Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability
Abstract
1. Introduction
The Novelty of the Current Study
- To evaluate the performance of solar stills using gamma aluminium as an absorber material with varying concentrations of nanocoating.
- To analyse the impact of different water depths on the thermal efficiency and distillate yield of the solar stills under consistent meteorological conditions.
- To conduct a comprehensive thermal and economic analysis for each solar still configuration to determine the most effective combination of materials and coatings for maximising productivity and cost-effectiveness in solar distillation applications.
2. Materials and Methodology of Experimentation
2.1. Material
2.2. Nanocoating Preparation
2.3. Experimental Setup
2.4. Experimental Procedure
2.5. Economic Analysis
3. Results and Discussion
3.1. Solar Radiation and Ambient Temperature
3.2. Productivity of Solar Stills
3.3. Economic Analysis
4. Conclusions
- The gamma aluminium nanocoatings significantly improved solar still performance compared to the conventional uncoated model.
- The highest distillate yields were observed with 5% and 10% coatings, achieving 771.44 mL/m2 and 750.01 mL/m2, respectively.
- Peak basin temperatures reached 59.2 °C for the 5% coating and 59.7 °C for the 10% coating at midday, indicating effective heat absorption.
- The economic analysis showed that the cost per litres (CPL) for the 5% coating was USD 0.10 making it the most cost-effective option.
- The payback period for the 5% coating was the shortest at 3.03 months, indicating a rapid recovery of the initial investment.
- The results indicate that optimising nanocoating concentrations at mid-range levels enhances both thermal efficiency and economic viability in solar distillation applications.
5. Future Research Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blanco, J.; Malato, S.; Fernández-Ibañez, P.; Alarcón, D.; Gernjak, W.; Maldonado, M.I. Review of feasible solar energy applications to water processes. Renew. Sustain. Energy Rev. 2009, 13, 1437–1445. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Akkala, S.R.; Sikarwar, V.S.; Sai Snehith, P.; Mahesh, M. Camphor-Soothed Banana Stem Biowaste in the Productivity and Sustainability of Solar-Powered Desalination. Appl. Sci. 2023, 13, 1652. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Akkala, S.R.; Ali, M.A.; Anusha, P.; Sikarwar, V.S. Performance Improvement of Solar Desalination System Based on CeO2-MWCNT Hybrid Nanofluid. Sustainability 2023, 15, 4268. [Google Scholar] [CrossRef]
- Balachandran, G.B.; David, P.W.; Mariappan, R.K.; Kabeel, A.E.; Athikesavan, M.M.; Sathyamurthy, R. Improvising the efficiency of single-sloped solar still using thermally conductive nano-ferric oxide. Environ. Sci. Pollut. Res. 2020, 27, 32191–32204. [Google Scholar] [CrossRef] [PubMed]
- Kabeel, A.E.; Omara, Z.M.; Essa, F.A.; Abdullah, A.S.; Arunkumar, T.; Sathyamurthy, R. Augmentation of a solar still distillate yield via absorber plate coated with black nanoparticles. Alex. Eng. J. 2017, 56, 433–438. [Google Scholar] [CrossRef]
- Rheima, A.M. Dye-sensitized solar cells based on silicon dioxide nanoparticles photochemically synthesized: A comparative study in the concentration of the dye-sensitized. J. Nanostruct. 2021, 11, 609–617. [Google Scholar]
- Hamdan, M.A.; Al Momani, A.M.; Ayadi, O.; Sakhrieh, A.H.; Manzano-Agugliaro, F. Enhancement of Solar Water Desalination Using Copper and Aluminum Oxide Nanoparticles. Water 2021, 13, 1914. [Google Scholar] [CrossRef]
- Murugavel, K.K.; Srithar, K.J. Performance study on basin type double slope solar still with different wick materials and minimum mass of water. Renew. Energy 2011, 36, 612–620. [Google Scholar] [CrossRef]
