Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction
Abstract
1. Introduction
1.1. Ternary System Ti–Al–Mo
1.1.1. Effect of Mo on the Properties and Structure of Ti–Al
1.1.2. Effect of Si on Properties of Ti–Al or Ti–Al–Mo Alloy
2. Materials and Methods
- Pyroaluminium powder (99.8% purity, particle size 0.04–0.1 mm),
- Iron(III) oxide (α–phase, natural hematite, brownish–red powder, particle size ≤1 mm),
- Molybdenum trioxide (MoO3) (99.5% purity, particle size 1–4 mm),
- Titanium dioxide (TiO2) (≥98.0% purity, particle size ≤2 mm),
- Carbon powder (≥98.0% purity, derived from coke or anthracite).
- The coarsest sieve had an aperture of 1.0 mm.
- Particles larger than 1 mm were returned to the milling cycle for reprocessing.
- 400 rpm for 5 min during coarse grinding,
- Followed by 400 rpm for 10 min during fine grinding.
No. | Compound | Chemical Formula | Purity [%] | Particle Size [mm] | Weight [g] | Supplier (Country) |
---|---|---|---|---|---|---|
1 | Pyroaluminium powder | Al | 99.8 | 0.04–0.10 | 240 | Thermo Fisher Scientific (Waltham, MA, USA) |
2 | Iron(III) oxide (hematite) | Fe2O3 | – | ≤1.00 (natural mineral) | 600 | Thermo Fisher Scientific (Waltham, MA, USA) |
3 | Molybdenum trioxide | MoO3 | 99.5 | 1–4 | 200 | Thermo Fisher Scientific (Waltham, MA, USA) |
4 | Titanium dioxide | TiO2 | ≥98.0 | ≤2.00 | 600 | Precheza a.s. (Přerov, Czech Republic) |
5 | Powdered carbon | C | ≥98.0 | (fine powder) | – | BorsodChem MCHZ s.r.o. (Ostrava, Czech Republic) |
6 | Calcium fluoride (slag additive) | CaF2 | – | Granular (technical grade) | 20 | BorsodChem MCHZ s.r.o. (Ostrava, Czech Republic) |
3. Results
3.1. Produced Alloy Ti55Al27Mo13 Chemical Composition Analysis
Chemical Element [wt.%] | Measurement 1 | Measurement 2 | Measurement 3 | Average | Standard Deviation |
---|---|---|---|---|---|
Ti | 54.77 | 54.40 | 55.41 | 54.86 | 0.41 |
Al | 27.41 | 27.97 | 26.66 | 27.34 | 0.53 |
Mo | 13.74 | 13.34 | 13.79 | 13.62 | 0.20 |
Fe | 1.02 | 1.00 | 0.96 | 0.99 | 0.02 |
Si | 2.03 | 2.27 | 2.12 | 2.14 | 0.09 |
Mn | 0.31 | 0.25 | 0.30 | 0.28 | 0.02 |
Cu | 0.34 | 0.325 | 0.32 | 0.32 | 0.008 |
Co | 0.16 | 0.17 | 0.16 | 0.16 | 0.004 |
Nb | 0.040 | 0.036 | 0.038 | 0.038 | 0.001 |
3.2. Microstructure of the Produced Alloy Ti55Al27Mo13
Element | wt.% ± 3σ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spectrum 10 | Spectrum 11 | Spectrum 12 | Spectrum 13 | Spectrum 14 | Spectrum 15 | Spektrum 16 | Spectrum 17 | Spectrum 18 | Spectrum 19 | Spectrum 20 | Spectrum 21 | Spectrum 22 | |
Titanium | 3.6 ± 0.1 | 57.4 ± 0.7 | 40.8 ± 0.5 | 47.2 ± 0.6 | 51.3 ± 0.3 | 0.7 ± 0.0 | 56.0 ± 0.7 | 41.0 ± 0.5 | 45.1 ± 0.6 | 47.3 ± 0.6 | 0.5 ± 0.0 | 57.4 ± 0.7 | 41.3 ± 0.5 |
