Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Galvanic Replacement
2.2.2. Galinstan and WO-Galinstan Sensor Fabrication
2.2.3. Differential Pulse Stripping Voltammetry (DPSV) for Sensor Measurements
2.2.4. Characterization
3. Results and Discussion
3.1. Galinstan Electrode Fabrication and Galvanic Replacement
3.2. Application as a HMI Pb2+ Sensor
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Galvanic Replacement on Galinstan Droplets
Appendix A.2. Sample Preparation for XRD Measurements
References
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic Gallium-Indium (EGaIn): A Liquid Metal Alloy for the Formation of Stable Structures in Microchannels at Room Temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Dickey, M.D. Emerging Applications of Liquid Metals Featuring Surface Oxides. ACS Appl. Mater. Interfaces 2014, 6, 18369–18379. [Google Scholar] [CrossRef] [PubMed]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; de Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-zadeh, K. Liquid Metals: Fundamentals and Applications in Chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Wu, Z. Microfluidic Electronics. Lab. Chip. 2012, 12, 2782. [Google Scholar] [CrossRef]
- Khoshmanesh, K.; Tang, S.-Y.; Zhu, J.Y.; Schaefer, S.; Mitchell, A.; Kalantar-zadeh, K.; Dickey, M.D. Liquid Metal Enabled Microfluidics. Lab. Chip. 2017, 17, 974–993. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.-Y.; Khoshmanesh, K.; Sivan, V.; Petersen, P.; O’Mullane, A.P.; Abbott, D.; Mitchell, A.; Kalantar-zadeh, K. Liquid Metal Enabled Pump. Proc. Natl. Acad. Sci. USA 2014, 111, 3304–3309. [Google Scholar] [CrossRef]
- Li, G.; Du, J.; Zhang, A.; Lee, D. Artificial Heart Based on Electrically Controlled Non-Toxic Liquid Metal Pump. Adv. Eng. Mater. 2019, 21, 1900381. [Google Scholar] [CrossRef]
- Lv, P.; Yang, X.; Bisoyi, H.K.; Zeng, H.; Zhang, X.; Chen, Y.; Xue, P.; Shi, S.; Priimagi, A.; Wang, L.; et al. Stimulus-Driven Liquid Metal and Liquid Crystal Network Actuators for Programmable Soft Robotics. Mater. Horiz. 2021, 8, 2475–2484. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Sivan, V.; Petersen, P.; Zhang, W.; Morrison, P.D.; Kalantar-zadeh, K.; Mitchell, A.; Khoshmanesh, K. Liquid Metal Actuator for Inducing Chaotic Advection. Adv. Funct. Mater. 2014, 24, 5851–5858. [Google Scholar] [CrossRef]
- Hutter, T.; Bauer, W.-A.C.; Elliott, S.R.; Huck, W.T.S. Formation of Spherical and Non-Spherical Eutectic Gallium-Indium Liquid-Metal Microdroplets in Microfluidic Channels at Room Temperature. Adv. Funct. Mater. 2012, 22, 2624–2631. [Google Scholar] [CrossRef]
- Tang, S.-Y.; Joshipura, I.D.; Lin, Y.; Kalantar-Zadeh, K.; Mitchell, A.; Khoshmanesh, K.; Dickey, M.D. Liquid-Metal Microdroplets Formed Dynamically with Electrical Control of Size and Rate. Adv. Mater. 2016, 28, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Gol, B.; Tovar-Lopez, F.J.; Kurdzinski, M.E.; Tang, S.-Y.; Petersen, P.; Mitchell, A.; Khoshmanesh, K. Continuous Transfer of Liquid Metal Droplets across a Fluid–Fluid Interface within an Integrated Microfluidic Chip. Lab. Chip. 2015, 15, 2476–2485. [Google Scholar] [CrossRef] [PubMed]
- Bhagwat, S.; O’Brien, C.; Hamza, A.; Sharma, S.; Rein, C.; Sanjaya, M.; Helmer, D.; Kotz-Helmer, F.; Pezeshkpour, P.; Rapp, B.E. An On-Chip. Liquid Metal Plug Generator. Adv. Mater. 2022, 34, 2201469. [Google Scholar] [CrossRef] [PubMed]
