Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = aluminum alloy-SiC composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2180 KiB  
Article
Study on Preparation of Nano-CeO2 Modified Aluminized Coating by Low Temperature Pack Aluminizing on γ-TiAl Intermetallic Compound
by Jiahui Song, Yunmei Long, Yifan He, Yichen Li, Dianqi Huang, Yan Gu, Xingyao Wang, Jinlong Wang and Minghui Chen
Coatings 2025, 15(8), 914; https://doi.org/10.3390/coatings15080914 - 5 Aug 2025
Viewed by 40
Abstract
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it [...] Read more.
TiAl alloy offers advantages including low density, high specific strength and stiffness, and excellent high-temperature creep resistance. It is widely used in the aerospace, automotive, and chemical sectors, as well as in other fields. However, at temperatures of 800 °C and above, it forms a porous oxide film predominantly composed of TiO2, which fails to provide adequate protection. Applying high-temperature protective coatings is therefore essential. Oxides demonstrating protective efficacy at elevated temperatures include Al2O3, Cr2O3, and SiO2. The Pilling–Bedworth Ratio (PBR)—defined as the ratio of the volume of the oxide formed to the volume of the metal consumed—serves as a critical criterion for assessing oxide film integrity. A PBR value greater than 1 but less than 2 indicates superior film integrity and enhanced oxidation resistance. Among common oxides, Al2O3 exhibits a PBR value within this optimal range (1−2), rendering aluminum-based compound coatings the most extensively utilized. Aluminum coatings can be applied via methods such as pack cementation, thermal spraying, and hot-dip aluminizing. Pack cementation, being the simplest to operate, is widely employed. In this study, a powder mixture with the composition Al:Al2O3:NH4Cl:CeO2 = 30:66:3:1 was used to aluminize γ-TiAl intermetallic compound specimens via pack cementation at 600 °C for 5 h. Subsequent isothermal oxidation at 900 °C for 20 h yielded an oxidation kinetic curve adhering to the parabolic rate law. This treatment significantly enhanced the high-temperature oxidation resistance of the γ-TiAl intermetallic compound, thereby broadening its potential application scenarios. Full article
(This article belongs to the Special Issue High-Temperature Protective Coatings)
Show Figures

Figure 1

16 pages, 4328 KiB  
Article
High-Throughput Study on Nanoindentation Deformation of Al-Mg-Si Alloys
by Tong Shen, Guanglong Xu, Fuwen Chen, Shuaishuai Zhu and Yuwen Cui
Materials 2025, 18(15), 3663; https://doi.org/10.3390/ma18153663 - 4 Aug 2025
Viewed by 188
Abstract
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing [...] Read more.
Al-Mg-Si (6XXX) series aluminum alloys are widely applied in aerospace and transportation industries. However, exploring how varying compositions affect alloy properties and deformation mechanisms is often time-consuming and labor-intensive due to the complexity of the multicomponent composition space and the diversity of processing and heat treatments. This study, inspired by the Materials Genome Initiative, employs high-throughput experimentation—specifically the kinetic diffusion multiple (KDM) method—to systematically investigate how the pop-in effect, indentation size effect (ISE), and creep behavior vary with the composition of Al-Mg-Si alloys at room temperature. To this end, a 6016/Al-3Si/Al-1.2Mg/Al KDM material was designed and fabricated. After diffusion annealing at 530 °C for 72 h, two junction areas were formed with compositional and microstructural gradients extending over more than one thousand micrometers. Subsequent solution treatment (530 °C for 30 min) and artificial aging (185 °C for 20 min) were applied to simulate industrial processing conditions. Comprehensive characterization using electron probe microanalysis (EPMA), nanoindentation with continuous stiffness measurement (CSM), and nanoindentation creep tests across these gradient regions revealed key insights. The results show that increasing Mg and Si content progressively suppresses the pop-in effect. When the alloy composition exceeds 1.0 wt.%, the pop-in events are nearly eliminated due to strong interactions between solute atoms and mobile dislocations. In addition, adjustments in the ISE enabled rapid evaluation of the strengthening contributions from Mg and Si in the microscale compositional array, demonstrating that the optimum strengthening occurs when the Mg-to-Si atomic ratio is approximately 1 under a fixed total alloy content. Furthermore, analysis of the creep stress exponent and activation volume indicated that dislocation motion is the dominant creep mechanism. Overall, this enhanced KDM method proves to be an effective conceptual tool for accelerating the study of composition–deformation relationships in Al-Mg-Si alloys. Full article
Show Figures

