Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = amalgam toxicity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 807 KB  
Article
Novel Food Safety Evaluation: Potentially Toxic Elements in Acheta domesticus (House Cricket) Reared on Seaweed-Enriched Diets
by Behixhe Ajdini, Irene Biancarosa, Silvia Illuminati, Anna Annibaldi, Federico Girolametti, Matteo Fanelli, Lorenzo Massi and Cristina Truzzi
Molecules 2025, 30(19), 3958; https://doi.org/10.3390/molecules30193958 - 2 Oct 2025
Viewed by 983
Abstract
In recent years, insects have emerged as a nutritious and eco-sustainable alternative food source, with the house cricket (Acheta domesticus, AD) recently authorized by the European Commission as a novel food. However, the presence of harmful substances in insects poses potential [...] Read more.
In recent years, insects have emerged as a nutritious and eco-sustainable alternative food source, with the house cricket (Acheta domesticus, AD) recently authorized by the European Commission as a novel food. However, the presence of harmful substances in insects poses potential health risks. This study investigated the content of potentially toxic elements (PTEs) such as cadmium (Cd), arsenic (As), lead (Pb), mercury (Hg), nickel (Ni), chromium (Cr), and aluminium (Al) in Acheta domesticus fed diets enriched with graded levels of the red seaweed Palmaria palmata or the brown seaweed Ascophyllum nodosum in two feeding trials. Chemical analyses were carried out by graphite furnace atomic absorption spectrophotometry for all elements except Hg, which was analyzed by thermal decomposition amalgamation atomic absorption spectrometry. The results showed that PTE content in the diets was below the legal limits for feed. The PTEs in AD ranged (mg kg−1 dry matter) as follows: Cd (0.069 ± 0.005–0.127 ± 0.002), As (0.08 ± 0.01–0.36 ± 0.03), Pb (0.05 ± 0.01–0.12 ± 0.01), Hg (0.0065 ± 0.0002–0.0141 ± 0.0010), Ni (0.64 ± 0.06–1.20 ± 0.10), Cr (0.16 ± 0.02–0.58 ± 0.01), and Al (17 ± 2–61 ± 1). AD bioaccumulated As and Hg; however, the PTE levels remained below European Union food safety limits. The absence of non-carcinogenic risk for consumers suggests that AD fed seaweed-enriched diets are a safe, healthy, and low-chemical risk food for humans. Full article
Show Figures

Figure 1

20 pages, 2128 KB  
Review
A Review of Quartz Crystal Microbalance-Based Mercury Detection: Principles, Performance, and On-Site Applications
by Kazutoshi Noda, Kohji Marumoto and Hidenobu Aizawa
Sensors 2025, 25(16), 5118; https://doi.org/10.3390/s25165118 - 18 Aug 2025
Viewed by 1180
Abstract
Mercury (Hg) is a globally recognized toxic element, and the Minamata Convention on Mercury entered into force in 2017 to address its associated risks. Under the United Nations Environment Programme, international efforts to reduce Hg emissions and monitor its environmental presence are ongoing. [...] Read more.
Mercury (Hg) is a globally recognized toxic element, and the Minamata Convention on Mercury entered into force in 2017 to address its associated risks. Under the United Nations Environment Programme, international efforts to reduce Hg emissions and monitor its environmental presence are ongoing. In support of these initiatives, we developed a simple and rapid mercury detection device based on a quartz crystal microbalance (QCM-Hg sensor), which utilizes the direct amalgamation reaction between Hg and a gold (Au) electrode. The experimental results demonstrated a proportional relationship between Hg concentration and the resulting oscillation frequency shift. Increased flow rates and prolonged measurement durations enhanced detection sensitivity. The system achieved a detection limit of approximately 1 µg/m3, comparable to that of commercially available analyzers. Furthermore, a measurement configuration integrating the reduction-vaporization method with the QCM-Hg sensor enabled the detection of mercury in aqueous samples. Based on the experimental results and the gas-phase detection sensitivity achieved to date, concentrations as low as approximately 0.05 µg/L appear to be detectable. These findings highlight the potential of the QCM-Hg system for on-site mercury monitoring. This review aims to provide a comprehensive yet concise overview of QCM-Hg sensor development and its potential as a next-generation tool for environmental and occupational mercury monitoring. Full article
Show Figures

