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Abstract: During the summers of 2021 and 2022, we conducted a study in four Georgia Piedmont
pastures to assess the effect of the presence of filth flies and epigeal arthropods on carbon and
nitrogen emissions and soil nitrogen retention from lax rotational grazing systems under a legacy of
low fertilization. Carbon dioxide (CO2), nitrous oxide (N2O), and ammonia (NH3) emissions were
measured from dung on days 0, 4, 8, and 15 following depositions. Soil and manure samples were
collected on days 0 and 16 and analyzed for ammonium (NH4

+), nitrate (NO3
−), plant-available

nitrogen (PAN), and potentially mineralizable nitrogen (PMN). Manure samples were analyzed for
total Kjeldahl nitrogen (TKN). The numbers of filth flies ovipositing and emerging from manure,
fire ants, and epigeal arthropods around the manure were determined. Our results indicated that
more than 12 ovipositing filth flies per manure pat can reduce PMN by up to 14.7 kg of nitrogen per
hectare, while an increase in the biodiversity and abundance of predators may help to increase PAN
and PMN in grazing systems, as well as decrease the number of emerging filth flies.

Keywords: nitrous oxide emissions; ammonia volatilization; carbon dioxide emissions; filth flies; fire
ants; cattle manure; grazing systems

1. Introduction

Pastures constitute more than 25% of global land use and around 60% of agricultural
land in the United States [1,2]. Global meat cattle production has more than doubled since
1961, and the US is the main meat producer [3]. Cattle production is one of the most
important agricultural industries in the US, and in 2022 it represented 17% of the total
cash receipts for agricultural commodities [4]. Grazing systems must be managed carefully
because they protect key regulating ecosystem services such as carbon storage, biological
control, pollination, and water supply [5–7] but also because unsustainable practices may
lead to an increase in greenhouse gas emissions, a severe pollution of water systems, and
soil degradation [8–10].

Small-scale farms, with sales values of less than $100,000 per year hold 31% of the U.S.
cattle inventory, and the production of beef cattle is their main agricultural activity [11].
In the state of Georgia, 83% of cattle farms are small farms that earn less than $150,000
annually [12]. About 87% of small farms depend on family labor, and more than 50% of
beef farm operators are engaged in other activities as their primary occupation [13,14]. As a
result, small farms typically exhibit less rigorous management practices and have reported
that forage availability and external parasites had a significant economic impact on their
cattle operations [14].
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Nitrogen (N) is almost always the most limiting nutrient for grass production on sandy
and sandy clay, acid, low-organic-matter, and low-fertility soils of Georgia, USA. These
soil conditions, accompanied by the high temperatures and humid conditions of Georgia
summers can lead to N loss as emissions from cattle manure [15,16].

Filth flies are a common nuisance for cattle on pasture; they oviposit in cattle manure,
and the larvae consume bacteria and organic matter until pupation [17,18]. High infestation
numbers—especially of horn flies (Haematobia irritans Linnaeus), which are hematophagous
cattle ectoparasites and can reduce the productivity and profitability of grazing systems [19–21].
Besides economic and health issues induced by filth flies, N emissions from cattle manure
have been reported in the presence of house flies (Musca domestica Linnaeus) and bottle
flies (Lucilia sericata Meigen) [22–24]. In addition, epigeal arthropods such as dung beetles,
herbivorous insects, and red imported fire ants (Solenopsis invicta Buren) have also been
associated with intervening in soil N retention and emissions [25–28]. Furthermore, red
imported fire ants, rove beetles, and other members of the epigeal arthropod community
have been shown to decrease filth fly numbers emerging from bovine manure [29,30].

Abiotic factors also have a role in emissions. Ammonia (NH3) emissions can increase
by 48% when the temperature changes from 20 to 30 ◦C, and increase from undetectable
levels to 9.8% of the initial total N of stable manure when the pH changes from 7.5 to 9 [31].
Ammonia emissions from cattle manure doubled when the pasture received 11.3 mm,
rather than 0 mm, of cumulative rainfall during the 4 days before sampling [32]. Increases
in temperature from 20 to 40 ◦C and in manure moisture content from 65 to 75% have been
shown to significantly increase carbon dioxide (CO2) emissions [33]. Nitrous oxide (N2O)
emissions can increase more than ten-fold when temperatures are higher than 10 ◦C—the
maximum temperature reported was 25 ◦C—but only when the soil moisture is near field
capacity [34]. Rainy seasons can promote the generation of N2O since rain enters the water-
filled pore space (WFPS) and limit O2 diffusion, initializing the denitrification processes
when the WFPS is >0.6 [16,35]. An increase in porosity in the manure can also result in
higher N emissions [36,37].

Because NH3 emissions are greater from cattle urine than from cattle manure most
work has looked at urine N emissions in grazing systems, resulting in a knowledge gap on N
emissions from manures, especially in terms of filth flies, fly predator, and the provisioning
of soil inorganic N (plant available N). Considering that there may be several trophic and
abiotic interactions that influence filth fly numbers and N losses in grazing systems, this
paper aimed to assess the effect of the presence of filth flies and soil arthropods on C and N
emissions and soil N retention in lax rotational grazing systems under low-fertilization-
legacy conditions in the Georgia Piedmont, USA.

