Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,249)

Search Parameters:
Keywords = aluminium ores

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 9214 KiB  
Article
Tribological Performance of Direct Metal Laser Sintered 20MnCr5 Tool Steel Countersamples Designed for Sheet Metal Forming Applications
by Krzysztof Żaba, Marcin Madej, Beata Leszczyńska-Madej, Tomasz Trzepieciński and Ryszard Sitek
Appl. Sci. 2025, 15(15), 8711; https://doi.org/10.3390/app15158711 (registering DOI) - 6 Aug 2025
Abstract
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block [...] Read more.
This article presents the results of the tribological performance of 20MnCr5 (1.7147) tool steel countersamples produced by Direct Metal Laser Sintering (DMLS), as a potential material for inserts or working layers of sheet metal forming tools. Tribological tests were performed using a roller-block tribotester. The samples were sheet metals made of materials with significantly different properties: Inconel 625, titanium-stabilised stainless steel 321, EN AW-6061 T0 aluminium alloy, and pure copper. The samples and countersamples were analysed in terms of their wear resistance, coefficient of friction (COF), changes in friction force during testing, and surface morphology after tribological contact under dry friction conditions. The tests were performed on DMLSed countersamples in the as-received state. The largest gain of countersample mass was observed for the 20MnCr5/EN AW-6061 T0 friction pair. The sample mass loss in this combination was also the largest, amounting to 19.96% of the initial mass. On the other hand, in the 20MnCr5/Inconel 625 friction pair, no significant changes in the mass of materials were recorded. For the Inconel 625 sample, a mass loss of 0.04% was observed. The basic wear mechanism of the samples was identified as abrasive wear. The highest friction forces were observed in the 20MnCr5/Cu friction pair (COF = 0.913) and 20MnCr5/EN AW-6061 T0 friction pair (COF = 1.234). The other two samples (Inconel 625, 321 steel) showed a very stable value of the friction force during the roller-block test resulting in a COF between 0.194 and 0.213. Based on the changes in friction force, COFs, and mass changes in friction pair components during wear tests, it can be concluded that potential tools in the form of inserts or working layers manufactured using 3D printing technology, the DMLS method, without additional surface treatment can be successfully used for forming sheets of 321 steel and Inconel 625. Full article
Show Figures

Figure 1

14 pages, 10994 KiB  
Article
Novel Cemented Carbide Inserts for Metal Grooving Applications
by Janusz Konstanty, Albir Layyous and Łukasz Furtak
Materials 2025, 18(15), 3674; https://doi.org/10.3390/ma18153674 - 5 Aug 2025
Abstract
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, [...] Read more.
Although cemented carbides have been manufactured by the powder metallurgy (P/M) technology for over a century now, systematic developmental efforts are still underway. In the present study, tool life improvements in metal grooving applications are the key objective. Four PVD-coated cemented carbides compositions, dedicated to groove steel, stainless steel, cast iron, and aluminium alloys, have been newly designed, along with their manufacturing conditions. Physical, mechanical and chemical characteristics—such as sintered density, modulus of elasticity, hardness, fracture toughness, WC grain size, and the chemical composition of the substrate material, as well as the chemical composition, microhardness, structure, and thickness of the coatings—have been studied. A series of grooving tests have also been conducted to assess whether modifications to the thus far marketed tool materials, tool geometries, and coatings can improve cutting performance. In order to compare the laboratory and application properties of the investigated materials with currently produced by reputable companies, commercial inserts have also been tested. The experimental results obtained indicate that the newly developed grooving inserts exhibit excellent microstructural characteristics, high hardness, fracture toughness, and wear resistance and that they show slightly longer tool life compared to the commercial ones. Full article
Show Figures