Figure 1

20 pages, 1677 KB  
Review
Applications of Nanoparticles in the Diagnosis and Treatment of Ovarian Cancer
by Ahmed El-Mallul, Ryszard Tomasiuk, Tadeusz Pieńkowski, Małgorzata Kowalska, Dilawar Hasan, Marcin Kostrzewa, Dominik Czerwonka, Aleksandra Sado, Wiktoria Rogowska, Igor Z. Zubrzycki and Magdalena Wiacek
Nanomaterials 2025, 15(15), 1200; https://doi.org/10.3390/nano15151200 - 6 Aug 2025
Viewed by 1535
Abstract
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to [...] Read more.
Nanotechnology offers innovative methodologies for enhancing the diagnosis and treatment of ovarian cancer by utilizing specialized nanoparticles. The utilization of nanoparticles offers distinct advantages, specifically that these entities enhance the bioavailability of therapeutic agents and facilitate the targeted delivery of pharmacological agents to neoplastic cells. A diverse array of nanoparticles, including but not limited to liposomes, dendrimers, and gold nanoparticles, function as proficient carriers for drug delivery. Nevertheless, notwithstanding the auspicious potential of these applications, challenges pertaining to toxicity, biocompatibility, and the necessity for comprehensive clinical evaluations pose considerable barriers to the widespread implementation of these technologies. The incorporation of nanotechnology into clinical practice holds the promise of significantly transforming the management of ovarian cancer, offering novel diagnostic tools and therapeutic strategies that enhance patient outcomes and prognoses. In summary, the deployment of nanotechnology in the context of ovarian cancer epitomizes a revolutionary paradigm in medical science, amalgamating sophisticated materials and methodologies to enhance both diagnostic and therapeutic outcomes. Continued research and development endeavors are essential to fully realize the extensive potential of these innovative solutions and address the existing challenges associated with their application in clinical settings. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

21 pages, 8512 KB  
Article
Geogenic and Anthropogenic Origins of Mercury and Other Potentially Toxic Elements in the Ponce Enriquez Artisanal and Small-Scale Gold Mining District, Southern Ecuador
by Silvia Fornasaro, Paolo Fulignati, Anna Gioncada, Daniel Garces and Maurizio Mulas
Minerals 2025, 15(7), 725; https://doi.org/10.3390/min15070725 - 11 Jul 2025
Cited by 1 | Viewed by 1407
Abstract
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic [...] Read more.
Artisanal and small-scale gold mining (ASGM) poses significant environmental challenges globally, particularly due to mercury (Hg) use. As an example, in Ecuador, Hg use still persists, despite its official ban in 2015. This study investigated the geogenic and anthropogenic contributions of potentially toxic elements (PTEs) in the Ponce Enriquez Mining District (PEMD), a region characterized by hydrothermally altered basaltic bedrock and Au-mineralized quartz veins. To assess local baseline values and identify PTE-bearing minerals, a comprehensive geochemical, mineralogical, and petrographic analysis was conducted on bedrock and mineralized veins. These findings reveal distinct origins for the studied PTEs, which include Hg, As, Cu, Ni, Cr, Co, Sb, Zn, and V. Specifically, Hg concentrations in stream sediments downstream (up to 50 ppm) far exceed natural bedrock levels (0.03–0.707 ppm), unequivocally indicating significant anthropogenic input from gold amalgamation. Furthermore, copper shows elevated concentration primarily linked to gold extraction. Conversely, other elements like As, Ni, Cr, Co, Sb, Zn, and V are primarily exhibited to be naturally abundant in basalts due to the presence of primary mafic minerals and to hydrothermal alterations, with elevated concentrations particularly seen in sulfides like pyrite and arsenopyrite. To distinguish natural geochemical anomalies from mining-related contamination, especially in volcanic terrains, this study utilizes Upper Continental Crust (UCC) normalization and local bedrock baselines. This multi-faceted approach effectively helped to differentiate basalt subgroups and assess natural concentrations, thereby avoiding misinterpretations of naturally elevated element concentrations as mining-related pollution. Crucially, this work establishes a robust local geochemical baseline for the PEMD area, providing a critical framework for accurate environmental risk assessments and sustainable mineral resource management, and informing national environmental quality standards and remediation efforts in Ecuador. It underscores the necessity of evaluating local geology, including inherent mineralization, when defining environmental baselines and understanding the fate of PTEs in mining-impacted environments. Full article
Show Figures