Graphical abstract

20 pages, 51475 KiB  
Article
Mechanism-Driven Strength–Conductivity Synergy in Hypereutectic Al-Si Alloys Reinforced with Interface-Engineered Ni-Coated CNTs
by Xuexuan Yang, Yulong Ren, Peng Tang and Jun Tan
Materials 2025, 18(15), 3647; https://doi.org/10.3390/ma18153647 - 3 Aug 2025
Viewed by 249
Abstract
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon [...] Read more.
Secondary hypereutectic Al-Si alloys are attractive for sustainable manufacturing, yet their application is often limited by low strength and electrical conductivity due to impurity-induced microstructural defects. Achieving a balance between mechanical and conductive performance remains a significant challenge. In this work, nickel-coated carbon nanotubes (Ni-CNTs) were introduced into secondary Al-20Si alloys to tailor the microstructure and enhance properties through interfacial engineering. Composites containing 0 to 0.4 wt.% Ni-CNTs were fabricated by conventional casting and systematically characterized. The addition of 0.1 wt.% Ni-CNTs resulted in the best combination of properties, with a tensile strength of 170.13 MPa and electrical conductivity of 27.60% IACS. These improvements stem from refined α-Al dendrites, uniform eutectic Si distribution, and strong interfacial bonding. Strengthening was achieved through grain refinement, Orowan looping, dislocation generation from thermal mismatch, and the formation of reinforcing interfacial phases such as AlNi3C0.9 and Al4SiC4. At higher Ni-CNT contents, property degradation occurred due to agglomeration and phase coarsening. This study presents an effective and scalable strategy for achieving strength–conductivity synergy in secondary aluminum alloys via nanoscale interfacial design, offering guidance for the development of multifunctional lightweight materials. Full article
Show Figures

Graphical abstract

18 pages, 8192 KiB  
Article
Microstructure, Mechanical Properties, and Tribological Behavior of Friction Stir Lap-Welded Joints Between SiCp/Al–Fe–V–Si Composites and an Al–Si Alloy
by Shunfa Xiao, Pinming Feng, Xiangping Li, Yishan Sun, Haiyang Liu, Jie Teng and Fulin Jiang
Materials 2025, 18(15), 3589; https://doi.org/10.3390/ma18153589 - 30 Jul 2025
Viewed by 267
Abstract
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of [...] Read more.
Aluminum matrix composites provide an ideal solution for lightweight brake disks, but conventional casting processes are prone to crack initiation due to inhomogeneous reinforcement dispersion, gas porosity, and inadequate toughness. To break the conventional trade-off between high wear resistance and low toughness of brake disks, this study fabricated a bimetallic structure of SiCp/Al–Fe–V–Si aluminum matrix composite and cast ZL101 alloy using friction stir lap welding (FSLW). Then, the microstructural evolution, mechanical properties, and tribological behavior of the FSLW joints were studied by XRD, SEM, TEM, tensile testing, and tribological tests. The results showed that the FSLW process homogenized the distribution of SiC particle reinforcements in the SiCp/Al–Fe–V–Si composites. The Al12(Fe,V)3Si heat-resistant phase was not decomposed or coarsened, and the mechanical properties were maintained. The FSLW process refined the grains of the ZL101 aluminum alloy through recrystallization and fragmented eutectic silicon, improving elongation to 22%. A metallurgical bond formed at the joint interface. Tensile fracture occurred within the ZL101 matrix, demonstrating that the interfacial bond strength exceeded the alloy’s load-bearing capacity. In addition, the composites exhibited significantly enhanced wear resistance after FSLW, with their wear rate reduced by approximately 40% compared to the as-received materials, which was attributed to the homogenized SiC particle distribution and the activation of an oxidative wear mechanism. Full article
Show Figures

