Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Data Processing
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Phate, M.R.; Toney, S.B. Modeling and prediction of WEDM performance parameters for Al/SiCp MMC using dimensional analysis and artificial neural network. Eng. Sci. Technol. Int. J. 2019, 22, 468–476. [Google Scholar] [CrossRef]
- Phate, M.R.; Toney, S.B.; Phate, V.R. Multi-parametric optimization of WEDM using artificial neural network (ANN)-based PCA for Al/SiCp MMC. J. Inst. Eng. (India) Ser. C 2021, 102, 169–181. [Google Scholar] [CrossRef]
- Kavimani, V.; Gopal, P.M.; Ramakrishnan, S.K.; Giri, J.; Alarifi, A.; Sathish, T. Predictive modelling and optimization of WEDM parameter for Mg–Li alloy using ANN integrated CRITIC-WASPAS approach. Heliyon 2024, 10, e35194. [Google Scholar] [CrossRef] [PubMed]
- Yusoff, Y.; Mohd Zain, A.; Sharif, S.; Sallehuddin, R.; Ngadiman, M.S. Potential ANN prediction model for multiperformances WEDM on Inconel 718. Neural Comput. Appl. 2018, 30, 2113–2127. [Google Scholar] [CrossRef]
- Jafari, R.; Kahya, M.; Oliaei, S.N.B.; Ünver, H.Ö.; Özyurt, T.O. Modeling and analysis of surface roughness of microchannels produced by μ-WEDM using an ANN and Taguchi method. J. Mech. Sci. Technol. 2017, 31, 5447–5457. [Google Scholar] [CrossRef]
- Shandilya, P.; Jain, P.K.; Jain, N.K. RSM and ANN modeling approaches for predicting average cutting speed during WEDM of SiCp/6061 Al MMC. Procedia Eng. 2013, 64, 767–774. [Google Scholar] [CrossRef]
- Liao, Y.S.; Chuang, T.J.; Yu, Y.P. Study of machining parameters optimization for different materials in WEDM. Int. J. Adv. Manuf. Technol. 2014, 70, 2051–2058. [Google Scholar] [CrossRef]
- Thankachan, T.; Prakash, K.S.; Malini, R.; Ramu, S.; Sundararaj, P.; Rajandran, S.; Rammasamy, D.; Jothi, S. Prediction of surface roughness and material removal rate in wire electrical discharge machining on aluminum based alloys/composites using Taguchi coupled Grey Relational Analysis and Artificial Neural Networks. Appl. Surf. Sci. 2019, 472, 22–35. [Google Scholar] [CrossRef]
- Kumar, H.; Manna, A.; Kumar, R. Modeling and desirability approach-based multi-response optimization of WEDM parameters in machining of aluminum metal matrix composite. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 458. [Google Scholar] [CrossRef]
- Gurupavan, H.R.; Devegowda, T.M.; Ravindra, H.V.; Ugrasen, G. Estimation of machining performances in WEDM of aluminium based metal matrix composite material using ANN. Mater. Today Proc. 2017, 4, 10035–10038. [Google Scholar] [CrossRef]
- Fard, R.K.; Afza, R.A.; Teimouri, R. Experimental investigation, intelligent modeling and multi-characteristics optimization of dry WEDM process of Al–SiC metal matrix composite. J. Manuf. Process. 2013, 15, 483–494. [Google Scholar] [CrossRef]
- Kumar, A.; Grover, N.; Manna, A.; Chohan, J.S.; Kumar, R.; Singh, S.; Prakash, C.; Pruncu, C.I. Investigating the influence of WEDM process parameters in machining of hybrid aluminum composites. Adv. Compos. Lett. 2020, 29, 2633366X20963137. [Google Scholar] [CrossRef]