Aluminium | 42.6 ± 0.2 | 9.3 ± 0.2 | 20.2 ± 0.3 | 30.3 ± 0.4 | 34.2 ± 0.2 | 45.7 ± 0.2 | 8.9 ± 0.2 | 20.9 ± 0.3 | 29.7 ± 0.4 | 30.7 ± 0.4 | 46.4 ± 0.2 | 8.6 ± 0.1 | 20.7 ± 0.3 |
Molybdenum | 0 | 11.0 ± 0.4 | 27.3 ± 0.4 | 14.0 ± 0.3 | 13.8 ± 0.3 | 0 | 10.9 ± 0.4 | 26.9 ± 0.5 | 12.3 ± 0.3 | 12.0 ± 0.3 | 0 | 11.0 ± 0.4 | 23.3 ± 0.4 |
Silicon | 0 | 12.2 ± 0.2 | 0.4 ± 0.1 | 0 | 0.3 ± 0.1 | 0 | 11.9 ± 0.2 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0.3 ± 0.1 | 0 | 12.0 ± 0.2 | 0 |
Carbon | 0 | 8.1 ± 1.1 | 9.5 ± 1.0 | 7.3 ± 1.0 | 0 | 0 | 9.9 ± 1.0 | 9.3 ± 1.0 | 8.5 ± 0.9 | 8.5 ± 1.0 | 0 | 8.3 ± 1.1 | 8.5 ± 1.0 |
Oxygen | 53.6 ± 0.2 | 0 | 0 | 0 | 0 | 53.6 ± 0.2 | 0 | 0 | 3.3 ± 0.6 | 0 | 53.2 ± 0.2 | 0 | 0 |
Iron | 0 | 0 | 1.4 ± 0.1 | 0.9 ± 0.1 | 0.4 ± 0.1 | 0 | 0 | 1.1 ± 0.1 | 0.7 ± 0.1 | 1.0 ± 0.1 | 0 | 0 | 4.5 ± 0.1 |
Manganese | 0 | 0 | 0.4 ± 0.1 | 0.4 ± 0.1 | 0 | 0 | 0 | 0.4 ± 0.1 | 0 | 0.3 ± 0.1 | 0 | 0 | 0.9 ± 0.1 |
Copper | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.9 ± 0.1 |
Phosphorus | 0 | 2.1 ± 0.1 | 0 | 0 | 0 | 0 | 2.3 ± 0.1 | 0 | 0 | 0 | 0 | 2.7 ± 0.1 | 0 |
Sulphur | 0.2 ± 0.0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Element | wt.% ± 3σ | |
---|---|---|
Spectrum 52 | Spectrum 56 | |
Titanium | 66.3 ± 0.6 | 65.9 ± 0.5 |
Aluminium | 17.3 ± 0.2 | 19.5 ± 0.2 |
Molybdenum | 0.5 ± 0.2 | 0.4 ± 0.1 |
Carbon | 15.9 ± 0.8 | 14.2 ± 0.6 |
3.3. Mechanical Properties of the Produced Alloy Ti55Al27Mo13
4. Discussion
4.1. Comparison of Prepared Ti55Al27Mo13 Alloy Composition by XRF and EDS Analysis
4.2. Comparison of Prepared Ti55Al27Mo13 Alloy with Other Special Titanium Alloys
5. Conclusions
- (1)
- The XRF results of the alloy chemical analysis showed that the alloy is composed of titanium 54.86 wt.%, aluminium 27.34 wt.%, molybdenum 13.62 wt.%, and small amounts of silicon and iron from the aluminothermic reaction and other components (Mn, Cu, Co, Nb).
- (2)
- Elements such as C and O were identified in more detail using EDS analysis.
- (3)
- The microstructure was characterised using laser and scanning electron microscopy. The microstructure consists of several structural components, namely solid solution A, solid solution B, eutectic, and particles ranging from 20 to 70 micrometres in size and with sharp, irregular edges. Solid solution A is composed of titanium, aluminium, and molybdenum; in solid solution B, the predominant element is silicon and carbon. The eutectic has a higher proportion of molybdenum and iron and the particles were identified as Al2O3. Separate phases of the Ti2AlC type with a high carbon content also occur in the structure.