Figure 1

23 pages, 15965 KiB  
Article
Parametric Optimization of Dry Sliding Wear Attributes for AlMg1SiCu Hybrid MMCs: A Comparative Study of GRA and Entropy-VIKOR Methods
by Krishna Prafulla Badi, Srinivasa Rao Putti, Maheswara Rao Chapa and Muralimohan Cheepu
J. Compos. Sci. 2025, 9(6), 297; https://doi.org/10.3390/jcs9060297 - 10 Jun 2025
Viewed by 513
Abstract
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al [...] Read more.
In recent days, aluminum-based hybrid composites have garnered more interest than monolithic alloys owing to their remarkable properties, encompassing a high strength-to-weight ratio, excellent corrosion resistance, and impressive wear durability. The present study attempts to optimize the multiple wear attribute characteristics of Al6061/SiC/Al2O3 hybrid composites using grey and entropy-based VIKOR techniques. The composites were produced by adding equal proportions of SiC/Al2O3 (0–12 wt.%) ceramics through the stir-casting process, using an ultrasonication setup. Dry sliding wear experiments were executed with tribometer variants, namely reinforcement content (wt.%), load (N), sliding velocity (v), and sliding distance (SD), following L27 OA. The optimal combination of process variables for achieving high GRG values from grey analysis was found to be A3-B3-C3-D3. The S/N ratios and ANOVA results for GRG indicated that RF content (wt.%) is the predominant component determining multiple outcomes, followed by sliding distance, load, and sliding velocity. The multi-order regression model formulated for the VIKOR index (Qi) displayed high significance and more accuracy, with a variance of 0.0216 and a coefficient of determination (R2), and adjusted R2 values of 99.60% and 99.14%. Subsequent morphological studies indicated that plowing, abrasion, and adhesion mechanisms are the dominant modes of wear. Full article
(This article belongs to the Special Issue Recent Progress in Hybrid Composites)
Show Figures

Figure 1

13 pages, 2488 KiB  
Article
Silicon and Manganese Effect on the Phase Composition of an Al-Fe Alloy and the Use of the ThermoCalc Software Complex for Thermodynamic Analysis
by Bakhtiyar Suleyev, Aristotel Issagulov, Ardak Dostayeva, Dastan Aubakirov and Togzhan Sultanbek
Alloys 2025, 4(2), 10; https://doi.org/10.3390/alloys4020010 - 30 May 2025
Viewed by 679
Abstract
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for [...] Read more.
This study examines the effect of silicon and manganese addition on the phase composition and electrical properties of Al-Fe alloys using both experimental methods and thermodynamic modeling with the ThermoCalc software package. This research focuses on the Al–Fe–Si–Mn system, which shows potential for developing conductive aluminum alloys with enhanced performance characteristics. It was found that when silicon and manganese are added in amounts up to 0.6%, the formation of intermetallic phases such as Al8Fe2Si and Al15Mn3Si2 occurs. These phases significantly influence the electrical conductivity and mechanical stability of the alloy. Thermodynamic modeling proved effective in predicting phase formation, guiding the selection of alloy compositions, and optimizing heat treatment parameters. The optimal composition for a conductive aluminum alloy includes up to 0.8% Fe, 0.5% Si, and 0.6% Mn. Heat treatment in the range of 500–550 °C resulted in a favorable combination of strength, electrical conductivity, and thermal resistance. The findings support the use of Al–Fe–Si–Mn alloys in electrical and structural applications and demonstrate the value of combining computational and experimental approaches in alloy design. Full article
Show Figures