- Phate, M.R.; Toney, S.B.; Phate, V.R. Analysis of Machining Parameters in WEDM of Al/SiCp20 MMC Using Taguchi-Based Grey-Fuzzy Approach. Model. Simul. Eng. 2019, 2019, 1483169. [Google Scholar] [CrossRef]
- Alam, M.A.; Hamdan, H.Y.; Azeem, M.; Hussain, P.B.; bin Salit, M.S.; Khan, R.; Arif, S.; Ansari, A.H. Modelling and optimisation of hardness behaviour of sintered Al/SiC composites using RSM and ANN: A comparative study. J. Mater. Res. Technol. 2020, 9, 14036–14050. [Google Scholar] [CrossRef]
- Vijayabhaskar, S.; Rajmohan, T. Experimental investigation and optimization of machining parameters in WEDM of nano-SiC particles reinforced magnesium matrix composites. Silicon 2019, 11, 1701–1716. [Google Scholar] [CrossRef]
- Naik, S.; Das, S.R.; Dhupal, D. Experimental investigation, predictive modeling, parametric optimization and cost analysis in electrical discharge machining of Al-SiC metal matrix composite. Silicon 2021, 13, 1017–1040. [Google Scholar] [CrossRef]
- Ming, W.; Ma, J.; Zhang, Z.; Huang, H.; Shen, D.; Zhang, G.; Huang, Y. Soft computing models and intelligent optimization system in electro-discharge machining of SiC/Al composites. Int. J. Adv. Manuf. Technol. 2016, 87, 201–217. [Google Scholar] [CrossRef]
- Ram, H.S.; Uthayakumar, M.; Kumar, S.S.; Kumaran, S.T.; Korniejenko, K. Modelling approach for the prediction of machinability in Al6061 composites by electrical discharge machining. Appl. Sci. 2022, 12, 2673. [Google Scholar] [CrossRef]
- Saravanan, R.; Anbuchezhiyan, G.; Mamidi, V.K.; Kumaran, P. Optimizing WEDM Parameters on Nano-SiC-Gr Reinforced Aluminum Composites Using RSM. Adv. Mater. Sci. Eng. 2022, 2022, 1612539. [Google Scholar] [CrossRef]
- Devarasiddappa, D.; George, J.; Chandrasekaran, M.; Teyi, N. Application of artificial intelligence approach in modeling surface quality of aerospace alloys in WEDM process. Procedia Technol. 2016, 25, 1199–1208. [Google Scholar] [CrossRef]
- Sable, Y.; Dharmadhikari, H.M. Artificial Neural Network prediction model for MRR in WEDM of WC-Co. Mater. Today Proc. 2023, 72, 1650–1656. [Google Scholar] [CrossRef]
- Sener Karabulut; Halil Karakoc; Investigation of surface roughness in the milling of Al7075 and open-cell SiC foam composite and optimization of machining parameters. Neural Comput. Appl. 2015, 28, 313–327.
Component | Percentage |
---|---|
Cu | 0.20 |
Mg | 0.20–0.60 |
Si | 6.5–7.5 |
Fe | 0.5 |
Mn | 0.3 |
Ni | 0.1 |
Zn | 0.1 |
Pb | 0.1 |
Sn | 0.01 |
Ti | 0.2 |
SiC | 7.5 |
Al | Remainder |
Factor | Level | ||||
---|---|---|---|---|---|
−2 | −1 | 0 | 1 | 2 | |
Pulse on Time (TON) | 106 | 112 | 118 | 124 | 130 |
Pulse off Time (TOFF) | 52 | 54 | 56 | 58 | 60 |
Peak Current (IP) | 190 | 200 | 210 | 220 | 230 |
Servo Voltage (SV) | 15 | 20 | 25 | 30 | 35 |
Wire Tension (WT) | 4 | 6 | 8 | 10 | 12 |
Sr. No. | TON | TOFF | IP | SV | WT | Ra |
---|---|---|---|---|---|---|
1 | 112 | 54 | 200 | 20 | 10 | 1.118 |
2 | 124 | 54 | 200 | 20 | 6 | 1.365 |
3 | 112 | 58 | 200 | 20 | 6 | 1.521 |
4 | 124 | 58 | 200 | 20 | 10 | 1.116 |
5 | 112 | 54 | 220 | 20 | 6 | 1.109 |
6 | 124 | 54 | 220 | 20 | 10 | 2.17 |
7 | 112 | 58 | 220 | 20 | 10 | 1.094 |