- (4)
- The presence of Al2O3 particles in the Ti55Al27Mo13 alloy prepared by aluminothermic reaction can be explained as a result of secondary oxidation of aluminium, which serves as a reducing agent in the response. The resulting aluminium oxide (Al2O3) is thermodynamically very stable and does not dissolve in the metal matrix. Therefore, it occurs as a separate ceramic phase in the resulting microstructure. Its morphology (sharp–edged particles and needles 20–70 μm in size) corresponds to the growth of corundum crystals under conditions of slow cooling and sufficient time for crystallisation.
- (5)
- The use of both Rockwell C and micro–Vickers hardness methods provides complementary insights into the mechanical behaviour of the Ti55Al27Mo13 alloy. While the Rockwell C test gives an integral view of the overall hardness of the alloy as a bulk material (72.3 ± 5.6 HRC), the micro–Vickers results distinguish the mechanical contributions of individual structural components. For example, the high hardness values of the Al2O3 particles (~2400 HV 0.01) explain the increased average bulk hardness, while the differences between solid solution A (~930 HV) and B (~1365 HV) reflect the influence of carbon and silicon content on phase strengthening. This multiscale approach confirms the correlation between phase composition, microstructure, and mechanical performance, which is crucial for applications that require both wear resistance and structural integrity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Michna, Š.; Knaislová, A.; Hren, I.; Novotný, J.; Michnová, L.; Svobodová, J. Chemical and Structural Analysis of Newly Prepared Co–W–Al Alloy by Aluminothermic Reaction. Materials 2022, 15, 658. [Google Scholar] [CrossRef] [PubMed]
- Maleki, A.; Hosseini, N.; Niroumand, B. A review on aluminothermic reaction of Al/ZnO system. Ceram. Int. 2018, 44, 10–23. [Google Scholar] [CrossRef]
- Xing, Z.; Lu, J.; Ji, X. A Brief Review of Metallothermic Reduction Reactions for Materials Preparation. Small Methods 2018, 2, 1800062. [Google Scholar] [CrossRef]
- Gostishchev, V.V.; Kim, E.D.; Khimukhin, S.N.; Ri, E.H. High–Temperature Synthesis of Al–Zr–W Aluminum–Matrix Alloys. Inorg. Mater. 2019, 55, 32–36. [Google Scholar] [CrossRef]
- Kirakosyan, H.; Nazaretyan, K.; Kharatyan, A.; Aydinyan, S. The preparation of high–entropy refractory alloys by aluminothermic reduction process. AIP Conf. Proc. 2024, 2989, 040012. [Google Scholar]
- Zhang, W.; Chabok, A.; Kooi, B.J.; Pei, Y. Additive manufactured high entropy alloys: A review of the microstructure and properties. Mater. Des. 2022, 220, 110875. [Google Scholar] [CrossRef]
- Birol, Y. Aluminothermic reduction of boron oxide for the manufacture of Al–B alloys. Mater. Chem. Phys. 2012, 136, 963–966. [Google Scholar] [CrossRef]
- Meir, Y.; Jerby, E. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble–marble effect. Appl. Phys. Lett. 2015, 107, 054101. [Google Scholar] [CrossRef]
- de Souza, K.M.; de Lemos, M.J.S. Detailed Numerical Modeling and Simulation of Fe2O3−Al Thermite Reaction. Propellants Explos. Pyrotech. 2021, 46, 806–824. [Google Scholar] [CrossRef]
- Koch, E.C.; Knapp, S. Thermites—Versatile Materials. Propellants Explos. Pyrotech. 2019, 44, 7. [Google Scholar] [CrossRef]
- Kim, D.K.; Bae, J.H.; Kang, M.K.; Kim, H.J. Analysis on thermite reactions of CuO nanowires and nanopowders coated with Al. Curr. Appl. Phys. Juneec 2011, 11, 1067–1070. [Google Scholar] [CrossRef]
- Moore, J.J.; Feng, H.J. Combustion synthesis of advanced materials: Part, I. Reaction parameters. Prog. Mater. Sci. 1995, 39, 243–273. [Google Scholar] [CrossRef]
- Manojlovic, V.; Kamberovic, Ž.; Gavrilovski, M.; Sokic, M.; Korac, M. Combustion of Metallurgical Wastes Using Secondary Aluminum Foils. Combust. Sci. Technol. 2017, 189, 1072. [Google Scholar] [CrossRef]
- Cojocaru, M.; Branzei, M.; Coman, T.A. Thermodynamics of Iron Metallothermy. Adv. Mater. Res. 2015, 1114, 112–117. [Google Scholar] [CrossRef]
- United States. Military Chemistry and Chemical Agents. Available online: https://catalog.hathitrust.org/Record/009425398 (accessed on 22 May 2025).