- Omara, Z.M.; Kabeel, A.E.; Essa, F.A. Effect of using nanofluids and providing vacuum on the yield of corrugated wick solar still. Energy Convers. Manag. 2015, 103, 965–972. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Peng, G.; Wu, L.; Yang, N.; Essa, F.A.; Elsheikh, A.H.; Mohamed, S.I.; Kabeel, A.E. Enhancing the solar still performance using nanofluids and glass cover cooling: Experimental study. Appl. Therm. Eng. 2017, 113, 684–693. [Google Scholar] [CrossRef]
- Mariraja, R.; Harichandran, R.; Vijayakumar, R.; Nichelson, A. Experimental analysis of solar desalination system performance with graphene and graphitic carbon nanopaint-coated solar absorbers. Desalination 2024, 592, 118141. [Google Scholar] [CrossRef]
- Bharti; Jangwan, J.S.; Kumar, S.S.; Kumar, V.; Kumar, A.; Kumar, D. A review on the capability of zinc oxide and iron oxides nanomaterials, as a water decontaminating agent: Adsorption and photocatalysis. Appl. Water Sci. 2022, 12, 46. [Google Scholar] [CrossRef]
- Luo, Q.; Yang, Y.; Wang, K.; Yu, J.; Wang, R.; Ji, D.; Qin, X. Hierarchical porous carbon nanofibers for highly efficient solar-driven water purification. Sci. China Mater. 2023, 66, 3310–3318. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Peng, G.; Wu, L.; Essa, F.A.; Kabeel, A.E.; Yang, N. The effects of flake graphite nanoparticles, phase change material, and film cooling on the solar still performance. Appl. Energy 2017, 191, 358–366. [Google Scholar] [CrossRef]
- Zanganeh, P.; Goharrizi, A.S.; Ayatollahi, S.; Feilizadeh, M. Productivity enhancement of solar stills by nano-coating of condensing surface. Desalination 2019, 454, 1–9. [Google Scholar] [CrossRef]
- Thakur, A.K.; Sathyamurthy, R.; Velraj, R.; Saidur, R.; Lynch, I.; Chaturvedi, M.; Sharshir, S.W. Synergetic effect of absorber and condenser nano-coating on evaporation and thermal performance of solar distillation unit for clean water production. Sol. Energy Mater. Sol. Cells 2022, 240, 111698. [Google Scholar] [CrossRef]
- Sahota, L.; Tiwari, G.N. Effect of Al2O3 nanoparticles on the performance of passive double slope solar still. Sol. Energy 2016, 130, 260–272. [Google Scholar] [CrossRef]
- Sharshir, S.W.; Joseph, A.; Kandeal, A.W.; Hussien, A.A. Performance improvement of tubular solar still using nano-coated hanging wick thin film, ultrasonic atomizers, and cover cooling. Sustain. Energy Technol. Assess. 2022, 52, 102127. [Google Scholar] [CrossRef]
- Hamada, M.A.; Khalil, H.; Abou Al-Sood, M.M.; Sharshir, S.W. An experimental investigation of nanofluid, nanocoating, and energy storage materials on the performance of parabolic trough collector. Appl. Therm. Eng. 2023, 219, 119450. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Harby, K.; Abdelgaied, M.; Eisa, A. A comprehensive review of tubular solar still designs, performance, and economic analysis. J. Clean. Prod. 2020, 246, 119030. [Google Scholar] [CrossRef]
- Rousta, M.; Kasaeian, A.; Kouravand, A.; Kasaeian, G.; Rad, M.A. Experimental investigation on tubular solar desalination using phase change material enhanced with nano-Co3O4 and aluminum shavings. Desalination 2023, 567, 116972. [Google Scholar] [CrossRef]
- Abdullah, A.S.; Alawee, W.H.; Mohammed, S.A.; Alqsair, U.F.; Dhahad, H.A.; Essa, F.A.; Omara, Z.M. Performance improvement of tubular solar still via tilting glass cylinder, nano-coating, and nano-PCM: Experimental approach. Environ. Sci. Pollut. Res. 2022, 29, 65088–65099. [Google Scholar] [CrossRef]
- Arunkumar, T.; Murugesan, D.; Raj, K.; Denkenberger, D.; Viswanathan, C.; Rufuss, D.D.; Velraj, R.J. Effect of nano-coated CuO absorbers with PVA sponges in solar water desalting system. Appl. Therm. Eng. 2019, 148, 1416–1424. [Google Scholar] [CrossRef]