8 | 124 | 58 | 220 | 20 | 6 | 2.051 |
9 | 112 | 54 | 200 | 30 | 6 | 1.355 |
10 | 124 | 54 | 200 | 30 | 10 | 1.393 |
11 | 112 | 58 | 200 | 30 | 10 | 0.961 |
12 | 124 | 58 | 200 | 30 | 6 | 1.414 |
13 | 112 | 54 | 220 | 30 | 10 | 1.114 |
14 | 124 | 54 | 220 | 30 | 6 | 1.39 |
15 | 112 | 58 | 220 | 30 | 6 | 1.252 |
16 | 124 | 58 | 220 | 30 | 10 | 1.602 |
17 | 106 | 56 | 210 | 25 | 8 | 1.309 |
18 | 130 | 56 | 210 | 25 | 8 | 1.379 |
19 | 118 | 52 | 210 | 25 | 8 | 1.5 |
20 | 118 | 60 | 210 | 25 | 8 | 1.725 |
21 | 118 | 56 | 190 | 25 | 8 | 1.452 |
22 | 118 | 56 | 230 | 25 | 8 | 1.391 |
23 | 118 | 56 | 210 | 15 | 8 | 1.318 |
24 | 118 | 56 | 210 | 35 | 8 | 1.743 |
25 | 118 | 56 | 210 | 25 | 4 | 1.599 |
26 | 118 | 56 | 210 | 25 | 12 | 1.903 |
27 | 118 | 56 | 210 | 25 | 8 | 1.212 |
28 | 118 | 56 | 210 | 25 | 8 | 1.687 |
29 | 118 | 56 | 210 | 25 | 8 | 1.017 |
30 | 118 | 56 | 210 | 25 | 8 | 1.063 |
31 | 118 | 56 | 210 | 25 | 8 | 1.46 |
32 | 118 | 56 | 210 | 25 | 8 | 1.573 |
Performance Parameter | Data | MSE | R2 |
---|---|---|---|
Surface Roughness | Testing | 0.016298 | 0.94542 |
Validation | 0.012141 | 0.85402 |
Experimental | ANN Model | Error |
---|---|---|
1.118 | 1.119688 | −0.00169 |
1.365 | 1.365095 | −0.00009 |
1.521 | 1.521738 | −0.00074 |
1.116 | 1.11662 | −0.00062 |
1.109 | 1.107762 | 0.001238 |
2.17 | 2.169901 | 0.00009 |
1.094 | 1.097702 | −0.0037 |
2.051 | 2.05061 | 0.00039 |
1.355 | 1.355345 | −0.00035 |
1.393 | 1.392857 | 0.000143 |
0.961 | 0.962165 | −0.00116 |
1.414 | 1.412847 | 0.001153 |
1.114 | 1.114992 | −0.00099 |
1.39 | 1.382968 | 0.007032 |
1.252 | 1.250735 | 0.001265 |
1.602 | 1.600847 | 0.001153 |
1.309 | 1.309103 | −0.0001 |
1.379 | 1.379478 | −0.00048 |
1.5 | 1.498642 | 0.001358 |
1.725 | 1.726094 | −0.00109 |
1.452 | 1.451054 | 0.000946 |
1.391 | 1.391073 | 0.000073 |
1.318 | 1.319575 | −0.00158 |
1.743 | 1.742181 | 0.000819 |
1.599 | 1.598635 | 0.000365 |
1.903 | 1.903048 | −0.000048 |
1.212 | 1.316917 | −0.10492 |
1.687 | 1.316917 | 0.370083 |
1.017 | 1.316917 | −0.29992 |
1.063 | 1.316917 | −0.25392 |
1.46 | 1.316917 | 0.143083 |
1.573 | 1.316917 | 0.256083 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sable, Y.S.; Dharmadhikari, H.M.; More, S.A.; Sarris, I.E. Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites. J. Compos. Sci. 2025, 9, 259. https://doi.org/10.3390/jcs9060259
Sable YS, Dharmadhikari HM, More SA, Sarris IE. Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites. Journal of Composites Science. 2025; 9(6):259. https://doi.org/10.3390/jcs9060259
Chicago/Turabian StyleSable, Yogesh S., Hanumant M. Dharmadhikari, Sunil A. More, and Ioannis E. Sarris. 2025. "Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites" Journal of Composites Science 9, no. 6: 259. https://doi.org/10.3390/jcs9060259
APA StyleSable, Y. S., Dharmadhikari, H. M., More, S. A., & Sarris, I. E. (2025). Exploring Artificial Neural Network Techniques for Modeling Surface Roughness in Wire Electrical Discharge Machining of Aluminum/Silicon Carbide Composites. Journal of Composites Science, 9(6), 259. https://doi.org/10.3390/jcs9060259