- Ilyas, N.; Cook, A.; Tabor, C.E. Designing Liquid Metal Interfaces to Enable Next Generation Flexible and Reconfigurable Electronics. Adv. Mater. Interfaces 2017, 4, 1700141. [Google Scholar] [CrossRef]
- Cumby, B.L.; Hayes, G.J.; Dickey, M.D.; Justice, R.S.; Tabor, C.E.; Heikenfeld, J.C. Reconfigurable Liquid Metal Circuits by Laplace Pressure Shaping. Appl. Phys. Lett. 2012, 101, 174102. [Google Scholar] [CrossRef]
- Boley, J.W.; White, E.L. Direct Writing of Gallium-Indium Alloy for Stretchable Electronics. Adv. Funct. Mater. 2014, 24, 3501–3507. [Google Scholar] [CrossRef]
- Dickey, M.D. Stretchable and Soft Electronics Using Liquid Metals. Adv. Mater. 2017, 29, 1606425. [Google Scholar] [CrossRef]
- Wang, M.; Trlica, C.; Khan, M.R.; Dickey, M.D.; Adams, J.J. A Reconfigurable Liquid Metal Antenna Driven by Electrochemically Controlled Capillarity. J. Appl. Phys. 2015, 117, 194901. [Google Scholar] [CrossRef]
- Rashed Khan, M.; Hayes, G.J.; So, J.-H.; Lazzi, G.; Dickey, M.D. A Frequency Shifting Liquid Metal Antenna with Pressure Responsiveness. Appl. Phys. Lett. 2011, 99, 013501. [Google Scholar] [CrossRef]
- Lin, Y.; Cooper, C.; Wang, M.; Adams, J.J.; Genzer, J.; Dickey, M.D. Handwritten, Soft Circuit Boards and Antennas Using Liquid Metal Nanoparticles. Small 2015, 11, 6397–6403. [Google Scholar] [CrossRef]
- Yuan, B.; Zhao, C.; Sun, X.; Liu, J. Liquid-Metal-Enhanced Wire Mesh as a Stiffness Variable Material for Making Soft Robotics. Adv. Eng. Mater. 2019, 21, 1900530. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, J.; Lu, Y.; Mei, D. 3D Printing of Liquid Metal Based Tactile Sensor for Simultaneously Sensing of Temperature and Forces. Int. J. Smart Nano Mater. 2021, 12, 269–285. [Google Scholar] [CrossRef]
- Surmann, P.; Zeyat, H. Voltammetric Analysis Using a Self-Renewable Non-Mercury Electrode. Anal. Bioanal. Chem. 2005, 383, 1009–1013. [Google Scholar] [CrossRef] [PubMed]
- Surmann, P.; Channaa, H. Anodic Stripping Voltammetry with Galinstan as Working Electrode. Electroanalysis 2015, 27, 1726–1732. [Google Scholar] [CrossRef]
- Zheng, J.; Rahim, M.A.; Tang, J.; Allioux, F.; Kalantar-Zadeh, K. Post-Transition Metal Electrodes for Sensing Heavy Metal Ions by Stripping Voltammetry. Adv. Mater. Technol. 2022, 7, 2100760. [Google Scholar] [CrossRef]
- Baharfar, M.; Kalantar-Zadeh, K. Emerging Role of Liquid Metals in Sensing. ACS Sens. 2022, 7, 386–408. [Google Scholar] [CrossRef]
- Sivan, V.; Tang, S.-Y.; O’Mullane, A.P.; Petersen, P.; Eshtiaghi, N.; Kalantar-zadeh, K.; Mitchell, A. Liquid Metal Marbles. Adv. Funct. Mater. 2013, 23, 144–152. [Google Scholar] [CrossRef]
- Zhang, W.; Ou, J.Z.; Tang, S.-Y.; Sivan, V.; Yao, D.D.; Latham, K.; Khoshmanesh, K.; Mitchell, A.; O’Mullane, A.P.; Kalantar-zadeh, K. Liquid Metal/Metal Oxide Frameworks. Adv. Funct. Mater. 2014, 24, 3799–3807. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Chang, H.; Rao, W. Galvanic Replacement of Liquid Metal/Reduced Graphene Oxide Frameworks. Adv. Mater. Interfaces 2020, 7, 2000626. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, T.; Li, Y.; Zhu, L.; Handschuh-Wang, S.; Zhu, D.; Zhou, X.; Liu, Z.; Gan, T.; Zhou, X. Robust Fabrication of Nonstick, Noncorrosive, Conductive Graphene-Coated Liquid Metal Droplets for Droplet-Based, Floating Electrodes. Adv. Funct. Mater. 2018, 28, 1706277. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhang, Y.; Wu, J.; Li, S.; Li, L. A Disposable Electrochemical Sensor for Lead Ion Detection Based on In Situ Polymerization of Conductive Polypyrrole Coating. J. Electron. Mater. 2023, 52, 1819–1828. [Google Scholar] [CrossRef]
