PoE is found for air staging around 0% and a
40% NH3 co-firing ratio, highlighting a stable region for minimizing CO2 emissions.

In summary, the PoE contour plots reinforce the importance of specific operating
conditions for maximum performance, particularly concerning high air staging levels
(40%) and the balance of NH3 co-firing ratio (around 30%), for achieving robust and stable
performance in terms of NO, NH3, and CO2 emissions generation during ammonia–coal
co-firing processes.
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Regrettably, and in general, the setting of factors that meet the maximum response
in the single-response optimization does not correspond to the minimum PoE. However,
this challenge inherent in multi-optimization scenarios can be effectively addressed by
applying the desirability function. Through the desirability function, it is possible to
identify conditions where the response is maximized while concurrently minimizing the
PoE. This approach offers a practical solution to reconcile the dual objectives of maxi-
mizing the response and minimizing uncertainty, providing a more robust and balanced
optimization strategy.

Additionally, from Figure 9a–c, it can be observed that combining the optimization
procedure with robust conditions implies a decrease in NO generation from 88 ppm to
about 15 ppm compared to the desirability function. Identical trends apply to NH3 and CO2
generation. Naturally, other results can be obtained if different weights are considered for
each of the studied responses. Furthermore, given that this approach relies on numerical
methodologies, it becomes plausible to achieve comparable results by considering an
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alternative set of factors. Integrating such insights with the accumulated experience of
operating a gasifier enables the formulation of reliable and intelligent decisions that cater
to a diverse range of objectives.

5. Conclusions

In this study, a CFD model was coupled with advanced statistical methodologies,
integrating the RSM and the PoE approach to optimize and assess the robustness of
ammonia and coal co-firing in a pilot-scale fluidized bed reactor. The numerical model was
validated with experimental data gathered from a pilot fluidized bed reactor. Employing
a 3k full factorial design involving nine computer simulations with air staging and NH3
co-firing ratio as input factors, the study focused on critical responses, namely, NO, NH3,
and CO2 emissions generation. The DoE facilitated the identification of optimal operating
conditions, paving the way for enhanced operational stability and emissions reduction
in coal phase-out processes. Intriguingly, the implementation of the desirability function
and robustness assessments underscored that optimal responses from single optimization
might not always correspond to the most stable operational values. Robust operating
conditions revealed that maximum performance was achieved at high air staging levels
(around 40%) and an NH3 co-firing ratio (around 30%). This holistic multi-optimization
process equips engineers, researchers, and professionals with valuable insights for making
informed decisions in both pilot and industrial settings, specifically in the pursuit of
emissions reduction and decarbonization in energy production processes.
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