- Venugopalan, R.; Sathiyamoorthy, D. Investigation through factorial design on novel method of preparing vanadium carbide using carbon during aluminothermic reduction. J. Mater. Process. Technol. 2006, 176, 133–139. [Google Scholar] [CrossRef]
- Biswas, A.; Nair, K.U.; Bose, D.K. Preparation of single–phase Cr7C3 by aluminothermic reduction. J. Alloys Compd. 1993, 198, 181–185. [Google Scholar] [CrossRef]
- Xu, Y.; Yang, Z.; Han, Z.; Liu, G.; Li, J. Fabrication of Ni/WC composite with two distinct layers through centrifugal infiltration combined with a thermite reaction. Ceram. Int. 2014, 40, 1037–1043. [Google Scholar] [CrossRef]
- Sheybani, K.; Paydar, M.H.; Shariat, M.H. Effect of mechanical activation on aluminothermic reduction of molybdenum trioxide. Int. J. Refract. Met. Hard Mater. 2019, 82, 245–254. [Google Scholar] [CrossRef]
- Distl, B.; Stein, F. Ti–Al–based alloys with Mo: High–temperature phase equilibria and microstructures in the ternary system. Philos. Mag. 2024, 104, 28–54. [Google Scholar] [CrossRef]
- Singh, A.K.; Banumathy, S.; Sowjanya, D.; Rao, M.H. On the structure of the B2 phase in Ti–Al–Mo alloys. J. Appl. Phys. 2008, 103, 103519. [Google Scholar] [CrossRef]
- Chen, Z.; Jones, I.P.; Small, C.J. The structure of the alloy Ti 50Al 15Mo between 800 °C and 1400 °C. Acta Mater. 1997, 45, 3801–3815. [Google Scholar] [CrossRef]
- Abdoshahi, N.; Dehghani, M.; Hatzenbichler, L.; Spoerk–Erdely, P.; Ruban, A.V.; Musi, M.; Mayer, S.; Spitaler, J.; Holec, D. Structural stability and mechanical properties of TiAl+Mo alloys: A comprehensive ab initio study. Acta Mater. 2021, 221, 117427. [Google Scholar] [CrossRef]
- Huang, X.M.; Zhu, L.L.; Cai, G.M.; Liu, H.S.; Jin, Z.P. Experimental investigation of phase equilibria in the Ti–Al–Mo ternary system. J. Mater. Sci. 2017, 52, 2270–2284. [Google Scholar] [CrossRef]
- Kulkarni, K. Investigation of Interdiffusion and Diffusional Interactions in the Ternary Ti–Al–Mo Alloys. Master’s Thesis, Indian Institute of Technology Kanpur, Kanpur, India. Available online: https://www.iitk.ac.in/new/investigation–of–interdiffusion–and–diffusional–interactions–in–the–ternary–ti–al–mo–alloys (accessed on 22 May 2025).