Figure 1

23 pages, 1211 KiB  
Review
Dealuminated Metakaolin in Supplementary Cementitious Material and Alkali-Activated Systems: A Review
by Mostafa Elsebaei, Maria Mavroulidou, Amany Micheal, Maria Astrid Centeno, Rabee Shamass and Ottavia Rispoli
Appl. Sci. 2025, 15(15), 8599; https://doi.org/10.3390/app15158599 (registering DOI) - 2 Aug 2025
Viewed by 192
Abstract
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the [...] Read more.
This paper presents a comprehensive review of dealuminated metakaolin (DK), a hazardous industrial by-product generated by the aluminium sulphate (alum) industry and evaluates its potential as a component in cementitious systems for the partial or full replacement of Portland cement (PC). Positioned within the context of waste valorisation in concrete, the review aims to establish a critical understanding of DK formation, properties, and reactivity, particularly its pozzolanic potential, to assess its suitability for use as a supplementary cementitious material (SCM), or as a precursor in alkali-activated cement (AAC) systems for concrete. A systematic methodology is used to extract and synthesise relevant data from existing literature concerning DK and its potential applications in cement and concrete. The collected information is organised into thematic sections exploring key aspects of DK, beginning with its formation from kaolinite ores, followed by studies on its pozzolanic reactivity. Applications of DK are then reviewed, focusing on its integration into SCMs and alkali-activated cement (AAC) systems. The review consolidates existing knowledge related to DK, identifying scientific gaps and practical challenges that limit its broader adoption for cement and concrete applications, and outlines future research directions to provide a solid foundation for future studies. Overall, this review highlights the potential of DK as a low-carbon, circular-economy material and promotes its integration into efforts to enhance the sustainability of construction practices. The findings aim to support researchers’ and industry stakeholders’ strategies to reduce cement clinker content and mitigate the environmental footprint of concrete in a circular-economy context. Full article
(This article belongs to the Special Issue Applications of Waste Materials and By-Products in Concrete)
Show Figures

Figure 1

8 pages, 2132 KiB  
Proceeding Paper
Impact of Current Variations on Weld Bead Properties During the Cold Metal Transfer (CMT) Welding of 7075 Aluminium Using an ER4043 Filler Wire
by Vishal Bhardwaj, Siddharth Garg and Qasim Murtaza
Eng. Proc. 2025, 93(1), 22; https://doi.org/10.3390/engproc2025093022 - 1 Aug 2025
Viewed by 144
Abstract
This study investigated into how different current input levels during cold metal transfer (CMT) welding affected the characteristics of the weld bead. For the current variation, three input values were taken: 80 A, 90 A, and 100 A. Weld beads fabricated from all [...] Read more.
This study investigated into how different current input levels during cold metal transfer (CMT) welding affected the characteristics of the weld bead. For the current variation, three input values were taken: 80 A, 90 A, and 100 A. Weld beads fabricated from all three current inputs were compared by analysing their microstructure, microhardness, tensile strength, and residual stress. The microhardness of the weld bead decreased when the current parameter was increased from 80 A to 100 A. The average tensile strength increased from 80 A to 90 A. The lowest residual stress calculated was −135 MPa with 100 A current. Full article
Show Figures

Figure 1

14 pages, 6773 KiB  
Article
MoTiCo Conversion Coating on 7075 Aluminium Alloy Surface: Preparation, Corrosion Resistance Analysis, and Application in Outdoor Sports Equipment Trekking Poles
by Yiqun Wang, Feng Huang and Xuzheng Qian
Metals 2025, 15(8), 864; https://doi.org/10.3390/met15080864 (registering DOI) - 1 Aug 2025
Viewed by 149
Abstract
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF [...] Read more.
The problem of protecting 7075 Al alloy trekking poles from corrosion in complex outdoor environments was addressed using a composite conversion coating system. This system comprised Na2MoO4, NaF, CoSO4·7H2O, ethylenediaminetetraacetic acid-2Na, and H2(TiF6). The influences of this system on the properties of the coating layer were systematically studied by adjusting the pH of the coating solution. The conversion temperature and pH were the pivotal parameters influencing the formation of the conversion coating. The pH substantially influenced the compactness of the coating layer, acting as a regulatory agent of the coating kinetics. When the conversion temperature and pH were set to 40 °C and 3.8, respectively, the prepared coating layer displayed optimal performance in terms of compactness and protective properties. Therefore, this parameter combination favours the synthesis of high-performance conversion coatings. Microscopy confirmed the formation of a continuous, dense composite oxide film structure under these conditions, effectively blocking erosion in corrosive media. Furthermore, the optimised process led to substantial enhancements in the environmental adaptabilities and service lives of the components of trekking poles, thus establishing a theoretical foundation and technical reference for use in the surface protection of outdoor equipment. Full article
Show Figures