2. Materials and Methods
2.1. Characteristics of the Study Site

This study was conducted in four pastures within the Georgia piedmont; two family
farms (33.782729◦ N, 83.330256◦ W; elevation 213–259 m, Watkinsville) in Oconee County,
Georgia, USA, and two pastures at the Eatonton Beef Research Unit of the University of
Georgia (33.420759◦ N, 83.476555◦ W, elevation 152–177 m, Eatonton) located in Putnam
County, Georgia, USA. All pastures under study were grazed under a lax rotational system
according to forage availability, with no fertilization practices for the last 15 years. Hay
was fed and watering stations supplied by deep wells were at upland locations. Shade
for beef cattle was provided in the form of trees primarily in upland positions distributed
throughout different paddocks within the family farms. In the Eatonton pastures, most of
the trees were upland, but some surrounded a creek in the bottomland. These pastures
were declared to have a low fertilization legacy because they had not received any kind of
fertilization during the last 15 years.

The soil of the Watkinsville farm pastures was mapped as Pacolet (fine, kaolinitic,
thermic Typic Kanhapludults) sandy clay loam, with two slope ranges (6 to 10% and
10 to 15%) and was classified as severely eroded and well-drained. Eatonton pasture soils
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were mapped as Wilkes (loamy, mixed, active, thermic, shallow Typic Hapludalfs) sandy
loam, with two ranges of slope (2 to 10% and 10 to 25%) and were eroded and well drained.
Smaller areas were mapped as Davidson loam, with 2 to 6% slopes, moderately eroded,
and well drained [38].

The monthly precipitation and average monthly temperature for Eatonton pastures
and Watkinsville pastures for 2021 and 2022 (Figure 1) were obtained from the network of
weather stations maintained by the College of Agricultural and Environmental Sciences,
University of Georgia [39]. To calculate the total precipitation for each chamber in our
findings, we summed the rainfall from the previous day and the day of sampling for each
sampling day and then aggregated these values, as shown in the formula:

Total precipitationi+j = ∑ Pi + Pj, (1)

where Pi is precipitation received on the day before sampling, and Pj is precipitation
received on the sampling day. Sampling days (j) were 0, 4, 8, and 15.
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Figure 1. Monthly precipitation and average monthly temperature for 2021 and 2022 for (A) Eatonton
and (B) Watkinsville.

2.2. Experimental Design and Sampling

The sampling period was from June to August in both 2021 and 2022. Each month two
pastures, one from Watkinsville and one from Eatonton were sampled on the same dates.
Four manure pats were sampled per pasture along with a control. A plastic chamber was
installed above each manure pat and on the pasture as a control, to measure NH3, N2O,
and CO2 emissions for 16 days after manure pat deposition. Manure temperature (Digital
Soil Thermometer Rapitest model 1625, Luster Leaf, Atlanta, GA, USA) and emissions
were measured on pat deposition day 0 and days 4, 8, and 15 after deposition. On days
0 and 16, one cup of manure was sampled and frozen to determine moisture and total
Kjeldahl nitrogen (TKN) content. On the same days (0 and 16), soils were sampled from
four locations around each chamber at 0 to 5 and 5 to 10 cm depth to determine nitrate
(NO3

−), ammonium (NH4
+), plant available nitrogen (PAN), and potentially mineralizable

nitrogen (PMN). Filth flies ovipositing in manure on day 0, and the emerging filth flies on
days 15 and 16 were captured using a net trap. On day 16, the remaining pat was collected
to determine the pupal number. A pitfall trap was installed around each chamber during
the deposition day to assess the abundance and type of epigeal arthropods visiting nearby
chambers. Pitfall trap contents were collected on days 1, 4, 8, and 15 and analyzed to
determine biodiversity by the Shannon index and to determine arthropods associated with
manure pats.
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2.3. Characterization of Filth Fly Populations

On the deposition day, a net trap was placed over the manure pat 1 min after deposition
to collect the ovipositing filth flies (Figure 2A). The net traps remained in place over the
manure for 10 min, then the net trap was covered with a black cloth for another 10 min
to block the sunlight and stimulate the captured flies to move into the jar for subsequent
collection (Figure 2B). Collected flies were identified and counted.
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During the 16 days of the sampling period, the chambers were covered with net traps
to avoid additional oviposition and to collect any emerging flies (Figure 2D), except for
the sampling days in which the chamber was closed (Figure 2E). On the 16th day, after
the final collection of emerged flies, the chambers were removed, and the manure pats
were collected in plastic bags. The remaining pupae from manure pats were counted and
examined using a water flotation technique [40].

2.4. Characterization of Biodiversity Populations

A circular pitfall trap was installed on the deposition day around each manure pat
to evaluate the activity of epigeal arthropods (beetles, spiders, crickets, e.g.) on pastures.
A 100 cm3 open-top plastic jar was buried until the rim was level with the soil surface and
filled with soapy water to half its capacity [41]. The pitfall trap contents were registered as
“captured” and emptied every sampling day: 1, 4, 8, and 15 after deposition.