Figure 1

11 pages, 883 KB  
Article
Variability of Mercury Concentrations Across Species, Brand, and Tissue Type in Processed Commercial Seafood Products
by Kylie D. Rock, Shriya Bhoothapuri, Emanuel Lassiter, Leah Segedie and Scott M. Belcher
Toxics 2025, 13(6), 426; https://doi.org/10.3390/toxics13060426 - 23 May 2025
Viewed by 3855
Abstract
Mercury (Hg) is a global health concern due to its prevalence, persistence, and toxicity. Numerous studies have assessed Hg concentrations in seafood, but variability in reported concentrations highlights the need for continued monitoring and stricter regulations. We measured total Hg (tHg) in 148 [...] Read more.
Mercury (Hg) is a global health concern due to its prevalence, persistence, and toxicity. Numerous studies have assessed Hg concentrations in seafood, but variability in reported concentrations highlights the need for continued monitoring and stricter regulations. We measured total Hg (tHg) in 148 pre-processed, packaged seafood products purchased in Raleigh, North Carolina, using thermal decomposition–gold amalgamation atomic absorption spectrophotometry. Products were grouped into three categories based on trophic ecology and physiology: (1) tuna, (2) other bony fish, and (3) shellfish and squid. Among tuna, albacore had the highest average tHg (396.4 ng/g ± 172.1), while yellowfin had the lowest (68.3 ng/g ± 64.7). Herring (54.0 ng/g ± 23.2) and crab (78.2 ng/g ± 24.1) had the highest concentrations in the other two groups. One can of albacore exceeded the FDA action level of 1 part per million (1.3 ppm or 1300 ng/g). Brand differences were significant for both albacore and light tuna, with Brand 1 consistently showing higher Hg levels. Comparisons to FDA data (1990–2012) suggest Hg concentrations in tuna have remained stable over the past two decades. This study underscores the variability of Hg concentrations across species and brands and the need for continued monitoring to protect consumers. Full article
(This article belongs to the Special Issue Environmental Pollution and Food Safety)
Show Figures

Graphical abstract

23 pages, 7541 KB  
Article
Assessment of Gold and Mercury Losses in an Artisanal Gold Mining Site in Nigeria and Its Implication on the Local Economy and the Environment
by Nnamdi C. Anene, Bashir M. Dangulbi and Marcello M. Veiga
Minerals 2024, 14(11), 1131; https://doi.org/10.3390/min14111131 - 8 Nov 2024
Cited by 3 | Viewed by 6432
Abstract
The objective of this work was to establish the gold and mercury losses in an artisanal mining deposit (Uke) in Nigeria to convince miners about their inefficiency and suggest changes in their gold extraction practices. Samples of feeds and tailings from five sluice [...] Read more.
The objective of this work was to establish the gold and mercury losses in an artisanal mining deposit (Uke) in Nigeria to convince miners about their inefficiency and suggest changes in their gold extraction practices. Samples of feeds and tailings from five sluice box concentration processes previously ground in hammer mills below 1 mm (P80 = 0.5 mm) were systematically sampled every 15 min. for 4 h and sent for gold analyses by a fire assay and intensive cyanidation. Dry grain size analyses of primary and amalgamation tailings allowed us to find out in which size fraction gold and mercury are lost. Total mercury losses in sixteen operations were obtained by weighing mercury at the beginning and in all steps of the concentrates’ amalgamation. After analyses, the average gold grade in the feed resulted in 3.80 ± 1.52 ppm (two standard deviations). The gold recovery was 29.24 ± 13.24%, which is low due to a lack of liberation of the fine gold particles from the gangue (silicates). Finer grinding would be necessary. The mercury balance revealed that 42% of the mercury added is lost, in which 26% involves tailings and 16% evaporated. The HgLost-to-AuProduced ratio was found to be 3.35 ± 9.46, which is exceedingly high for this type of amalgamation process that should have this ratio around 1. One reason is the excessive amount of mercury in the amalgams, 76.5 ± 38.12%, when the normal is around 40%–50%. Mercury lost by evaporation in open bonfires is clearly contaminating amalgamation operators (usually children), neighbours, and the environment. The Hg-contaminated tailings and primary tailings are sold to local cyanidation plants, and this can form toxic soluble Hg(CN)2 in the process. The results of this research were brought to the attention of the miners and other stakeholders, including the regulatory agencies of the government. The % gold recovery by amalgamation was not established in this study, but if this process recovers 50 to 60% of the liberated gold particles in a concentrate and 30% of gold was recovered in the sluice boxes, then the total gold recovery should be between 15 and 20; i.e., 80 to 85% of gold mined is lost. On average, an operation produces 8.26 g of gold/month, which is split to six miners, representing USD 69/month/miner or USD 2.3/day. It was discussed with miners, authorities, and community members (in particular female miners) how to avoid exposure to mercury, how to improve gold recovery without mercury, and the health and environmental effects of this pollutant. Full article
Show Figures