- Yang, G.; Xu, X.; Liang, Y.; Wang, Y.; Hao, G.; Zhai, Y.; Lin, J. Effects of Al and Mo on Microstructure and Hardness of As–Cast TNM TiAl Alloys. Metals 2021, 11, 1849. Available online: https://click.endnote.com/viewer?doi=10.3390%2Fmet11111849&token=WzE3OTc5MywiMTAuMzM5MC9tZXQxMTExMTg0OSJd._xThUeqp6RmM9nD9b2eNtQhTuLk (accessed on 22 May 2025). [CrossRef]
- Tang, J.J.; Liang, C.; Xu, C.G.; Li, J.Q. Effect of Alloying Elements on Strengthening Phase and Solidification Structure of Ti–Al–Mo–Zr Titanium Alloy. Adv. Mater. Res. 2022, 1173, 107–112. [Google Scholar] [CrossRef]
- Singh, A.K.; Banerjee, D. Transformations in α2+γ titanium aluminide alloys containing molybdenum: Part, I. Solidification behavior. Metall. Mater. Trans. A 1997, 28, 1735–1743. [Google Scholar] [CrossRef]
- Azad, S.; Mandal, R.K.; Singh, A.K. Effect of Mo addition on transformation behavior of (α2 + γ) based Ti–Al alloys. Mater. Sci. Eng. A. 2006, 429, 219–224. [Google Scholar] [CrossRef]
- Gupta, J.; Ghosh, S.; Aravindan, S. Effect of Mo content on Ti–Al–Mo ternary alloys for biomedical applications. Mater. Lett. 2021, 305, 130865. [Google Scholar] [CrossRef]
- Sun, C.; Xiao, R.; Li, H.; Ruan, Y. Effects of phase selection and microsegregation on corrosion behaviors of Ti–Al–Mo alloys. Corros. Sci. 2022, 200, 110232. [Google Scholar] [CrossRef]
- Jimenez–Marcos, C.; Mirza–Rosca, J.C.; Baltatu, M.S.; Vizureanu, P. Effect of Si Contents on the Properties of Ti15Mo7ZrxSi Alloys. Materials 2023, 16, 4906. [Google Scholar] [CrossRef]
- Jiang, Z.; Dai, X.; Middleton, H. Effect of silicon on corrosion resistance of Ti–Si alloys. Mater. Sci. Eng. B. 2011, 176, 79–86. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, K. Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C. 2019, 102, 844–862. [Google Scholar] [CrossRef] [PubMed]
- Jirón–Lazos, U.; Rodil, S.E.; Mazón–Montijo, D.A.; Pérez–Higareda, J.R.; Torres–Torres, D.; Garay–Tapia, A.M.; Montiel–González, Z. Microstructural behavior of the Ti–Al–Mo–N system controlled by Mo content: Impact on the performance as hard coatings. J. Mater. Sci. 2023, 58, 11771–11787. [Google Scholar] [CrossRef]
- Leyens, C.; Peters, M. Titanium and Titanium Alloys: Fundamentals and Applications; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Xu, X.; Zhang, Q.; Wu, J.; Wang, H.; Tian, K.; Wu, C. Preparation and characterization of corundum–based ceramics for thermal storage. Ceram. Int. 2021, 47, 23620–23629. [Google Scholar] [CrossRef]
- Wang, N.; Choi, Y.; Matsugi, K. Effect of C content on the microstructure and properties of in–situ synthesized TiC particles reinforced Ti composites. Sci. Rep. 2023, 13, 22206. [Google Scholar] [CrossRef]
- Wang, Z.; Cheng, H.; Lv, Y.; Zhang, Z.; Fan, J.; Zhang, H.; Liu, B.; Ma, Z. Effect of TiC content on the microstructure and mechanical properties of Ti–30Mo–xTiC composites. Int. J. Refract. Met. Hard Mater. 2022, 107, 105879. [Google Scholar] [CrossRef]
- Wei, W.H.; Shao, Z.N.; Shen, J.; Duan, X.M. Microstructure and mechanical properties of in situ formed TiC–reinforced Ti–6Al–4V matrix composites. Mater. Sci. Technol. 2018, 34, 191–198. [Google Scholar] [CrossRef]
- Fargas, G.; Roa, J.J.; Sefer, B.; Pederson, R.; Antti, M.L.; Mateo, A. Influence of cyclic thermal treatments on the oxidation behavior of Ti–6Al–2Sn–4Zr–2Mo alloy. Mater. Charact. 2018, 145, 218–224. [Google Scholar] [CrossRef]