Ant foraging activity was measured by a modified “hot dog test” [42], which measures
the number of ants that are found on a hot dog piece. On the 4th day after deposition,
a 5 cm hot dog piece was placed one foot away from the manure pat in a random direction.
After 25 min a picture was taken to count the ants and measure the hot dog area using IC
Measure software (ImagingSource®, Version 2.0.0.286, The Imaging Source LLC., Charlotte,
NC, USA, 1991–2023). The results are expressed as the number of ants per square centimeter
of hot dog.

Biodiversity was calculated for each chamber using the Shannon index [43], but instead
of considering species, the captured invertebrates were classified into 6 categories according
to their functional types: filth flies (horn flies, bottle flies, eye gnats, face flies), dung beetles
(dung beetles, rainbow scarabs), predators (spiders, paper wasps, tiger beetles, rove beetles,
ants), herbivores (crickets, grasshoppers, Colorado potato beetles), fly parasitic wasps, and
seed parasitic wasps. The Shannon index was calculated using the following formula:

Shannon index (H) = −∑s
i=1 pi × ln pi, (2)

where s is the number of categories (6), p is the proportion (n/N) of individuals of one
category (n) divided by the total number of individuals found (N), ln is the natural log, and
Σ is the sum of the calculations. In the case of ants, they were considered as the number of
ants per square centimeter of hot dog.
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2.5. Ammonia Volatilization, Nitrous Oxide, and Carbon Dioxide Emissions

Ammonia, N2O, and CO2 emissions were measured from each manure pat beginning
on days 0, 4, 8, and 15. Four manure pats were sampled, and one control chamber was used
per pasture. In each manure pat, a gas trap chamber (30 cm ID PVC pipe open at the bottom
containing one metal ring inside with an airtight removable lid that has a septum at the top),
was utilized on each sampling date to capture N2O, CO2, and NH3 emissions (Figure 2C).

Within each of the chambers, the metal ring held a glass jar with boric acid (100 mL
0.4 M H3BO3) to trap NH3. After the collection of flies, the chambers were inserted 5 cm
into the soil, boric acid traps were placed into the metal rings and the chamber was closed
for 24 h. After 24 h the jars were collected and brought back to the lab for chemical analysis.
N2O and CO2 were measured by taking a 3 mL gas sample with a syringe and analyzed in
a Varian Star 3600 CX gas chromatograph using an electron capture detector (ECD) and
a thermal conductivity detector (TCD). Ammonia was measured by the change in pH of
the H3BO3 in the glass jars followed by back titration with a weak sulfuric acid solution
(0.0044 N H2SO4) to the initial pH of 0.4 M H3BO3 [44].

Emissions from control chambers were subtracted from manure chambers for those
chambers in which the manure did not cover all the chamber area (Equation (3)). The
area covered by manure was measured using IC Measure software on the pictures of the
chambers that were taken on the deposition day.

Manure emission = Chamber emission −
(

Soil emission × (Chamber area − Manure area)
Chamber area

)
. (3)

Cumulative gas emissions were calculated by a rectangular integration of the area
under the curve created by the daily emissions (Equation (4)).

Cumulative gas emission = vd0 + vd0+vd4
2 × 4 + vd4+vd8

2 × 4 + vd8+vd15
2 × 7, (4)

where vdi is the daily value for each sampled day (i = 0, 4, 8, 15 days after deposition).
The ammonia volatilization values were corrected using the capacity of the trap

(Table 1). To evaluate the capacity of the trap, a laboratory experiment was designed.
A solution of NH4Cl (0.003 M) with a pH value of 9 was prepared and enclosed in a
desiccator (9.1 L) together with an acid trap (100 mL of 0.4 M H3BO3) in a beaker. After 24 h,
a 20 mL gas sample was taken with a syringe through a septum and was slowly injected
into a fresh acid trap solution to capture the NH3 remaining in the air. Then, the desiccator
was opened, both acid traps were back-titrated, and the captured NH3 was calculated. The
NH3 captured in the fresh acid trap served to calculate the NH3 remaining in the desiccator:

NH3 remaining = NH3captured in fresh trap × 9.1L
0.002L

. (5)

Table 1. Results from the trap capacity experiment.

Replication NH3 Captured with 24 h
Trap (mg N)

NH3 Captured with
Fresh Trap (mg N)

NH3 Remaining in
Desiccator (mg N) Trap Capacity (%)

1 20.6 0.08 38.4 34.9%
2 18.1 0.07 33.8 34.9%
3 18.9 0.09 40.1 32.0%
4 20.7 0.09 38.8 34.7%

Mean ± STD 19.6 ± 1.1 0.08 ± 0.01 37.8 ± 2.4 34.1 ± 1.2%

The capacity of the trap (CT) was calculated with Equation (6). The experiment was
run four times and the results are shown in Table 1.