Figure 1

19 pages, 4350 KB  
Article
Magnetic Nanoparticles in Biopolymer Fibers: Fabrication Techniques and Characterization Methods
by Mariana Bianchini Silva, Ulisses Oliveira Costa, Luiz Henrique Capparelli Mattoso, Sergio Neves Monteiro, Michele Lemos de Souza and Letícia Vitorazi
Polymers 2024, 16(19), 2805; https://doi.org/10.3390/polym16192805 - 3 Oct 2024
Cited by 3 | Viewed by 1632
Abstract
Hybrid nanocomposites combining biopolymer fibers incorporated with nanoparticles (NPs) have received increasing attention due to their remarkable characteristics. Inorganic NPs are typically chosen for their properties, such as magnetism and thermal or electrical conductivity, for example. Meanwhile, the biopolymer fiber component is a [...] Read more.
Hybrid nanocomposites combining biopolymer fibers incorporated with nanoparticles (NPs) have received increasing attention due to their remarkable characteristics. Inorganic NPs are typically chosen for their properties, such as magnetism and thermal or electrical conductivity, for example. Meanwhile, the biopolymer fiber component is a backbone, and could act as a support structure for the NPs. This shift towards biopolymers over traditional synthetic polymers is motivated by their sustainability, compatibility with biological systems, non-toxic nature, and natural decomposition. This study employed the solution blow spinning (SBS) method to obtain a nanocomposite comprising poly(vinyl pyrrolidone), PVA, and gelatin biodegradable polymer fibers incorporated with magnetic iron oxide nanoparticles coated with poly(acrylic acid), PAA2k, coded as γ-Fe2O3-NPs-PAA2k. The fiber production process entailed a preliminary investigation to determine suitable solvents, polymer concentrations, and spinning parameters. γ-Fe2O3-NPs were synthesized via chemical co-precipitation as maghemite and coated with PAA2k through the precipitation–redispersion protocol in order to prepare γ-Fe2O3-NPs-PAA2k. Biopolymeric fibers containing coated NPs with sub-micrometer diameters were obtained, with NP concentrations ranging from 1.0 to 1.7% wt. The synthesized NPs underwent characterization via dynamic light scattering, zeta potential analysis, and infrared spectroscopy, while the biopolymer fibers were characterized through scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. Overall, this study demonstrates the successful implementation of SBS for producing biopolymeric fibers incorporating iron oxide NPs, where the amalgamation of materials demonstrated superior thermal behavior to the plain polymers. The thorough characterization of the NPs and fibers provided valuable insights into their properties, paving the way for their potential applications in various fields such as biomedical engineering, environmental remediation, and functional materials. Full article
(This article belongs to the Special Issue Physicochemical Properties of Polymer Composites)
Show Figures