- Semiatin, S.L.; Thomas, J.F.; Dadras, P. Processing–microstructure relationships for Ti–6Al–2Sn–4Zr–2Mo–0.1Si. Metall. Trans. A 1983, 14, 2363–2374. [Google Scholar] [CrossRef]
- Stella, P.; Giovanetti, I.; Masi, G.; Leoni, M.; Molinari, A. Microstructure and microhardness of heat–treated Ti–6Al–2Sn–4Zr–6Mo alloy. J. Alloys Compd. 2013, 567, 134–140. [Google Scholar] [CrossRef]
- Carrozza, A.; Aversa, A.; Fino, P.; Lombardi, M. A study on the microstructure and mechanical properties of the Ti–6Al–2Sn–4Zr–6Mo alloy produced via Laser Powder Bed Fusion. J. Alloys Compd. 2021, 870, 159329. [Google Scholar] [CrossRef]
- Gatina, S.A.; Polyakova, V.V.; Polyakov, A.V.; Semenova, I.P. Microstructure and Mechanical Properties of β–Titanium Ti–15Mo Alloy Produced by Combined Processing including ECAP–Conform and Drawing. Materials 2022, 15, 8666. [Google Scholar] [CrossRef]
- Awad, A.H.; Aly, H.A.; Saood, M. Physical, mechanical, and corrosion properties of Ti–12Mo and Ti–15Mo alloys fabricated by elemental blend and mechanical alloying techniques. Mater. Chem. Phys. 2024, 312, 128661. [Google Scholar] [CrossRef]
Chemical Element [wt.%] | Average (XRF) | Average (EDS) |
---|---|---|
Ti | 54.86 | 49.1 |
Al | 27.34 | 26.6 |
Mo | 13.62 | 12.2 |
Fe | 0.99 | 0.8 |
Si | 2.14 | 1.4 |
Mn | 0.28 | – |
Cu | 0.32 | – |
Co | 0.16 | – |
Nb | 0.038 | – |
C | – | 7.3 |
O | – | 2.5 |
Phase | Chemical Composition, EDS [wt.%] | HV 0.01 | |
---|---|---|---|
Solid solution A | Ti | 48.2 ± 3.1 | 934.4 |
Al | 31.95 ± 2.2 | ||
Mo | 13.05 ± 0.7 | ||
Solid solution B | Ti | 56.93 ± 0.6 | 1364.8 |
Al | 8.93 ± 0.2 | ||
Mo | 10.96 ± 0.04 | ||
Si | 12.03 ± 0.1 | ||
C | 8.76 ± 0.8 | ||
Eutectic | Ti | 43.52 ± 3.0 | 860.3 |
Al | 20.56 ± 4.8 | ||
Mo | 20.18 ± 6.3 | ||
Fe | 1.78 ± 1.3 | ||
C | 8.62 ± 0.70 | ||
Particles | O | 53.46 ± 0.1 | 2411.2 |
Al | 44.9 ± 1.6 | ||
Ti | 1.6 ± 1.4 |
Parameter/Alloy | Ti55Al27Mo13 | Ti–6242 (Ti–6Al–2Sn–4Zr–2Mo) [41,42] | Ti–1100 [43,44] | Ti–15Mo [45,46] |
Composition [wt.%] | Ti–55Al–27Mo (+Al2O3) | Ti–6Al–2Sn–4Zr–2Mo | Ti–6Al–2.8Sn–4Zr–6Mo | Ti–15Mo |
Alloy type | Intermetallic with dispersed phase | α + β high–temperature | α + β | β (metastable) |
Hardness HV | 900 (matrix), Al2O3 2400 | 340–380 | 350–400 | 220–280 |
Max. operating temperature [°C] | – | 540–590 | 590–600 | ~350–450 |
Production technology | aluminothermy | conventional melting | conventional melting | powder metallurgy, formed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michna, Š.; Svobodová, J.; Knaislová, A.; Novotný, J.; Michnová, L. Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction. Materials 2025, 18, 3583. https://doi.org/10.3390/ma18153583
Michna Š, Svobodová J, Knaislová A, Novotný J, Michnová L. Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction. Materials. 2025; 18(15):3583. https://doi.org/10.3390/ma18153583
Chicago/Turabian StyleMichna, Štefan, Jaroslava Svobodová, Anna Knaislová, Jan Novotný, and Lenka Michnová. 2025. "Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction" Materials 18, no. 15: 3583. https://doi.org/10.3390/ma18153583
APA StyleMichna, Š., Svobodová, J., Knaislová, A., Novotný, J., & Michnová, L. (2025). Structural Analysis of the Newly Prepared Ti55Al27Mo13 Alloy by Aluminothermic Reaction. Materials, 18(15), 3583. https://doi.org/10.3390/ma18153583