CT =

(
mgNH3captured with24h trap

mgNH3captured with24h trap + mgNH3remaining in desiccator

)
× 100%. (6)
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2.6. Analysis of Soil and Manure Samples

After collection, soil samples were placed in sealed plastic bags. Field soil moisture
content was determined with 1 g of soil dried at 105 ◦C for 24 h in a Precision oven
(model 51221129, Jouan Inc, Winchester, VA, USA). After a field moisture analysis, sam-
ples were left to air dry for two weeks. Air-dried soil was ground and sieved (<2 mm mesh),
and the four replicates per chamber were combined. Combined samples were corrected
for moisture, before being stored in airtight plastic bags for a subsequent analysis at the
Franklin’s Sustainable Lab. Subsequently, 3 g of soil sample was extracted with 20 mL of
a 2 M KCl solution (cold extraction) [45], and the colorimetric measurement of ammonium
(NH4

+-N) and nitrate (NO3
−-N) was carried out using the Doane and Horwath method [46,47].

Plant-available nitrogen (PAN) was calculated by adding NH4
+-N and NO3

−-N fractions
obtained from the cold KCl extraction. The hot KCl extraction method was used to measure
potentially mineralizable nitrogen (PMN) [48]. In this method, 20 mL of 2 M KCl was added
to 3 g of soil, heated to 100 ◦C for 4 h in a hot water bath, cooled to room temperature,
and filtered through a Whatman #42 filter paper. After that, the supernatant was tested
for NH4

+-N by colorimetry. PMN was calculated by subtracting the cold KCl-extracted
NH4

+-N from the hot KCl-extracted NH4
+-N. Loss-on-ignition carbon (LOI) was measured

gravimetrically as the lost weight caused by heating 1 g of soil for 8 h at 550 ◦C in a Ther-
molyne muffle furnace (model F6010, Thermo Fisher Scientific Inc., Asheville, NC, USA).
Manure samples were digested with H2SO4 and analyzed for total Kjeldahl N (TKN) with
a colorimeter technique using a TECAN spectrophotometer at 660 nm [49].

2.7. Statistical Analysis

Partition predictive modeling and multivariate correlation tools from JMP were used
to establish correlations between the variables and to find possible cut points in the ranges.
Regressions for the nitrogen and carbon emissions and soil nitrogen relationships with filth
fly numbers, ant activity, and predator numbers were made using simple linear regression
(p < 0.05). Comparisons between multiple means were determined by nonparametric
comparisons for each pair using the Wilcoxon method (p < 0.05). All statistical analyses
were performed using the JMP software package (JMP®, Version 16. SAS Institute Inc.,
Cary, NC, USA, 1989–2023).

3. Results and Discussion
3.1. Characterization of Epigeal Arthropods and Filth Fly Populations

Filth fly and epigeal arthropods populations showed a Shapiro–Wilk value lower than
0.05 and were catalogued as not normally distributed. The composition of the captured and
emerging filth fly populations during the two-year sampling period is shown in Table 2. The
horn fly was the main species laying eggs and emerging from the sampled cattle manure.
Hollowed Hawk Farm in Watkinsville showed the highest values of filth fly population,
driven mainly by its high values of face flies when compared to the other farms.

Table 2. Composition of the filth fly population captured during the 2021–2022 sampling period.
Median and quartile deviation (QD) are shown for every farm.

Species
Eatonton Research Farm Garmon Farm Hollowed Hawk Farm Total Number of

Individuals
per Species

Percentage
of TotalTotal Median ± QD Total Median ± QD Total Median ± QD

Horn fly (Haematobia
irritans Linnaeus) 384 21.0 ± 12.8 215 10.0 ± 7.9 380 11.5 ± 9.6 979 80.2%

Bottle fly (Lucilia
sericata Meigen) 32 1.0 ± 1.5 6 0.0 ± 0.4 48 1.0 ± 1.5 115 9.4%

Face fly (Musca
autumnalis DeGeer) 3.0 0.0 ± 0.0 3 0.0 ± 0.0 109 0.0 ± 1.0 86 7.0%

Eye gnat
(Liohippelates spp.) 5 0.0 ± 0.0 0 0.0 ± 0.0 35 0.0 ± 0.0 40 3.3%

Total filth flies
per farm 424 25 ± 11.0 224 10.0 ± 8.0 572 23.5 ± 10.8 1220
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The composition of predators is given in Table 3. Red imported fire ants were the
main species of this functional group, and the Hallowed Hawk Farm showed the highest
numbers of total individuals.

Table 3. Composition of the predator population captured during the 2021–2022 sampling period.
Median and quartile deviation (QD) are shown for every farm.

Species
Eatonton Research Farm Garmon Farm Hollowed Hawk Farm Total Number

of Individuals
per Species

Percentage
of TotalTotal Median ± QD Total Median ± QD Total Median ± QD

Ants (Solenopsis invicta
Buren) * 92 9.5 ± 10.0 112 21.0 ± 29.5 184 1.5 ± 12.3 388.0 68.9%

Spiders (Agelenopsis spp.) 51 3.0 ± 2.5 10 0.0 ± 0.5 18 0.0 ± 0.5 79.0 14.0%
Tiger beetles

(Cicindelinae subfamily) 21 1.0 ± 1.0 24 0.0 ± 0.8 19 0.0 ± 0.5 64.0 11.4%

Paper wasp
(Polistinae subfamily) 5 0.0 ± 0.0 6 0.0 ± 0.4 7 0.0 ± 0.0 18.0 3.2%

Rove beetles
(Staphylinidae family) 5 0.0 ± 0.0 4 0.0 ± 0.0 5 0.0 ± 0.0 14.0 2.5%

Total epigeal arthropods
per farm 174 5.0 ± 6.3 156 4.0 ± 3.4 233 2.5 ± 2.6 563.0

* Pictures taken during the hot dog test were analyzed by two ant experts from the Entomology Department of
the University of Georgia and they characterized the ants as “red imported fire ants” (Solenopsis invicta Buren).
Ants were considered as the number of ants per square centimeter of hot dog.