Figure 1

12 pages, 756 KiB  
Article
Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites
by Yogesh S. Sable, Hanumant M. Dharmadhikari, Sunil A. More and Ioannis E. Sarris
J. Compos. Sci. 2025, 9(6), 259; https://doi.org/10.3390/jcs9060259 - 25 May 2025
Cited by 1 | Viewed by 558
Abstract
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The [...] Read more.
Understanding wire-cut electrical discharge machining (WEDM) parameters’ impact on surface roughness (Ra) is crucial for optimizing processes. This study uses artificial neural network (ANN) techniques to estimate the surface roughness of Al/SiC composites during WEDM, examining how process parameters affect the roughness. The experiment used a stir casting aluminum alloy with a 7.5% silicon carbide metal matrix composite (MMC), adjusting parameters like the wire tension (WT), servo voltage (SV), peak current (IP), pulse on time (TON), and pulse off time (TOFF). An ANN model was created to forecast the surface roughness. The study developed an ANN model to forecast surface roughness in Al/SiC composites during WEDM, demonstrating its accuracy in identifying the link between surface finish and input parameters, thereby improving the surface quality. The ANN model accurately predicted the surface roughness based on WEDM parameters, with strong correlations between predictions and actual data, demonstrating its ability to estimate surface quality accurately. Full article
(This article belongs to the Special Issue Characterization and Modeling of Composites, 4th Edition)
Show Figures

Figure 1

19 pages, 17724 KiB  
Article
Analysis of Typical Inclusion Evolution and Formation Mechanism in the Smelting Process of W350 Non-Oriented Silicon Steel
by Jiagui Shi, Libin Yang, Bowen Peng, Guoqiang Wei and Yibo Yuan
Materials 2025, 18(6), 1188; https://doi.org/10.3390/ma18061188 - 7 Mar 2025
Viewed by 849
Abstract
The production of silicon steel involves complex metallurgical processes, where the kind, composition, size, and quantity of the inclusions generated affect the silicon steel properties. This article is based on the smelting process for W350 non-oriented silicon steel produced by a certain factory. [...] Read more.
The production of silicon steel involves complex metallurgical processes, where the kind, composition, size, and quantity of the inclusions generated affect the silicon steel properties. This article is based on the smelting process for W350 non-oriented silicon steel produced by a certain factory. By systematically sampling, at key nodes of the converter–RH refining–tundish smelting process, the change in cleanliness of molten steel in the whole smelting process, the evolution of typical inclusions, and the transformation rules for the precipitated phase were analyzed by means of SEM-EDS, ASPEX, and Thermal-Calc. The results indicate that the total oxygen mass fraction in the steel decreases by more than 95% after deoxidation alloying, and the average oxygen mass fraction in the RH outbound steel is 0.0012%. While the nitrogen mass fraction shows a rising trend as a whole, the average nitrogen mass fraction in the tundish steel reaches approximately 0.0014%. Before RH refining, large Al2O3–CaO–SiO2 and Al2O3–CaO–SiO2–MgO composite inclusions are the main inclusions. MnO and Al2O3–SiO2–MnO inclusions are the main inclusions after RH inlet and RH decarburization. After RH deoxidation with aluminum, the inclusions were almost entirely transformed into Al2O3 inclusions. After RH alloying, with the content of Si and Mn increased, the inclusions transformed into Al2O3–SiO2–MnO inclusions. The number of inclusions from RH desulfurization to the RH outbound stage declined significantly, and composite inclusions containing CaS and precipitates such as AlN and MnS began to appear. The inclusions’ main types were Al2O3–MgO–CaS, AlN–MnS, AlN, and Al2O3–MgO. The inclusions inside the tundish were the same, but the numbers were slightly increased due to the secondary oxidation of molten steel. More than 80% of the oxide inclusions in the whole process were between 1 μm and 5 μm in size. The average size and the number of inclusions per unit area reached 5.45 μm and 63.1 per mm2, respectively, after RH deoxidation, and respectively decreased to 3.71 μm and 1.9 per mm2 during the RH outbound stage, but both increased slightly in the tundish. Thermodynamic calculation shows that Al2O3–MgO inclusions are formed when w([Mg]) > 0.0033% in molten steel at 1873 K. Under the actual temperature of 1828K and w([Al]s) = 0.6515%, the range of w([Mg]) corresponding to the stable existence of Al2O3–MgO is between 0.0053% and 0.1676%. The liquidus temperature of W350 non-oriented silicon steel is 1489 °C. MnS and AlN inclusions are precipitated successively with the solidification of molten steel, and the precipitation temperatures are 1460.7 °C and 1422.2 °C, respectively. As the temperature decreases, the sequence of inclusion precipitation calculated in liquid was as follows: Al2O3–CaO → 2Al2O3–CaO + MnS → 6Al2O3–CaO → Al2O3 + AlN + MnS + CaS. Full article
Show Figures