Figure 1

17 pages, 1501 KiB  
Article
Topology-Optimized Latent Heat Battery: Benchmarking Against a High-Performance Geometry
by Arsham Mortazavi, Matteo Morciano, Pietro Asinari and Eliodoro Chiavazzo
Energies 2025, 18(15), 4054; https://doi.org/10.3390/en18154054 - 30 Jul 2025
Viewed by 281
Abstract
This study presents a topology optimization approach to enhance the discharging performance of a latent heat thermal energy storage (LHTES) system using paraffin wax as the phase-change material (PCM) and a high-conductivity aluminium structure. Solidification is primarily governed by conduction, and the average [...] Read more.
This study presents a topology optimization approach to enhance the discharging performance of a latent heat thermal energy storage (LHTES) system using paraffin wax as the phase-change material (PCM) and a high-conductivity aluminium structure. Solidification is primarily governed by conduction, and the average heat transfer rate during this process is significantly lower than during melting; therefore, the optimization focused on the discharge phase. In a previous study, a novel LHTES device based on a Cartesian lattice was investigated experimentally and numerically. The validated numerical model from that study was adopted as the reference and used in a 2D topology optimization study based on the Solid Isotropic Material with Penalization (SIMP) method. The objective was to promote more uniform temperature distribution and reduce discharging time while maintaining the same aluminium volume fraction as in the reference device. Topology optimization produced a branched fin design, which was then extruded into a 3D model for comparison with the reference geometry. The optimized design resulted in improved temperature uniformity and a faster solidification process. Specifically, the time required to solidify 90% of the PCM was reduced by 12.3%, while the time to release 90% of the latent heat during the solidification process improved by 7.6%. Full article
Show Figures

Figure 1

23 pages, 3795 KiB  
Article
Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction
by Štefan Michna, Jaroslava Svobodová, Anna Knaislová, Jan Novotný and Lenka Michnová
Materials 2025, 18(15), 3583; https://doi.org/10.3390/ma18153583 - 30 Jul 2025
Viewed by 180
Abstract
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high–melting–point elements such as Ti and Mo, enabling the formation of a [...] Read more.
This study presents the structural and compositional characterisation of a newly developed Ti55Al27Mo13 alloy synthesised via aluminothermic reaction. The alloy was designed to overcome the limitations of conventional processing routes for high–melting–point elements such as Ti and Mo, enabling the formation of a complex, multi–phase microstructure in a single high–temperature step. The aim was to develop and characterise a material with microstructural features expected to enhance wear resistance, oxidation behaviour, and thermal stability in future applications. The alloy is intended as a precursor for composite nanopowders and surface coatings applied to aluminium–, magnesium–, and iron–based substrates subjected to mechanical and thermal loading. Elemental analysis (XRF, EDS) confirmed the presence of Ti, Al, Mo, and minor elements such as Si, Fe, and C. Microstructural investigations using laser confocal and scanning electron microscopy revealed a heterogeneous structure comprising solid solutions, eutectic regions, and dispersed oxide and carbide phases. Notably, the alloy exhibits high hardness values, reaching >2400 HV in Al2O3 regions and ~1300 HV in Mo– and Si–enriched solid solutions. These results suggest the material’s substantial potential for protective surface engineering. Further tribological, thermal, and corrosion testing, conducted with meticulous attention to detail, will follow to validate its functional performance in target applications. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

36 pages, 16047 KiB  
Article
Insights into Sea Spray Ice Adhesion from Laboratory Testing
by Paul Rübsamen-v. Döhren, Sönke Maus, Zhiliang Zhang and Jianying He
Thermo 2025, 5(3), 27; https://doi.org/10.3390/thermo5030027 - 30 Jul 2025
Viewed by 242
Abstract
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is [...] Read more.
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is a critical factor in predicting the build-up of ice loads on structures. While the adhesion strength of freshwater ice has been extensively studied, knowledge about sea spray ice adhesion remains limited. This study intends to bridge this gap by investigating the adhesion strength of sea spray icing under controlled laboratory conditions. In this study, we built a new in situ ice adhesion test setup and grew ice at −7 °C to −15 °C on quadratic aluminium samples of 3 cm to 12 cm edge length. The results reveal that sea spray ice adhesion strength is in a significantly lower range—5 kPa to 100 kPa—compared to fresh water ice adhesion and shows a low dependency on the temperature during the spray event, but a notable size effect and influence of the brine layer thickness on the adhesion strength. These findings provide critical insights into sea spray icing, enhancing the ability to predict and manage ice loads in marine environments. Full article
(This article belongs to the Special Issue Frosting and Icing)
Show Figures