3.2. Factors Affecting Filth Fly Development

The number of filth flies emerging from cattle manure had a direct correlation (p < 0.01)
with the initial N content of the manure only when the number of ants per square centimeter
was lower than eight (Figure 3). Filth fly larvae eat manure nutrients and bacteria. Manure
with a greater N content has been shown to produce higher-quality larvae and lower larval
mortality [50]. During sample collection, ants were constantly seen carrying larvae, pupae,
and emerging filth flies from cattle manure. In addition, previous studies have recognized
red imported fire ants as filth fly predators [30,51]. We also found that the number of
filth flies emerging from cattle manure decreased significantly (p < 0.01) when the number
of predators per chamber was equal to or greater than five (Figure 4).
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3.3. Nitrogen Emissions
3.3.1. Ammonia Emissions

Ammonia emitted during the 16-day sampling (cumulative NH3) was between 4.1 and
126.4 mg NH3-N·kg−1 manure and represented between 0.01 and 0.7% of the initial N in
manure. Bussink also found that there was high variability when measuring NH3 emissions
in rotational dairy systems that received nitrogen fertilizer. They found an average value of
3.1 ± 13% of the initial N in manure was emitted as NH3 [52]. Nichols et al. found similar
results with a high variability depending on rain and grass type [53].

Cumulative NH3 had a positive relationship (p < 0.05) with the total number of flies
that laid eggs and emerged from the cattle manure when the average daily temperature
was lower than 25 ◦C. When the average daily temperature was between 23 and 25 ◦C,
every additional fly ovipositing in manure represented an increase of 0.46 mg N-NH3·kg−1

manure emissions. When the average daily temperature was equal to or greater than
25 ◦C, there was no clear relationship between cumulative NH3 and the total number of
flies, but there was a direct relationship between cumulative NH3 and the number of ants
per square centimeter (p < 0.05), in which every additional ant represented an increase of
0.54 mg N·kg−1 manure in emissions (Figure 5B). An increase in manure N emissions can
be the result of an increase in the air-filled pore space which promotes gas exchange [31,37].
Ant and fly larvae can cause an increase in pore space by their movement, which can create
holes or pores in the manure. The increase in emerging filth flies could indicate a greater
number of larvae, which would create more pore space and higher NH3 emissions as seen
in Figure 6. Ant activity was lower when the average daily temperatures were lower than
25 ◦C. Therefore, we speculate that the ammonia emissions when temperatures ranged
from 23 to 25 ◦C were driven mainly by filth fly activity, while at higher temperatures,
the ammonia emissions were driven by ant activity. Previous research suggests that the
optimum temperature for red imported fire ants to forage is between 25 and 35 ◦C [54,55].

NH3 emissions measured on sampling days 0 and 4 were significantly higher than
those collected during days 8 and 15 (Figure 6). Horn fly and face fly eggs hatch within a
few days of oviposition and larvae feed for the next 2 to 4 days [19,56]. While larvae were
not counted, their lifecycle would suggest that larval activity coincides with the greater
level of ammonia emissions.
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Figure 5. (A) Cumulative NH3 emitted during the 16-day sampling period vs. the total number of
flies that oviposited or emerged from manure pat, under two ranges of daily average temperature
(23 to <25 ◦C and ≥25 to <29 ◦C). (B) Cumulative NH3 emitted during the 16-day sampling period vs.
the total number of ants per square centimeter that were recorded per manure pat, under two ranges
of daily average temperature (23 to <25 ◦C and ≥25 to <29 ◦C).
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3.3.2. Nitrous Oxide Emissions

Nitrous oxide emitted during the 16-day sampling period (cumulative N2O) was
between 1.4 and 31.5 mg N2O-N·kg−1 manure and represented between 0.1 and 0.6% of
the initial N in manure. In a simulated grazing system with no previous fertilization,
Yamulki et al. found that N2O emitted during 100 days after pat deposition was between
0.04 and 0.53% of the initial N in manure [57]. Another study found ranges between 0.05%
and 0.07% 78 days after deposition [53].

Cumulative N2O had different relationships with the number of total flies captured
depending on the amount of precipitation received the day before and the day of sampling
and whether the manure pat was under tree cover or not. In open pastures, cumulative
N2O had a direct correlation with the total number of flies captured. However, under tree
cover, the N2O emissions increased with fly numbers only when the precipitation level was
lower than 31 mm, otherwise the N2O decreased with the number of flies (Figure 7).
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Figure 7. Cumulative N2O emitted per manure pat during the 16-day sampling period vs. the total
number of flies that oviposited or emerged from manure pat, under two ranges of total precipitationi+j

(10 to 31 mm and 32 to 81 mm). (A) Manure pats were on open pastures without cover. (B) Manure
pats were under tree cover.