Figure 1

56 pages, 16932 KiB  
Review
Study of the Influence of Nanoparticle Reinforcement on the Mechanical and Tribological Performance of Aluminum Matrix Composites—A Review
by Varun Singhal, Daksh Shelly, Abhishek Saxena, Rahul Gupta, Vipin Kumar Verma and Appurva Jain
Lubricants 2025, 13(2), 93; https://doi.org/10.3390/lubricants13020093 - 19 Feb 2025
Cited by 7 | Viewed by 2026
Abstract
This study investigates the influence of nano-sized reinforcements on aluminum matrix composites’ mechanical and tribological properties. Microstructural analysis revealed that introducing nanoparticles led to grain refinement, reducing the grain size from 129.7 μm to 41.3 μm with 2 wt.% TiO2 addition. Furthermore, [...] Read more.
This study investigates the influence of nano-sized reinforcements on aluminum matrix composites’ mechanical and tribological properties. Microstructural analysis revealed that introducing nanoparticles led to grain refinement, reducing the grain size from 129.7 μm to 41.3 μm with 2 wt.% TiO2 addition. Furthermore, ultrasonic-assisted squeeze casting of AA6061 composites reinforced with TiO2 and Al2O3 resulted in a 52% decrease in grain size, demonstrating nano-reinforcements’ effectiveness in refining the matrix structure. Despite these advantages, the high surface energy of nanoparticles causes agglomeration, which can undermine composite performance. However, ultrasonic-assisted stir casting reduced agglomeration by approximately 80% compared to conventional stir casting, and cold isostatic pressing improved dispersion uniformity by 27%. The incorporation of nano-reinforcements such as SiC, Al2O3, and TiC significantly enhanced the material properties, with hardness increasing by ~30% and ultimate tensile strength improving by ~80% compared to pure Al. The hardness of nano-reinforced composites substantially rose from 83 HV (pure Al) to 117 HV with 1.0 vol.% CNT reinforcement. Additionally, TiC-reinforced AA7075 composites improved hardness from 94.41 HB to 277.55 HB after 10 h of milling, indicating a nearly threefold increase. The wear resistance of Al-Si alloys was notably improved, with wear rates reduced by up to 52%, while the coefficient of friction decreased by 20–40% with the incorporation of graphene and CNT reinforcements. These findings highlight the potential of nano-reinforcements in significantly improving the mechanical and tribological performance of n-AMCs, making them suitable for high-performance applications in aerospace, automotive, and structural industries. Full article
Show Figures