Figure 1

15 pages, 2224 KB  
Article
Highly Sensitive Whole-Cell Mercury Biosensors for Environmental Monitoring
by Dahlin Zevallos-Aliaga, Stijn De Graeve, Pamela Obando-Chávez, Nicolás A. Vaccari, Yue Gao, Tom Peeters and Daniel G. Guerra
Biosensors 2024, 14(5), 246; https://doi.org/10.3390/bios14050246 - 13 May 2024
Cited by 9 | Viewed by 4836
Abstract
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we [...] Read more.
Whole-cell biosensors could serve as eco-friendly and cost-effective alternatives for detecting potentially toxic bioavailable heavy metals in aquatic environments. However, they often fail to meet practical requirements due to an insufficient limit of detection (LOD) and high background noise. In this study, we designed a synthetic genetic circuit specifically tailored for detecting ionic mercury, which we applied to environmental samples collected from artisanal gold mining sites in Peru. We developed two distinct versions of the biosensor, each utilizing a different reporter protein: a fluorescent biosensor (Mer-RFP) and a colorimetric biosensor (Mer-Blue). Mer-RFP enabled real-time monitoring of the culture’s response to mercury samples using a plate reader, whereas Mer-Blue was analysed for colour accumulation at the endpoint using a specially designed, low-cost camera setup for harvested cell pellets. Both biosensors exhibited negligible baseline expression of their respective reporter proteins and responded specifically to HgBr2 in pure water. Mer-RFP demonstrated a linear detection range from 1 nM to 1 μM, whereas Mer-Blue showed a linear range from 2 nM to 125 nM. Our biosensors successfully detected a high concentration of ionic mercury in the reaction bucket where artisanal miners produce a mercury–gold amalgam. However, they did not detect ionic mercury in the water from active mining ponds, indicating a concentration lower than 3.2 nM Hg2+—a result consistent with chemical analysis quantitation. Furthermore, we discuss the potential of Mer-Blue as a practical and affordable monitoring tool, highlighting its stability, reliance on simple visual colorimetry, and the possibility of sensitivity expansion to organic mercury. Full article
(This article belongs to the Special Issue Novel Biosensors for Food Safety and Environmental Monitoring)
Show Figures

Figure 1

17 pages, 5103 KB  
Article
Degradation of Bisphenol A by Nitrogen-Rich ZIF-8-Derived Carbon Materials-Activated Peroxymonosulfate
by Xiaofeng Tang, Hanqing Xue, Jiawen Li, Shengnan Wang, Jie Yu and Tao Zeng
Toxics 2024, 12(5), 359; https://doi.org/10.3390/toxics12050359 - 12 May 2024
Cited by 2 | Viewed by 2401
Abstract
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are [...] Read more.
Bisphenol A (BPA), representing a class of organic pollutants, finds extensive applications in the pharmaceutical industry. However, its widespread use poses a significant hazard to both ecosystem integrity and human health. Advanced oxidation processes (AOPs) based on peroxymonosulfate (PMS) via heterogeneous catalysts are frequently proposed for treating persistent pollutants. In this study, the degradation performance of BPA in an oxidation system of PMS activated by transition metal sites anchored nitrogen-doped carbonaceous substrate (M-N-C) materials was investigated. As heterogeneous catalysts targeting the activation of peroxymonosulfate (PMS), M-N-C materials emerge as promising contenders poised to overcome the limitations encountered with traditional carbon materials, which often exhibit insufficient activity in the PMS activation process. Nevertheless, the amalgamation of metal sites during the synthesis process presents a formidable challenge to the structural design of M-N-C. Herein, employing ZIF-8 as the precursor of carbonaceous support, metal ions can readily penetrate the cage structure of the substrate, and the N-rich linkers serve as effective ligands for anchoring metal cations, thereby overcoming the awkward limitation. The research results of this study indicate BPA in water matrix can be effectively removed in the M-N-C/PMS system, in which the obtained nitrogen-rich ZIF-8-derived Cu-N-C presented excellent activity and stability on the PMS activation, as well as the outstanding resistance towards the variation of environmental factors. Moreover, the biological toxicity of BPA and its degradation intermediates were investigated via the Toxicity Estimation Software Tool (T.E.S.T.) based on the ECOSAR system. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