Nitrous oxide is produced under aerobic conditions during the nitrification process,
and under anaerobic conditions during the denitrification process [8]. Factors such as high
moisture, neutral pH, high temperature, and the presence of soluble organic matter and nitrate
promote denitrification [8,16,58]. Most of the N2O emitted from cattle manure is produced
by the denitrification process in the top 0–5 cm layer [59]. The larval burrowing activity can
facilitate anaerobic conditions by allowing precipitation water to go into deeper layers of
manure and soil, thereby increasing N2O emissions when it rains. Figure 8 illustrates that
cumulative N2O was significantly higher (p = 0.0001) when total precipitationi+j (Equation (1))
ranged between 32 and 81 mm. Manure pats in open pastures captured more rainfall and,
coupled with the greater porosity created from larval and emerging fly activity, pockets of
saturation and partial saturation were present, allowing for denitrification to occur.
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Manure pats under tree cover likely received less precipitation because some of the
rain was intercepted by leaves and limbs and fell to the ground as throughfall, or when
smaller rainfall events occurred, most water was retained by leaves and branches. As such,
on manure pats under tree cover and receiving less precipitation, the larval activity could
promote N2O emissions by the nitrification process, by increasing gas exchange and oxygen
availability in deeper layers of manure, similar to the effect on ammonia emissions. The
water-filled pore space (WFPS) and oxygen content are key factors in determining the nature
of the N2O emission process in manure, changing from a denitrification to nitrification
process when oxygen concentration is more than 12% [37,60,61]. In heavier rainfall events
under trees, N2O emissions had a negative relationship with the total number of flies; we
speculate that most of the rainfall was throughfall, and manure pats did not receive the
amount of rain needed for pats to become saturated and induce denitrification. There was
not enough water to saturate the created holes to facilitate denitrification and there was
not enough oxygen to promote nitrification. Ammonium oxidation is the first step in the
nitrification process and actively consumes oxygen. Under laboratory conditions, increasing
the numbers of fly larvae has been shown to decrease N2O emissions by consuming nitrogen
sources and increasing carbon levels [22].

3.3.3. The Impact of Filth Flies on Nitrogen Emissions in the Environment

To determine the impact of the presence of filth flies on N emissions in a wider
region, we computed the potential effect on monthly N emissions for both a farm and
the state of Georgia. We considered that for every extra fly on open pastures, the NH3
emissions increase in 0.46 mg N · kg dry manure−1 (Figure 5A), and N2O emissions increase
between 0.58 and 0.93 mg N · kg dry manure−1 depending on the amount of rain received
(Figure 7A). The median and quartile deviation for the total number of flies per manure pat
in our study was 20 ± 11, the average manure moisture was 87%, and the cattle density was
one cow per ha. In addition, every beef cow produces an average of 56.8 kg of fresh manure
per day [62]. The state of Georgia has 11,025 small family farms (with a gross cash farm
income below $150,000) that produce beef cattle in an average area of 51.4 ha each [12].

The quantity of emissions caused only by filth flies coming from small farms in Georgia
can vary depending on the weather conditions and the fly infestation. In drier conditions, it
can reach up to 27.3 tons per month, while during rainy conditions, it can go up to 36.5 tons
per month (Table 4). These are additional emissions to the conventional manure emissions.

Table 4. N emissions produced by filth fly presence at a small-farm scale and on a state scale.

Rain
Range
(mm)

N Produced by Filth
Flies (mg N · Day−1

Fly−1 · kg Dry
Manure−1) *

N Emitted per Cow
(g N · Day−1)

N Emitted per Farm
(kg N · Month−1)

N Emitted in Georgia
(ton N · Month−1)

When 9 Flies
per Manure

Pat

When 31 Flies
per Manure

Pat

When 9 Flies
per Manure

Pat

When 31 Flies
per Manure

Pat

When 9 Flies
per Manure

Pat

When 31 Flies
per Manure

Pat

10 to 31 1.04 0.5 1.6 0.7 2.5 7.9 27.3
32 to 81 1.39 0.6 2.1 1.0 3.3 10.6 36.5

* This accounts for NH3 and N2O emissions.

3.4. Carbon Dioxide Emissions

The cumulative CO2 emitted during the 16-day sampling period (cumulative CO2)
was between 0.1 and 136.5 g CO2·kg−1 manure. Hanafiah et al. found cumulative CO2
emissions between 30.5 and 50.9 g CO2·kg−1 manure after 8 days of sampling under
laboratory conditions (units were transformed from percentages into g per kg of dry
manure considering manure moisture of 85%) [63].