- Rubino, A.; Queirós, R. Electrochemical Determination of Heavy Metal Ions Applying Screen-Printed Electrodes Based Sensors. A Review on Water and Environmental Samples Analysis. Talanta Open 2023, 7, 100203. [Google Scholar] [CrossRef]
- Xia, X.; Wang, Y.; Ruditskiy, A.; Xia, Y. 25th Anniversary Article: Galvanic Replacement: A Simple and Versatile Route to Hollow Nanostructures with Tunable and Well-Controlled Properties. Adv. Mater. 2013, 25, 6313–6333. [Google Scholar] [CrossRef] [PubMed]
- da Silva, A.G.M.; Rodrigues, T.S.; Haigh, S.J.; Camargo, P.H.C. Galvanic Replacement Reaction: Recent Developments for Engineering Metal Nanostructures towards Catalytic Applications. Chem. Commun. 2017, 53, 7135–7148. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Venkateshalu, S.; Jeong, S.; Tomboc, G.M.; Jo, J.; Park, J.; Lee, K. Galvanic Replacement Reaction to Prepare Catalytic Materials. Bull. Korean Chem. Soc. 2023, 44, 4–22. [Google Scholar] [CrossRef]
- Hoshyargar, F.; Crawford, J. Galvanic Replacement of the Liquid Metal Galinstan. J. Am. Chem. Soc. 2017, 139, 1464–1471. [Google Scholar] [CrossRef] [PubMed]
- David, R.; Miki, N. Tunable Noble Metal Thin Films on Ga Alloys via Galvanic Replacement. Langmuir 2018, 34, 10550–10559. [Google Scholar] [CrossRef]
- David, R.; Miki, N. Synthesis of Sub-Micrometer Biphasic Au–AuGa2/Liquid Metal Frameworks. Nanoscale 2019, 11, 21419–21432. [Google Scholar] [CrossRef]
- Oloye, O.; Tang, C.; Du, A.; Will, G.; O’Mullane, A.P. Galvanic Replacement of Liquid Metal Galinstan with Pt for the Synthesis of Electrocatalytically Active Nanomaterials. Nanoscale 2019, 11, 9705–9715. [Google Scholar] [CrossRef]
- Castilla-Amorós, L.; Stoian, D.; Pankhurst, J.R.; Varandili, S.B.; Buonsanti, R. Exploring the Chemical Reactivity of Gallium Liquid Metal Nanoparticles in Galvanic Replacement. J. Am. Chem. Soc. 2020, 142, 19283–19290. [Google Scholar] [CrossRef]
- Falchevskaya, A.S.; Prilepskii, A.Y.; Tsvetikova, S.A.; Koshel, E.I.; Vinogradov, V.V. Facile Synthesis of a Library of Hollow Metallic Particles through the Galvanic Replacement of Liquid Gallium. Chem. Mater. 2021, 33, 1571–1580. [Google Scholar] [CrossRef]
- Ghasemian, M.B.; Wang, Y.; Allioux, F.-M.; Zavabeti, A.; Kalantar-Zadeh, K. Coating of Gallium-Based Liquid Metal Particles with Molybdenum Oxide and Oxysulfide for Electronic Band Structure Modulation. Nanoscale 2023, 15, 5891–5898. [Google Scholar] [CrossRef] [PubMed]
- Cai, S.; Ghasemian, M.B.; Rahim, M.A.; Baharfar, M.; Yang, J.; Tang, J.; Kalantar-Zadeh, K.; Allioux, F.-M. Formation of Inorganic Liquid Gallium Particle–Manganese Oxide Composites. Nanoscale 2023, 15, 4291–4300. [Google Scholar] [CrossRef] [PubMed]
- Kwon, K.Y.; Cheeseman, S.; Frias-De-Diego, A.; Hong, H.; Yang, J.; Jung, W.; Yin, H.; Murdoch, B.J.; Scholle, F.; Crook, N.; et al. A Liquid Metal Mediated Metallic Coating for Antimicrobial and Antiviral Fabrics. Adv. Mater. 2021, 33, 2104298. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, W.; Gao, X.; Lu, J.; Ye, J.; Li, Y.; Fahad, A.; Zhang, G.; Zhao, L. Nanoheterostructure by Liquid Metal Sandwich-Based Interfacial Galvanic Replacement for Cancer Targeted Theranostics. Small 2023, 19, 2300751. [Google Scholar] [CrossRef]