- Kaviti, A.K.; Teja, M.; Madhukar, O.; Teja, P.B.; Aashish, V.; Gupta, G.S.; Sivaram, A.; Sikarwar, V.S. Productivity Augmentation of Solar Stills by Coupled Copper Tubes and Parabolic Fins. Energies 2023, 16, 6606. [Google Scholar] [CrossRef]
- Shanmugan, S.; Essa, F.A.; Gorjian, S.; Kabeel, A.E.; Sathyamurthy, R.; Manokar, A.M. Experimental study on single slope single basin solar still using TiO2 nano layer for natural clean water invention. J. Energy Storage 2020, 30, 101522. [Google Scholar] [CrossRef]
- Behura, A.; Gupta, H.K. Use of nanoparticle-embedded phase change material in solar still for productivity enhancement. Mater. Today Proc. 2021, 45, 3904–3907. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Sathyamurthy, R.; Manokar, A.M.; Sharshir, S.W.; Essa, F.A.; Elshiekh, A.H. Experimental study on tubular solar still using Graphene Oxide Nano particles in Phase Change Material (NPCM’s) for fresh water production. J. Energy Storage 2020, 28, 101204. [Google Scholar] [CrossRef]
- Kabeel, A.E.; Sathyamurthy, R.; Sharshir, S.W.; Muthumanokar, A.; Panchal, H.; Prakash, N.; Prasad, C.; Nandakumar, S.; El Kady, M.S. Effect of water depth on a novel absorber plate of pyramid solar still coated with TiO2 nano black paint. J. Clean. Prod. 2019, 213, 185–191. [Google Scholar] [CrossRef]
- Zanganeh, P.; Goharrizi, A.S.; Ayatollahi, S.; Feilizadeh, M. Nano-coated condensation surfaces enhanced the productivity of the single-slope solar still by changing the condensation mechanism. J. Clean. Prod. 2020, 265, 121758. [Google Scholar] [CrossRef]
- Bondarenko, A.V.; Islamov, S.R.; Ignatyev, K.V.; Mardashov, D.V. Laboratory studies of polymer compositions for well-kill under increased fracturing. Perm J. Pet. Min. Eng. 2020, 20, 37–48. [Google Scholar] [CrossRef]
- Belousov, A.; Lushpeev, V.; Sokolov, A.; Sultanbekov, R.; Tyan, Y.; Ovchinnikov, E.; Shvets, A.; Bushuev, V.; Islamov, S. Experimental Research of the Possibility of Applying the Hartmann–Sprenger Effect to Regulate the Pressure of Natural Gas in Non-Stationary Conditions. Processes 2025, 13, 1189. [Google Scholar] [CrossRef]
S. No | Day | Concentration (%) | Productivity (L/m2) | Std. Dev |
---|---|---|---|---|
1 | Day 1 | 0 | 0.8 | 0.02 |
2 | Day 1 | 5 | 1 | 0.02 |
3 | Day 1 | 10 | 0.95 | 0.02 |
4 | Day 1 | 15 | 0.7 | 0.02 |
5 | Day 2 | 0 | 1.4 | 0.03 |
6 | Day 2 | 5 | 1.8 | 0.03 |
7 | Day 2 | 10 | 1.7 | 0.03 |
8 | Day 2 | 15 | 1.2 | 0.02 |
9 | Day 3 | 0 | 2 | 0.03 |
10 | Day 3 | 5 | 2.5 | 0.02 |
11 | Day 3 | 10 | 2.4 | 0.02 |
12 | Day 3 | 15 | 1.8 | 0.02 |
Parameters | 0% | 5% | 10% | 15% |
---|---|---|---|---|
Life time of still | 15 | 15 | 15 | 15 |
Interest rate (%) | 0.10 | 0.10 | 0.10 | 0.10 |
Net investment ($) | 53.37 | 54.53 | 55.69 | 56.85 |
Annual cost ($) | 7.74 | 7.9 | 8.07 | 8.41 |
Average yield of operating days (L/m2) | 684 | 771.44 | 750.01 | 428.58 |
CPL ($) | 0.12 | 0.10 | 0.11 | 0.19 |
Payback period (months) | 3.48 | 3.03 | 3.33 | 5.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaviti, A.K.; Mudavath, N.; Sikarwar, V.S. Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability. Processes 2025, 13, 2413. https://doi.org/10.3390/pr13082413
Kaviti AK, Mudavath N, Sikarwar VS. Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability. Processes. 2025; 13(8):2413. https://doi.org/10.3390/pr13082413
Chicago/Turabian StyleKaviti, Ajay Kumar, Niharika Mudavath, and Vineet Singh Sikarwar. 2025. "Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability" Processes 13, no. 8: 2413. https://doi.org/10.3390/pr13082413
APA StyleKaviti, A. K., Mudavath, N., & Sikarwar, V. S. (2025). Optimising Tubular Solar Still Performance with Gamma Aluminium Nanocoatings: Experimental Insights on Yield, Efficiency, and Economic Viability. Processes, 13(8), 2413. https://doi.org/10.3390/pr13082413