Figure 1

19 pages, 12427 KiB  
Article
Influence of Heat Treatment Parameters on Microhardness of Aluminium Alloy EN AW 7075 Foams and Bulk Material
by Karla Kunac, Nikša Čatipović, Karla Antunović and Damir Jurić
Materials 2025, 18(15), 3562; https://doi.org/10.3390/ma18153562 - 29 Jul 2025
Viewed by 197
Abstract
Aluminium alloy foams have been widely used due to their excellent strength-to-weight ratio, low density, and outstanding properties such as high energy absorption and effective noise and heat insulation. In this study, aluminium machining chips have been used for foam production as a [...] Read more.
Aluminium alloy foams have been widely used due to their excellent strength-to-weight ratio, low density, and outstanding properties such as high energy absorption and effective noise and heat insulation. In this study, aluminium machining chips have been used for foam production as a potential recycling method. The process has involved solution heat treatment followed by artificial ageing. Researchers have been analysing the microhardness of both the foam and the bulk material, as well as examining their microstructures. The maximum microhardness value of the bulk material has been found to be 158 ± 2 HV1 at an ageing temperature of 175 ± 1 °C for 2 ± 0.02 h. For the foams, the highest microhardness of 150 ± 2 HV1 has been achieved after ageing at 150 ± 1 °C for 9 ± 0.02 h. Experimental planning has been carried out using Design Expert software. The optimisation process has identified 150 ± 1 °C for 2 ± 0.02 h as the optimum condition for artificial ageing. Full article
Show Figures

Figure 1

13 pages, 2134 KiB  
Article
Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability
by Ajay Kumar Kaviti, Niharika Mudavath and Vineet Singh Sikarwar
Processes 2025, 13(8), 2413; https://doi.org/10.3390/pr13082413 - 29 Jul 2025
Viewed by 326
Abstract
This study evaluates the performance of tubular solar stills coated with gamma aluminium nanocoatings at concentrations of 5%, 10%, and 15%, compared to a conventional tubular solar still. This is the first experimental study to apply gamma aluminium nanocoatings on tubular solar stills [...] Read more.
This study evaluates the performance of tubular solar stills coated with gamma aluminium nanocoatings at concentrations of 5%, 10%, and 15%, compared to a conventional tubular solar still. This is the first experimental study to apply gamma aluminium nanocoatings on tubular solar stills (TSS). The stills were tested for three days, from 9:00 a.m. to 5:00 p.m., under consistent conditions with varying water depths of 1 cm, 2 cm, and 3 cm. The results indicated that the 5% nanocoating achieved the highest water yield, producing 2.571 L/m2 with a 1 cm water depth. The 10% coating produced 2.514 L/m2, while the conventional solar still generated 2.286 L/m2. Thermal efficiency was highest on Day 1 for the 5% concentration, reaching 60.9%, followed by 10% concentration at 59.1%, while the 15% concentration showed the lowest efficiency at 33.8%. In terms of cost-effectiveness, the 5% concentration was the most economical, with the lowest cost per litre (CPL) of USD 0.10 and a payback period of 3.03 months. The 10% concentration had a CPL of USD 0.11 and a payback period of 3.33 months, while the 15% concentration had the highest CPL at USD 0.19 and the longest payback period of 5.63 months. Overall, the 5% concentration offered the best balance of water yield, efficiency, and cost-effectiveness. This research highlights γ-Al2O3 as an innovative, cost-effective material for solar distillation, paving the way for sustainable freshwater production. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