Figure 1

19 pages, 5741 KiB  
Article
Analysis of Heat Treatment of AlSi7Cu0.5Mg Alloy
by Miloš Mičian, Elena Kantoríková, Joanna Borowiecka-Jamrozek and Justyna Kasińska
Materials 2025, 18(4), 733; https://doi.org/10.3390/ma18040733 - 7 Feb 2025
Viewed by 591
Abstract
This article describes how different heat treatment methods affect the mechanical properties of AlSi7Cu0.5Mg. This article offers a new perspective on the topic of heat treatment analysis. AlSi7Cu0.5Mg alloy has a specific chemical composition due to its lower titanium and silicon content. It [...] Read more.
This article describes how different heat treatment methods affect the mechanical properties of AlSi7Cu0.5Mg. This article offers a new perspective on the topic of heat treatment analysis. AlSi7Cu0.5Mg alloy has a specific chemical composition due to its lower titanium and silicon content. It is still an experimentally tested alloy, intended for the production of high-strength castings in automotive applications. Although we are generally familiar with heat treatment methods for aluminum alloys, in the present case, we did not know the exact effect of artificial aging on the mechanical properties of AlSi7Cu0.5Mg. Five heat treatment regimes at temperatures of 160; 180; 200; 220 and 240 °C were monitored by removing the samples from the furnace at specified time intervals ranging from 30 min to 8 h. The solution treatment was the same for all samples (540 °C, 4 h and 80 °C water). The aim was to find out at what the highest hardness, strength, ductility, yield strength and metallographic yield strength were which could be obtained. The best properties were presented by the alloy which was artificially aged at 180 °C for 60 min. The topic and research on aluminum alloys in general are still relevant because in industrial practice and automotive applications, Al alloys are irreplaceable. Full article
Show Figures

Figure 1

22 pages, 20382 KiB  
Article
Effects of Red Mud on Microstructures and Heat Resistance of ZL109 Aluminum Alloy
by Zhuofang Huang, Anmin Li, Wendi Zhou, Jinjin Li and Jinkai Zhang
Materials 2025, 18(3), 664; https://doi.org/10.3390/ma18030664 - 2 Feb 2025
Viewed by 1364
Abstract
The effects of red mud on the microstructures and high-temperature tensile properties of the ZL109 aluminum alloy have been investigated. Red mud/ZL109-based composite materials with added red mud (a major byproduct of the aluminum industry), which has been coated with nickel by chemical [...] Read more.
The effects of red mud on the microstructures and high-temperature tensile properties of the ZL109 aluminum alloy have been investigated. Red mud/ZL109-based composite materials with added red mud (a major byproduct of the aluminum industry), which has been coated with nickel by chemical deposition, have been prepared through gravity casting. The results show that the addition of red mud promotes the alloy’s microstructure and helps to uniformly distribute the eutectic silicon. It also increases the content of heat-resistant phases, such as the Q-Al5Cu2Mg8Si6 and γ-Al7Cu4Ni phases. These changes significantly enhance the alloy’s high-temperature tensile properties. The alloy with 1% (wt.%) red mud exhibits the best tensile strength at both room temperature and 350 °C, reaching 295.4 MPa and 143.3 MPa, respectively. The alloy with 1.5% (wt.%) red mud demonstrates excellent performance at 400 °C, achieving a tensile strength of 86.2 MPa through the cut-through method and Orowan mechanism. As a reinforcing material, red mud not only improves the high-temperature resistance of the aluminum alloy but also provides a way to recycle industrial waste. This study offers a new way to address the red mud waste problem and helps develop high-performance, heat-resistant aluminum alloys. It shows the potential of these alloys in high-temperature applications. Full article
Show Figures