- Ren, L.; Cheng, N.; Man, X.; Qi, D.; Liu, Y.; Xu, G.; Cui, D.; Liu, N.; Zhong, J.; Peleckis, G.; et al. General Programmable Growth of Hybrid Core–Shell Nanostructures with Liquid Metal Nanodroplets. Adv. Mater. 2021, 33, 2008024. [Google Scholar] [CrossRef]
- Park, C.W.; Moon, Y.G.; Seong, H.; Jung, S.W.; Oh, J.-Y.; Na, B.S.; Park, N.-M.; Lee, S.S.; Im, S.G.; Koo, J.B. Photolithography-Based Patterning of Liquid Metal Interconnects for Monolithically Integrated Stretchable Circuits. ACS Appl. Mater. Interfaces 2016, 8, 15459–15465. [Google Scholar] [CrossRef]
- Barlag, R.; Nyasulu, F.; Starr, R.; Silverman, J.; Arthasery, P.; McMills, L. A Student-Made Silver–Silver Chloride Reference Electrode for the General Chemistry Laboratory: ∼10 Min Preparation. J. Chem. Educ. 2014, 91, 766–768. [Google Scholar] [CrossRef]
O1s (at. %) | Ga2p1 (at. %) | Ga3d (at. %) | W4f (at. %) | |
---|---|---|---|---|
Galinstan | 64.62 | 33.63 | 1.75 | 0 |
WO-Galinstan | 77.26 | 17.96 | 0 | 4.78 |
Materials | Measurement Technique | Limit of Detection (mmol·L−1) | Comments | Reference |
---|---|---|---|---|
Galinstan (Hanging droplet) | Differential Pulse Voltammetry | 0.91 | Hanging droplets offer higher LM volume for HMI detection | [23] |
Galinstan (Hanging droplet) | Differential Pulse Stripping Voltammetry | 0.008 | In addition to a higher volume, stripping voltammetry involves a pre-conditioning step wherein lead ions amalgamate, resulting in lower limit of detection values | [24] |
Galinstan with WO3 coating (Hanging droplet) | Differential Pulse Stripping Voltammetry | 10 | WO3 micro-nanopowder coatings on Galinstan droplets | [27] |
EGaIn-GO particles suspended on carbon paper | Differential Pulse Voltammetry | 10 | EGaIn-GO particles fabricated via sonication of EGaIn in GO suspension | [29] |
Galinstan and WO-Galinstan planar electrodes via GR | Differential Pulse Stripping Voltammetry | 0.1 | Both Galinstan and WO-Galinstan (via GR) planar electrodes show excellent sensitivity to 0.1 mmol·L−1 Pb2+ | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhagwat, S.; Hambitzer, L.; Prediger, R.; Zhu, P.; Hamza, A.; Kilian, S.K.; Kluck, S.; Pezeshkpour, P.; Kotz-Helmer, F.; Rapp, B.E. Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors. Sensors 2024, 24, 416. https://doi.org/10.3390/s24020416
Bhagwat S, Hambitzer L, Prediger R, Zhu P, Hamza A, Kilian SK, Kluck S, Pezeshkpour P, Kotz-Helmer F, Rapp BE. Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors. Sensors. 2024; 24(2):416. https://doi.org/10.3390/s24020416
Chicago/Turabian StyleBhagwat, Sagar, Leonhard Hambitzer, Richard Prediger, Pang Zhu, Ahmed Hamza, Sophia K. Kilian, Sebastian Kluck, Pegah Pezeshkpour, Frederik Kotz-Helmer, and Bastian E. Rapp. 2024. "Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors" Sensors 24, no. 2: 416. https://doi.org/10.3390/s24020416
APA StyleBhagwat, S., Hambitzer, L., Prediger, R., Zhu, P., Hamza, A., Kilian, S. K., Kluck, S., Pezeshkpour, P., Kotz-Helmer, F., & Rapp, B. E. (2024). Tungsten Oxide Coated Liquid Metal Electrodes via Galvanic Replacement as Heavy Metal Ion Sensors. Sensors, 24(2), 416. https://doi.org/10.3390/s24020416