15 pages, 12959 KiB  
Article
Sodium Oxide-Fluxed Aluminothermic Reduction of Manganese Ore with Synergistic Effects of C and Si Reductants: SEM Study and Phase Stability Calculations
by Theresa Coetsee and Frederik De Bruin
Reactions 2025, 6(3), 40; https://doi.org/10.3390/reactions6030040 - 28 Jul 2025
Viewed by 239
Abstract
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research [...] Read more.
Aluminothermic reduction is an alternative processing route for the circular economy because Al is produced electrochemically in the Hall–Héroult process with minimal CO2 emissions if the electricity input is sourced from non-fossil fuel energy sources. This circular processing option attracts increased research attention in the aluminothermic production of manganese and silicon alloys. The Al2O3 product must be recycled through hydrometallurgical processing, with leaching as the first step. Recent work has shown that the NaAlO2 compound is easily leached in water. In this work, a suitable slag formulation is applied in the aluminothermic reduction of manganese ore to form a Na2O-based slag of high Al2O3 solubility to effect good alloy–slag separation. The synergistic effect of carbon and silicon reductants with aluminium is illustrated and compared to the test result with only carbon reductant. The addition of small amounts of carbon reductant to MnO2-containing ore ensures rapid pre-reduction to MnO, facilitating aluminothermic reduction. At 1350 °C, a loosely sintered mass formed when carbon was added alone. The alloy and slag chemical analyses are compared to the thermochemistry predicted phase chemistry. The alloy consists of 66% Mn, 22–28% Fe, 2–9% Si, 0.4–1.4% Al, and 2.2–3.5% C. The higher %Si alloy is formed by adding Si metal. Although the product slag has a higher Al2O3 content (52–55% Al2O3) compared to the target slag (39% Al2O3), the fluidity of the slags appears sufficient for good alloy separation. Full article
Show Figures

Figure 1

26 pages, 8400 KiB  
Article
Conceptual Design of a Hybrid Composite to Metal Joint for Naval Vessels Applications
by Man Chi Cheung, Nenad Djordjevic, Chris Worrall, Rade Vignjevic, Mihalis Kazilas and Kevin Hughes
Materials 2025, 18(15), 3512; https://doi.org/10.3390/ma18153512 - 26 Jul 2025
Viewed by 329
Abstract
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the [...] Read more.
This paper describes the development of a new hybrid composite for the metal joints of aluminium and glass fibre composite adherents. The aluminium adherend is manufactured using friction stir-formed studs that are inserted into the composite adherend in the through-thickness direction during the composite manufacturing process, where the dry fibres are displaced to accommodate the studs before the resin infusion process. The materials used were AA6082-T6 aluminium and plain-woven E-glass fabric reinforced epoxy, with primary applications in naval vessels. This joining approach offers a cost-effective solution that does not require complicated onsite welding. The joint design was developed based on a simulation test program with finite element analysis, followed by experimental characterisation and validation. The design solution was analysed in terms of the force displacement response, sequence of load transfer, and characterisation of the joint failure modes. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

18 pages, 6124 KiB  
Article
Extraction of Alumina and Alumina-Based Cermets from Iron-Lean Red Muds Using Carbothermic Reduction of Silica and Iron Oxides
by Rita Khanna, Dmitry Zinoveev, Yuri Konyukhov, Kejiang Li, Nikita Maslennikov, Igor Burmistrov, Jumat Kargin, Maksim Kravchenko and Partha Sarathy Mukherjee
Sustainability 2025, 17(15), 6802; https://doi.org/10.3390/su17156802 - 26 Jul 2025
Viewed by 435
Abstract
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 [...] Read more.
A novel strategy has been developed for extracting value-added resources from iron-lean, high-alumina- and -silica-containing red muds (RMs). With little or no recycling, such RMs are generally destined for waste dumps. Detailed results are presented on the carbothermic reduction of 100% RM (29.3 wt.% Fe2O3, 22.2 wt.% Al2O3, 20.0 wt.% SiO2, 1.2 wt.% CaO, 12.2 wt.% Na2O) and its 2:1 blends with Fe2O3 and red mill scale (MS). Synthetic graphite was used as the reductant. Carbothermic reduction of RM and blends was carried out in a Tamman resistance furnace at 1650 °C for 20 min in an Ar atmosphere. Reduction residues were characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), elemental mapping and X-ray diffraction (XRD). Small amounts of Fe3Si alloys, alumina, SiC and other oxide-based residuals were detected in the carbothermic residue of 100% RM. A number of large metallic droplets of Fe–Si alloys were observed for RM/Fe2O3 blends; no aluminium was detected in these metallic droplets. A clear segregation of alumina was observed as a separate phase. For the RM/red MS blends, a number of metallic Fe–Si droplets were seen embedded in an alumina matrix in the form of a cermet. This study has shown the regeneration of alumina and the formation of alumina-based cermets, Fe–Si alloys and SiC during carbothermic reduction of RM and its blends. This innovative recycling strategy could be used for extracting value-added resources from iron-lean RMs, thereby enhancing process productivity, cost-effectiveness of alumina regeneration, waste utilization and sustainable developments in the field. Full article
(This article belongs to the Special Issue Sustainable Materials, Waste Management, and Recycling)
Show Figures