The cumulative CO2 emitted during the 16-day sampling period had a direct relation-
ship with the number of ovipositing flies only when the average temperature was <25 ◦C
and the range of total precipitationi+j (Equation (1)) was lower than 31 mm (Figure 9A).
When the average temperature was greater than 25 ◦C the ants were more active and had a
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direct relationship with the cumulative CO2 emitted during the 16-day sampling period,
but only when the range of total precipitationi+j was lower than 31 mm (Figure 9B). Carbon
dioxide emissions under the higher precipitation range (32 to 81 mm) did not show any
relationship with the number of ovipositing flies or ants per square cm. Similar to NH3,
an increase in CO2 production with filth fly and ant numbers might be caused by their
burrowing activity since the holes bring additional aeration to the manure. More oxygen
and higher temperatures increase aerobic microbial activity and gas diffusion processes
in cattle manure [33,64]. Fresh manure has high moisture levels (87% average) that cause
a low gas diffusion and create a reduced oxygen supply under the manure surface. If
media porosity increases and the precipitation range is lower than the volume of air-filled
pore space, then the overall oxygen supply increases [37,65]. This may explain why the
relationships between CO2 emission and number of ovipositing flies existed only when
the precipitation ranges were lower than 31 mm. Other researchers have also found a
positive correlation between insect activity on cattle manure and CO2 emissions [22,66],
and between higher soil temperatures and CO2 emissions during the summer season [9].
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Figure 9. (A) Cumulative CO2 emitted per manure pat during the 16-day sampling period vs. the
total number of ovipositing flies per manure pat, under a total precipitationi+j range from 10 to 31 mm,
and two ranges of daily average temperature (23 to <25 ◦C and ≥25 to 29 ◦C). (B) Cumulative CO2

emitted per manure pat during the 16-day sampling period vs. the total number of ants per square
centimeter that were recorded per manure pat, under a total precipitationi+j range from 10 to 31 mm,
and two ranges of daily average temperature (23 to <25 ◦C and ≥25 to 29 ◦C).

Carbon dioxide emissions also had a direct impact (p < 0.0001) on the loss in manure
TKN nitrogen content (initial manure nitrogen content − final manure nitrogen content)
(Figure 10). CO2 emissions are produced by microbial activity consuming cattle manure
nitrogen [67]. As microbial activity increases, a greater amount of nitrogen (N) is consumed
from manure, resulting in a reduction of organic N. This microbial activity also generates
mineralization, which further decreases organic N, while a portion of it is lost through
emissions of NH3 and N2O.
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3.5. Soil Nitrogen

Soil nitrate (NO3
−) measured at the 0 to 5 cm depth (Initial NO3

− 0–5 cm) on the
deposition day was between 11.5 and 276.2 mg N·kg−1 soil, and for day 16, it was between
17.75 and 278.85 mg N·kg−1 soil. Soil NO3

− (0–5 cm) did not show a significant difference
in open pastures or under tree cover on any of the sampling days. Soil nitrate measured
on day 16 (Final NO3

− 0–5 cm) showed a direct relationship with arthropod diversity
measured by the Shannon index but only on pastures that received 32 to 81 mm of precipi-
tation during the 16-day sampling period (Figure 11). No correlation was found between
initial soil NO3

− and arthropod diversity according to the Shannon index. No significant
differences were indicated in initial soil NO3

− between the two precipitation ranges. The
Shannon index shows the diversity of species in the community; in this case, it showed
the diversity between the six categories of arthropod functional groups. The deposition of
insect frass and cadavers can influence nutrient cycling in soils, and their fecal material
can have higher nitrogen concentration than the original content they ate [26,68]. Nutrients
such as NO3

− can travel with rain; Tukey and Morgan found that insect damage to plants
could change the nutrient content of precipitation falling through damaged plants [69].
Swank et al. found a relationship between insect defoliation and an increase in stream
nitrate after winter [70]. In addition, plant-available nitrogen concentration is higher in
ant nests, and dung beetle activity can accelerate the mineralization of organic nitrogen
found in cattle manure [27,28]. Since no significant difference was shown for any individual
functional category, it might be possible that the increase in NO3

− at the 16-day point was
the result of the interactions between the functional categories, helped by the carrying
capacity of rain.

Soil ammonium (NH4
+) measured for the 0 to 5 cm depth was between 0.1 and

494.8 mg NH4
+-N·kg−1 soil at day 0 and between 0.8 and 174.8 mg NH4

+-N·kg−1 soil at
day 16. No significant difference was found in the initial NH4

+ between samples taken
from open pastures and under tree cover (Figure 12A). However, day 16 NH4

+ (0–5 cm soil
depth) content was significantly higher (p < 0.03) when the number of predators captured
in the surrounding pitfall traps was ≥5 (Figure 12B). LaFleur et al. found that the soil
from nests of red imported fire ants had higher concentrations of NH4

+, and Berg et al.
showed the important contribution of spiders to N mineralization [27,71]. No significant
difference was found on NH4

+ at two ranges of fire ant numbers, spiders, herbivores, filth
flies, or any other functional group by itself. Osler and Sommerkorn described that in
ecosystems with N limitations, the microbes tend to immobilize any source of N that they
receive, while soil fauna contributes to the release of NH4

+ by grazing on the microbial
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biomass [72]. Grazing systems with no fertilization count as ecosystems with N limitations;
while microbes can immobilize N as biomass, they are also the foundation of the food
web that in this ecosystem includes as a minimum dung beetles and filth fly larvae eating
manure and microbial biomass, which are then consumed by predators such as fire ants and
tiger beetles. In addition, the activity of predation causes a manure disturbance, resulting
in a dual biotic influence on N mineralization and soil N concentration. This dual impact
might be the most probable explanation for the increase in soil NH4

+.
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Figure 12. (A) Initial soil NH4+ and (B) final soil NH4+ (0–5 cm depth) when predators per chamber
were <5 or ≥5. Different lowercase letters indicate a significant difference (p < 0.05).