16 pages, 20855 KB  
Article
Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors
by Sagar Bhagwat, Leonhard Hambitzer, Richard Prediger, Pang Zhu, Ahmed Hamza, Sophia K. Kilian, Sebastian Kluck, Pegah Pezeshkpour, Frederik Kotz-Helmer and Bastian E. Rapp
Sensors 2024, 24(2), 416; https://doi.org/10.3390/s24020416 - 10 Jan 2024
Cited by 1 | Viewed by 3050
Abstract
Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets [...] Read more.
Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid–metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L−1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment. Full article
Show Figures

Figure 1

14 pages, 1899 KB  
Communication
Antiviral Effects of Secondary Metabolites from Jatropha podagrica Leaves against the Pseudotyped Virus of SARS-CoV-2 Omicron
by Yoon Seo Jang, Da Eun Lee, Dong U Ju, Se Yun Jeong, Yoon-Joo Ko, Changhyun Pang, Ki Sung Kang, Hui-Jeong Gwon, Hee Min Yoo and Ki Hyun Kim
Plants 2023, 12(23), 3942; https://doi.org/10.3390/plants12233942 - 23 Nov 2023
Cited by 5 | Viewed by 2796
Abstract
Jatropha podagrica holds a longstanding place in traditional herbal medicine, primarily utilized for addressing skin infections, acting as antipyretics, diuretics, and purgatives. In this study, our primary objective was to investigate the secondary metabolites present in J. podagrica leaves, with the aim of [...] Read more.
Jatropha podagrica holds a longstanding place in traditional herbal medicine, primarily utilized for addressing skin infections, acting as antipyretics, diuretics, and purgatives. In this study, our primary objective was to investigate the secondary metabolites present in J. podagrica leaves, with the aim of pinpointing natural compounds exhibiting potential antiviral activities. Five secondary metabolites (15), including an auronol glycoside (1), two coumarins (2 and 3), a chromane (4) and a gallotannin (5), were isolated from J. podagrica leaves. Compound 1 presented as an amalgamation of unseparated mixtures, yet its intricate composition was adroitly unraveled through the strategic deployment of a chiral HPLC column. This tactic yielded the isolation of epimers (+)-1 and (−)-1, ascertained as unreported auronol glycosides. The structures of these novel compounds, (+)-1 and (−)-1, were elucidated to be (2S)-hovetrichoside C [(+)-1] and (2R)-hovetrichoside C [(−)-1] through NMR data and HR-ESIMS analyses, enzymatic hydrolysis, and comparison of optical rotation values. Cytotoxicity and antiviral effects were assessed for the isolated compounds ((+)-1, (−)-1 and 25), along with compound 1a (the aglycone of 1), in the A549 human alveolar basal epithelial cell line. Each compound demonstrated a cell viability of approximately 80% or higher, confirming their non-toxic nature. In the group of compounds, compounds 3–5 demonstrated antiviral effects based on RT-qPCR results, with individual enhancements ranging from approximately 28 to 38%. Remarkably, compound 4 exhibited the most substantial antiviral effect. Utilization of compound 4 to assess immune boosting and anti-inflammatory effects revealed increased levels of STING, RIG-I, NLRP3, and IL-10 along with a decrease in TNF-α and IL-6. Therefore, these findings underscore the potential of these active compounds 35 not only as therapeutic agents for SARS-CoV-2 but also as new contenders for upcoming pandemics. Full article
Show Figures