Figure 1

25 pages, 14186 KiB  
Article
Steel Ball Impact on SiC/AlSi12 Interpenetrated Composite by Peridynamics
by Eligiusz Postek, Tomasz Sadowski and Jajnabalkya Guhathakurta
Materials 2025, 18(2), 290; https://doi.org/10.3390/ma18020290 - 10 Jan 2025
Cited by 1 | Viewed by 923
Abstract
Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to [...] Read more.
Silicon carbide and an aluminum alloy (SiC/AlSi12) composite are obtained during the pressurized casting process of the aluminum alloy into the SiC foam. The foam acts as a high-stiffness skeleton that strengthens the aluminum alloy matrix. The goal of the paper is to describe the behavior of the material, considering its internal structure. The composite’s structure is obtained by using X-ray computing tomography. The thorough computer tomography analysis allows for the high-precision identification of the shape and distribution of the pores in the matrix. The computational model prepared in the framework of the peridynamics method takes into account the pores and their shape. The pores in the structure appeared in the fabrication process. The impact of a steel ball is studied employing the peridynamics method. The sample without any porosity and a porous one were considered during the analyses. It has been found that the porosity of the matrix influences the plastic strain development, but the damage parameter in the skeleton is not affected significantly. The damage advancement in the skeleton during the process is practically identical in both cases. The equivalent plastic strain field is much smoother in a non-porous matrix than in a porous one. The porous matrix has high equivalent plastic strain concentrations, much higher than the non-porous matrix. The shape of the sample is affected by the porosity of the matrix. The sample with a porous matrix tends to fragment, and it shows a tendency towards spallation when in close contact to the surface with the base. Full article
Show Figures

Figure 1

15 pages, 2621 KiB  
Article
Comparative Analysis of the Corrosion and Mechanical Behavior of an Al-SiC Composite and AA 2024 Alloy Fabricated by Powder Metallurgy for Aeronautical Applications
by Willian Aperador, Jonnathan Aperador and Giovany Orozco-Hernández
Metals 2024, 14(12), 1462; https://doi.org/10.3390/met14121462 - 20 Dec 2024
Cited by 1 | Viewed by 1328
Abstract
This study presents a comparative analysis of the corrosion and mechanical properties of an Al-SiC composite and an AA 2024 aluminum alloy, focusing on their suitability for aeronautical applications. The Al-SiC composite was fabricated using advanced powder metallurgy techniques, incorporating a 20% volume [...] Read more.
This study presents a comparative analysis of the corrosion and mechanical properties of an Al-SiC composite and an AA 2024 aluminum alloy, focusing on their suitability for aeronautical applications. The Al-SiC composite was fabricated using advanced powder metallurgy techniques, incorporating a 20% volume of silicon carbide (SiC) particles, averaging 1.6 µm in size, to enhance its structural and electrochemical performance. Electrochemical evaluations in an aerated 3.5% NaCl solution revealed a significant improvement in the corrosion resistance of the Al-SiC composite. This enhancement is attributed to the cathodic nature of the SiC particles, which promote the formation of a protective aluminum oxide layer, reducing pitting corrosion and preserving the material’s structural integrity. In terms of the mechanical properties, the Al-SiC composite demonstrated a higher yield strength and ultimate tensile strength compared to the AA 2024 alloy. While it exhibited a slightly lower elongation at failure, the composite maintained a favorable balance between strength and ductility. Additionally, the composite showed a higher Young’s modulus indicating improved resistance to deformation under load. These findings underscore the potential of the Al-SiC composite for demanding aerospace applications, offering valuable insights into the development of materials capable of withstanding extreme operational environments. Full article
(This article belongs to the Section Corrosion and Protection)
Show Figures