Plant-available nitrogen (PAN) for the 0 to 5 cm soil depth did not show a signifi-
cant difference between the samples taken on open pastures and under tree cover. The
ranges of results were 16.2–293.1 and 34.9–395.8 mg N·kg−1 soil for the samples taken on
days 0 and 16, respectively. As calculated, the change in plant-available nitrogen
(∆PAN = PAN at 16 days − PAN at 0 days) is positive when the soil has gained plant-
available nitrogen.

In the 0 to 5 cm soil depth, ∆PAN was significantly lower (p < 0.03) and negative
when the number of filth flies ovipositing on the surrounding manure pat was equal to or
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more than 14, but only when the manure pat was on open pastures (Figure 13A). When the
manure pat was under tree canopy, the number of filth flies ovipositing on it did not affect
the ∆PAN 0–5 cm (Figure 13B). A greater number of ovipositing flies meant more larval
activity and higher N2O emissions from manure pats on open pastures, but it had a mixed
effect on manure pats under tree cover (Figure 8).
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were <14 or ≥14. (A) Manure pats that were under no cover, and (B) manure pats that were under tree
cover. Negative numbers indicate a loss in PAN and different lowercase letters indicate a significant
difference (p < 0.05).

Potentially mineralizable nitrogen (PMN) from the 0 to 5 cm soil depth did not
show a significant difference between the samples taken on open pastures and under
tree cover. The ranges of results were 1.9–152.3 and 5.1–150.6 mg N·kg−1 soil for the sam-
ples taken on days 0 and 16, respectively. The change in potentially mineralizable nitrogen
(∆PMN = PMN at 16 days − PMN at 0 days) reflects the soil’s gain or loss of easily de-
composable nitrogen that microorganisms convert into NH4

+. A positive ∆PMN value
indicates the soil has gained potentially mineralizable nitrogen.

∆PMN from the 0 to 5 cm soil depth had a negative correlation with the number
of filth flies ovipositing on the manure pats that were under no cover (Figure 14). The
number of flies ovipositing did not affect the ∆PMN 0–5 cm on manure pats that were
under tree canopy. From the linear regression, it is apparent that a number of filth flies on
manure greater than 12 produced a loss of PMN. Considering that our median and quartile
deviation was 11 ± 8 ovipositing flies per manure pat, when 19 filth flies ovipositing per
manure pat were considered, they could cause a loss of up to 14.7 kg N per hectare in
PMN. A greater number of ovipositing flies meant a greater larval activity, consuming N
from manure and causing higher N emissions (in the case of the manure that was on open
pastures). Macqueen and Beirne found a relationship between increasing numbers of filth
fly larvae and the loss of nitrogen in cattle manure [73].

Measures of PMN on days 0 (initial PMN 0–5 cm) and 16 (final PMN 0–5 cm) were
significantly higher (p < 0.03) when the number of predators captured over the 16-day
period for each chamber (pitfall trap or hotdog) was equal to or greater than five (Figure 15).
It has been discussed how predators can increase NH4

+ in soil. However, the fact that
the initial and final PMN contents were higher when greater numbers of predators were
present shows the link between the initial increase in PMN and how it ends as higher NH4

+

concentrations. After all, NH4
+ is linked to the decomposition of organic matter, and arthro-

pod communities can explain between 11 and 15% of the variation in the decomposition of
organic matter [74].
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4. Conclusions

The horn fly was the main species laying eggs and emerging from the sampled cattle
manure, while the red imported fire ants showed the highest numbers under the predator
category. The number of filth flies emerging from cattle manure had a direct correlation
with the initial nitrogen content in the manure only when the number of ants per square
centimeter was lower than eight. An increasing number of flies ovipositing and emerging
from cattle manure, as well as red imported fire ant activity, has the capability of increasing
NH3, N2O, and CO2 emissions. Considering only from the small cattle farms in Georgia,
filth flies could be depleting those farms of 36.5 ton of N as N emissions to the atmosphere.
The relationships between cumulative NH3, cumulative N2O, and cumulative CO2 and
the number of flies and ants were affected by temperature and precipitation levels. The
final soil NO3

− and NH4
+ levels were affected by precipitation levels and the number of

predators. ∆PAN and ∆PMN in the soil were negatively correlated with the number of
flies ovipositing on the manure on open pastures, while initial and final soil PMN contents
were positively correlated with the number of predators found in the area. Ovipositing
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filth flies could cause a loss of up to 14.7 kg N per hectare in the PMN; this could be a
crucial factor for small-scale farming systems that do not receive any fertilization. From
this, we may conclude that the filth fly presence in grazing systems with no fertilization
legacy can negatively affect soil nitrogen retention, while an increase in the biodiversity
and abundance of predators may help to increase PAN and PMN in open pastures, as well
as decreasing the numbers of emerging filth flies.
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