Figure 1

24 pages, 3226 KiB  
Article
The Environmental Impacts of Façade Renovation: A Case Study of an Office Building
by Patrik Štompf, Rozália Vaňová and Stanislav Jochim
Sustainability 2025, 17(15), 6766; https://doi.org/10.3390/su17156766 - 25 Jul 2025
Viewed by 442
Abstract
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University [...] Read more.
Renovating existing buildings is a key strategy for achieving the EU’s climate targets, as over 75% of the current building stock is energy inefficient. This study evaluates the environmental impacts of three façade renovation scenarios for an office building at the Technical University in Zvolen (Slovakia) using a life cycle assessment (LCA) approach. The aim is to quantify and compare these impacts based on material selection and its influence on sustainable construction. The analysis focuses on key environmental indicators, including global warming potential (GWP), abiotic depletion (ADE, ADF), ozone depletion (ODP), toxicity, acidification (AP), eutrophication potential (EP), and primary energy use (PERT, PENRT). The scenarios vary in the use of insulation materials (glass wool, wood fibre, mineral wool), façade finishes (cladding vs. render), and window types (aluminium vs. wood–aluminium). Uncertainty analysis identified GWP, AP, and ODP as robust decision-making categories, while toxicity-related results showed lower reliability. To support integrated and transparent comparison, a composite environmental index (CEI) was developed, aggregating characterisation, normalisation, and mass-based results into a single score. Scenario C–2, featuring an ETICS system with mineral wool insulation and wood–aluminium windows, achieved the lowest environmental impact across all categories. In contrast, scenarios with traditional cladding and aluminium windows showed significantly higher impacts, particularly in fossil fuel use and ecotoxicity. The findings underscore the decisive role of material selection in sustainable renovation and the need for a multi-criteria, context-sensitive approach aligned with architectural, functional, and regional priorities. Full article
Show Figures

Figure 1

31 pages, 7371 KiB  
Article
Manufacturing and Mechanical Behaviour of Scalmalloy® Lattice Structures: Experimental Validation and Model
by Ilaria Lagalante, Diego Manfredi, Sergio Balestrieri, Vito Mocella, Andrea El Hassanin, Giuseppe Coppola, Mariangela Lombardi and Paolo Fino
Materials 2025, 18(15), 3479; https://doi.org/10.3390/ma18153479 - 24 Jul 2025
Viewed by 427
Abstract
This study investigates the influence of process parameters on the fabrication and mechanical performance of Scalmalloy® lattice structures produced via laser powder bed fusion (PBF-LB) and their mechanical responses at different cell size. A full-factorial design of experiments was employed to evaluate [...] Read more.
This study investigates the influence of process parameters on the fabrication and mechanical performance of Scalmalloy® lattice structures produced via laser powder bed fusion (PBF-LB) and their mechanical responses at different cell size. A full-factorial design of experiments was employed to evaluate the effect of scan speed, hatch distance, and downskin power on internal porosity and dimensional accuracy. Regression models revealed significant relationships, with optimised parameters identified at a scan speed of 700 mm/s, hatch distance of 0.13 mm, and downskin power of 80 W. Mechanical characterisation through tensile tests of bulk samples and compression tests of lattice structures highlighted the strengthening effects of the heat treatment. Experimental data on quasi-elastic gradient and yield strength were compared to predictions from the Ashby–Gibson model, revealing a partial agreement but noticeable deviations attributed to cell geometry and manufacturing defects. The scaling laws observed differed from the classical model, particularly in the yield strength exponent, indicating the need for empirical models tailored to metallic lattices. This work provides key insights into the optimisation of PBF-LB parameters for Scalmalloy® and underlines the complex interplay between process parameters, structural design, and mechanical behaviour. Full article
(This article belongs to the Special Issue Recent Advances in Advanced Laser Processing Technologies)
Show Figures

Figure 1

Back to TopTop