Figure 1

34 pages, 4906 KiB  
Review
Progress in Aluminum-Based Composites Prepared by Stir Casting: Mechanical and Tribological Properties for Automotive, Aerospace, and Military Applications
by Sachin Kumar Sharma, Sandra Gajević, Lokesh Kumar Sharma, Reshab Pradhan, Yogesh Sharma, Ivan Miletić and Blaža Stojanović
Lubricants 2024, 12(12), 421; https://doi.org/10.3390/lubricants12120421 - 29 Nov 2024
Cited by 22 | Viewed by 3723
Abstract
Manufacturing sectors, including automotive, aerospace, military, and aviation, are paying close attention to the increasing need for composite materials with better characteristics. Composite materials are significantly used in industry owing to their high-quality, low-cost materials with outstanding characteristics and low weight. Hence, aluminum-based [...] Read more.
Manufacturing sectors, including automotive, aerospace, military, and aviation, are paying close attention to the increasing need for composite materials with better characteristics. Composite materials are significantly used in industry owing to their high-quality, low-cost materials with outstanding characteristics and low weight. Hence, aluminum-based materials are preferred over other traditional materials owing to their low cost, great wear resistance, and excellent strength-to-weight ratio. However, the mechanical characteristics and wear behavior of the Al-based materials can be further improved by using suitable reinforcing agents. The various reinforcing agents, including whiskers, particulates, continuous fibers, and discontinuous fibers, are widely used owing to enhanced tribological and mechanical behavior comparable to bare Al alloy. Further, the advancement in the overall characteristics of the composite material can be obtained by optimizing the process parameters of the processing approach and the amount and types of reinforcement. Amongst the various available techniques, stir casting is the most suitable technique for the manufacturing of composite material. The amount of reinforcement controls the porosity (%) of the composite, while the types of reinforcement identify the compatibility with Al alloy through improvement in the overall characteristics of the composites. Fly ash, SiC, TiC, Al2O3, TiO2, B4C, etc. are the most commonly used reinforcing agents in AMMCs (aluminum metal matrix composites). The current research emphasizes how different forms of reinforcement affect AMMCs and evaluates reinforcement influence on the mechanical and tribo characteristics of composite material. Full article
(This article belongs to the Special Issue Friction and Wear of Alloys)
Show Figures

Figure 1

16 pages, 4175 KiB  
Article
Antioxidant Behavior of Carbon/Carbon Composites with Hot Dip Plating and Electroplating for Single-Crystal Furnaces
by Zuxing Qi, Chaofan Du, Guoying Bao, Shan Wang, Dedong Gao, Haixing Lin and Yan An
Materials 2024, 17(23), 5798; https://doi.org/10.3390/ma17235798 - 26 Nov 2024
Viewed by 685
Abstract
In the Czochralski single-crystal silicon manufacturing industry, single-crystal furnaces often experience corrosion from silicon vapor, which reduces their operational lifespan. However, the preparation of metal coatings on the surface of C/C composites is challenging due to their low coefficient of thermal expansion and [...] Read more.
In the Czochralski single-crystal silicon manufacturing industry, single-crystal furnaces often experience corrosion from silicon vapor, which reduces their operational lifespan. However, the preparation of metal coatings on the surface of C/C composites is challenging due to their low coefficient of thermal expansion and the intricate structure of carbon fibers. To address this issue and achieve high-quality alloy coatings, Ni-Al and Ni-Al/Si composite coatings are successfully prepared on the surface of C/C composites through a combination of electroplating and hot-dip plating, and their oxidation behavior at elevated temperatures is thoroughly investigated. The experimental results indicate that the Ni-Al composite coatings exhibit superior antioxidant properties compared to Ni coatings following thermal shock experiments, thereby significantly enhancing the antioxidant performance of C/C composites. This improvement is attributed to the preferential oxidation of surface aluminum, which forms a dense Al2O3 layer in aerobic and high-temperature environments, effectively preventing oxygen from reaching the underlying matrix. During the oxidation process, coating elements migrate outward along the concentration gradient, while oxygen molecules diffuse inward. Simultaneously, aluminum atoms diffuse inward, and Ni atoms diffuse outward, where they partially dissolve with oxygen. The inner coating’s Ni enhances the bonding of the coating by connecting the substrate to the outer layer. Meanwhile, the added Si in the Ni-Al/Si composite coating further improves the antioxidant properties of the coating. Full article
(This article belongs to the Topic Advanced Manufacturing and Surface Technology)
Show Figures

Figure 1

Back to TopTop