Figure 1

20 pages, 1075 KB  
Review
An Overview of Dental Solid Waste Management and Associated Environmental Impacts: A Materials Perspective
by Rita Khanna, Yuri Konyukhov, Nikita Maslennikov, Evgeny Kolesnikov and Igor Burmistrov
Sustainability 2023, 15(22), 15953; https://doi.org/10.3390/su152215953 - 15 Nov 2023
Cited by 11 | Viewed by 8669
Abstract
Dental healthcare plays an important role in the overall health of individuals, and the sector is rapidly growing around the world due to increases in population, healthcare facilities, and improved access for economically weaker sections of society. Dental procedures and oral care generate [...] Read more.
Dental healthcare plays an important role in the overall health of individuals, and the sector is rapidly growing around the world due to increases in population, healthcare facilities, and improved access for economically weaker sections of society. Dental procedures and oral care generate a significant amount of biomedical waste that should be managed in an environmentally safe and sustainable manner. An overview is presented of the current status of dental solid waste management with a focus on waste composition from traditional and emerging dental treatments, new-generation dental materials, waste treatment procedures, and current options. Dental waste can be broadly divided into three categories: infectious waste, non-infectious waste, and domestic-type waste. Infectious waste contains materials contaminated with blood or other infectious mouth fluids, amalgam, and sharps, whereas non-infectious dental waste is devoid of human fluid contamination but can be potentially toxic due to the presence of amalgams, acids, metal dust, resins, etc. Suspended particulates in dental wastewater are another likely source of contamination. Appropriate segregation of this waste is essential for containing infections during waste processing. New-generation dental materials, such as nanomaterials, resin-based composites, and ceramics, are finding increasing applications in a variety of dental procedures as antimicrobial, restorative, and therapeutic agents. While incineration and landfilling have been used for processing traditional dental waste, the presence of novel materials in dental waste raises several additional concerns. Novel single/multistage recycling approaches need to be developed for dental waste towards resource recovery, thus minimizing incineration and landfilling to the extent possible. Full article
(This article belongs to the Special Issue Sustainable Waste Management in the Healthcare Sector)
Show Figures

Figure 1

13 pages, 1847 KB  
Article
Investigation of Gold Recovery and Mercury Losses in Whole Ore Amalgamation: Artisanal Gold Mining in Nambija, Ecuador
by Richard González-Vásquez, María Jesús García-Martínez and David Bolonio
Minerals 2023, 13(11), 1396; https://doi.org/10.3390/min13111396 - 31 Oct 2023
Cited by 6 | Viewed by 4813
Abstract
Mercury is a highly toxic pollutant that can negatively affect human health and the environment; informal mining is one of the main sources of anthropogenic mercury release due to the separation or concentration by amalgamation that is still used to recover gold directly [...] Read more.
Mercury is a highly toxic pollutant that can negatively affect human health and the environment; informal mining is one of the main sources of anthropogenic mercury release due to the separation or concentration by amalgamation that is still used to recover gold directly from ore. In the Nambija mining district, there is still informal mining based on practically no technical knowledge, which uses amalgamation as a processing technique for gold recovery. The production tasks that directly affect the handling of mercury during the in situ grinding–amalgamation process are monitored here. Experimental grinding tests were initially carried out in a “chancha” bar mill for a range of ore sizes and as a function of time; then, experimental tests were performed at the macro-level on grinding cycles in Chilean mills. Considering the characteristics of the ore mineral and the operation of the Chilean mills, it was determined that it is possible to reduce the Hg input to mill by up to 20% (at source). Experimental grinding–amalgamation tests were carried out at different times along with a grain size analysis of the ore; the recovery establishes the grinding time and the fraction in which the gold is extracted in a greater proportion, which affects the control of the amalgamation times. The mercury dosage used by the miners in the amalgamation process should be reduced, considering trials where there is better gold recovery and with the purpose of also reducing mercury losses; eventually, it is possible to jointly achieve an increase in gold recovery. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Figure 1

15 pages, 1269 KB  
Article
Gourmet Table Salts: The Mineral Composition Showdown
by Eleonora Di Salvo, Roberta Tardugno, Vincenzo Nava, Clara Naccari, Antonio Virga, Andrea Salvo, Filomena Corbo, Maria Lisa Clodoveo and Nicola Cicero
Toxics 2023, 11(8), 705; https://doi.org/10.3390/toxics11080705 - 15 Aug 2023
Cited by 13 | Viewed by 7221
Abstract
Table salts with their specialty flake size, textures, flavors, and colors can be considered a gastronomy niche food already increasing in demand worldwide. Being unrefined, they can contain trace elements potentially both healthy and toxic. In this study, 12 mineral elements (Al, Ca, [...] Read more.
Table salts with their specialty flake size, textures, flavors, and colors can be considered a gastronomy niche food already increasing in demand worldwide. Being unrefined, they can contain trace elements potentially both healthy and toxic. In this study, 12 mineral elements (Al, Ca, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, Se, and Zn) in 10 different salts commercially available in southern Italy namely, Atlantic grey, Baule volante, Guerande, Hawaiian pink, Hawaiian black, Himalayan pink, Maldon, Mozia, Persian blue, and smoked salts were analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and thermal decomposition amalgamation-atomic absorption spectrophotometry (TDA-AAS). The concentration of mineral elements was variable according to the type of salt and its geographical origin. Co, Cr, Cu, Hg, Pb, and Se levels were tolerable and Al, Ca, Fe, Mn, Ni, and Zn ranged significantly among the samples. Persian Blue and Atlantic Grey salts showed elevated levels of Fe and Zn; their intake can be helpful in some specific conditions. Nevertheless, Ni levels were high in Persian Blue and Smoked salts. Pb exceeded the maximum level in all samples. Additional monitoring analyses of mineral contents in table salts are recommended for human health. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Figure 1

19 pages, 4810 KB  
Article
Green Synthesised TiO2 Nanoparticles-Mediated Terenna asiatica: Evaluation of Their Role in Reducing Oxidative Stress, Inflammation and Human Breast Cancer Proliferation
by Manjula M. Venkatappa, Chikkappa Udagani, Sujatha M. Hanume Gowda, Shivakumar Venkataramaiah, Ryan Casini, Ihab Mohamed Moussa, Rajeshwara Achur, Devaraja Sannaningaiah and Hosam O. Elansary
Molecules 2023, 28(13), 5126; https://doi.org/10.3390/molecules28135126 - 29 Jun 2023
Cited by 30 | Viewed by 3431
Abstract
Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs [...] Read more.
Oxidative stress and chronic inflammation interplay with the pathogenesis of cancer. Breast cancer in women is the burning issue of this century, despite chemotherapy and magnetic therapy. The management of secondary complications triggered by post-chemotherapy poses a great challenge. Thus, identifying target-specific drugs with anticancer potential without secondary complications is a challenging task for the scientific community. It is possible that green technology has been employed in a greater way in order to fabricate nanoparticles by amalgamating plants with medicinal potential with metal oxide nanoparticles that impart high therapeutic properties with the least toxicity. Thus, the present study describes the synthesis of Titanium dioxide nanoparticles (TiO2 NPs) using aqueous Terenna asiatica fruit extract, with its antioxidant, anti-inflammatory and anticancer properties. The characterisation of TiO2 NPs was carried out using a powdered X-ray diffractometer (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray diffraction (EDX), high-resolution transmission electron microscopy (HR-TEM), dynamic light scattering (DLS), and zeta-potential. TiO2 NPs showed their antioxidant property by scavenging 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radicals in a dose-dependent manner with an IC50 value of 80.21 µg/µL. To ascertain the observed antioxidant potential of TiO2 NPs, red blood cells (RBC) were used as an in vitro model system. Interestingly, TiO2 NPs significantly ameliorated all the stress parameters, such as lipid peroxidation (LPO), protein carbonyl content (PCC), total thiol (TT), superoxide dismutase (SOD), and catalase (CAT) in sodium nitrite (NaNO2)-induced oxidative stress, in RBC. Furthermore, TiO2 NPs inhibited RBC membrane lysis and the denaturation of both egg and bovine serum albumin, significantly in a dose-dependent manner, suggesting its anti-inflammatory property. Interestingly, TiO2 NPs were found to kill the MCF-7 cells as a significant decrease in cell viability of the MCF-7 cell lines was observed. The percentage of growth inhibition of the MCF-7 cells was compared to that of untreated cells at various doses (12.5, 25, 50, 100, and 200 µg/mL). The IC50 value of TiO2 NPs was found to be (120 µg/mL). Furthermore, the Annexin V/PI staining test was carried out to confirm apoptosis. The assay indicated apoptosis in cancer cells after 24 h of exposure to TiO2 NPs (120 µg/mL). The untreated cells showed no significant apoptosis in comparison with the standard drug doxorubicin. In conclusion, TiO2 NPs potentially ameliorate NaNO2-induced oxidative stress in RBC, inflammation and MCF-7 cells proliferation. Full article
(This article belongs to the Special Issue Advanced Nanotherapeutics: Design, Synthesis and Applications)
Show Figures

Figure 1

Back to TopTop