Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = alumina ceria zirconia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3260 KB  
Article
Catalytic Combustion of Methane over Pd-Modified La-Ce-Zr-Al Catalyst
by Katerina Tumbalova, Zlatina Zlatanova, Ralitsa Velinova, Maria Shipochka, Pavel Markov, Daniela Kovacheva, Ivanka Spassova, Silviya Todorova, Georgi Ivanov, Diana Nihtianova and Anton Naydenov
Materials 2025, 18(10), 2319; https://doi.org/10.3390/ma18102319 - 16 May 2025
Viewed by 1461
Abstract
The present study aims to investigate a Pd catalyst on a complex multi-oxide medium-entropy support interlayer La2O3-CeO2-ZrO2-Al2O3 and its possible use as catalysts for methane abatement applications. The low-temperature N2-adsorption, [...] Read more.
The present study aims to investigate a Pd catalyst on a complex multi-oxide medium-entropy support interlayer La2O3-CeO2-ZrO2-Al2O3 and its possible use as catalysts for methane abatement applications. The low-temperature N2-adsorption, XRD, TEM, XPS, TPD, and TPR techniques were used to characterize the catalyst. The palladium deposition on the supports leads to the formation of PdO. After the catalytic tests, the metal-Pd phase was observed. The complete oxidation of methane on Pd/La-Ce-Zr-Al catalyst takes place at temperatures above 250 °C, and in the presence of water vapor, the reaction temperature increases to about 70 °C. The careful choice of constituent oxides provides a balance between structural stability and flexibility. The alumina and lanthanum oxide ensure the high specific surface area, while the simultaneous presence of zirconia and ceria leads to the formation of a mixed-oxide phase able to interact with palladium ions by incorporating and de-incorporating them at different conditions. The mechanism of Mars–van Kerevelen was considered as the most probable for the reaction of complete methane oxidation. The possibility of the practical application of Pd-modified La-Ce-Zr-Al catalyst is evaluated. The use of a mix of multiple rare and abundant oxides makes the proposed catalyst a cost-effective alternative. Full article
Show Figures

Graphical abstract

19 pages, 7211 KB  
Article
Ceria-Stabilized Zirconia/Alumina Nanocomposite (NANO-Zr) Surface Enhances Osteogenesis Through Regulation of Macrophage Polarization
by Yuan Tian, Yunjia Song, Suli Lan, Ruoting Geng, Muxiang Wang, Sanwen Li, Jianmin Han, Hong Bai, Guang Hong and Ying Li
Coatings 2024, 14(11), 1460; https://doi.org/10.3390/coatings14111460 - 17 Nov 2024
Cited by 3 | Viewed by 2065
Abstract
Zirconia implants are recognized for their excellent biocompatibility, aesthetics, and favorable mechanical properties. However, the effects of zirconia surfaces on osteogenesis, particularly in the presence of macrophages, are still not well understood. This study compares two types of zirconia surfaces—ceria-stabilized zirconia/alumina nanocomposite (NANO-Zr) [...] Read more.
Zirconia implants are recognized for their excellent biocompatibility, aesthetics, and favorable mechanical properties. However, the effects of zirconia surfaces on osteogenesis, particularly in the presence of macrophages, are still not well understood. This study compares two types of zirconia surfaces—ceria-stabilized zirconia/alumina nanocomposite (NANO-Zr) and 3 mol% yttria-stabilized tetragonal zirconia polycrystal (3Y-TZP)—with titanium (Ti) substrates. Both zirconia surfaces promoted macrophage adhesion and proliferation, facilitated a shift from M1 to M2 polarization, and created an immune microenvironment conducive to osteogenesis by downregulating IL-6 and TNF-α and upregulating IL-10 and TGF-β gene expression. In macrophage co-cultures, both zirconia surfaces also supported osteoblast adhesion and proliferation, with NANO-Zr notably enhancing osteogenic differentiation and mineralization. These results highlight NANO-Zr as a promising candidate for future dental and orthopedic implant applications. Full article
Show Figures

Graphical abstract

16 pages, 5382 KB  
Article
Evaluation of the Mechanical Properties and Fatigue Resistance of the ZrO2CeYAl2O3 Composite
by Marcio Paulo de Araújo Mafra, Nélio Silva Júnior, Claudinei dos Santos, Jorge Luiz de Almeida Ferreira, José Alexander Araújo and Cosme Roberto Moreira da Silva
Ceramics 2024, 7(4), 1600-1615; https://doi.org/10.3390/ceramics7040103 - 31 Oct 2024
Viewed by 2111
Abstract
This work aimed to evaluate the fatigue limit of the zirconia ceramic composite stabilized with yttria and ceria reinforced with alumina platelets (ZrO2CeYAl2O3) and characterize the mechanical properties of sintered specimens. Bar-shaped specimens were compacted by uniaxial [...] Read more.
This work aimed to evaluate the fatigue limit of the zirconia ceramic composite stabilized with yttria and ceria reinforced with alumina platelets (ZrO2CeYAl2O3) and characterize the mechanical properties of sintered specimens. Bar-shaped specimens were compacted by uniaxial pressing in a rigid die and sintered at 1500 °C-2 h. Subsequent characterizations included quantitative phase analysis by X-ray diffractometry, determination of density, modulus of elasticity, microhardness, fracture toughness, four-point flexural strength, and fatigue limit. Observations of fracture mechanisms were carried out using confocal and scanning electron microscopy (SEM). The sintered samples presented values above 98% of relative density. Complex microstructures with equiaxed, homogeneously distributed submicrometer grains and planar alumina platelets were observed by SEM. The composite samples showed high values of fracture toughness due to the transformation, during the test, from the tetragonal to monoclinic phase, causing an increase in volume and creating compression zones around the crack, making it difficult to propagate. The average flexural strength reached 445.55 MPa, with a Weibull modulus (m = 16.8), revealing low flexural rupture stress data dispersion. In the composite evaluated in this work, the occurrence of the tetragonal → monoclinic transformation that occurs in the Ce-TZP present at the triple points and grain boundaries during cyclic loading produces “crack tip shielding”, that is, a restricted elastic zone (zone shielding) that surrounds the crack tip. This phenomenon leads to a reduction in the stress intensity factor at the tip of the crack and slows down its growth, generating an increase in the fatigue resistance of the composite. Full article
(This article belongs to the Special Issue Mechanical Behavior and Reliability of Engineering Ceramics)
Show Figures

Figure 1

17 pages, 1955 KB  
Article
Peri-Implant Microbial Signature Shifts in Titanium, Zirconia and Ceria-Stabilized Zirconia Reinforced with Alumina Sites Subjected to Experimental Peri-Implantitis: A Preclinical Study in Dogs
by Roberto López-Píriz, David Sevillano, Manuel Fernández Domínguez, Luis Alou, Natalia González, Lidia Goyos-Ball, Belén Cabal, José Serafín Moya, María Luisa Gómez-Lus and Ramón Torrecillas
Antibiotics 2024, 13(8), 690; https://doi.org/10.3390/antibiotics13080690 - 24 Jul 2024
Cited by 2 | Viewed by 2960
Abstract
This study evaluates the dynamic shift in the microbiota at the peri-implant site of titanium (Ti) and zirconia (Zr) implants subjected to experimental peri-implantitis (PI) and, for the first time, of implants made of ceria-stabilized alumina-reinforced zirconia (Ce-TZP/Al), a revolutionary zirconia that is [...] Read more.
This study evaluates the dynamic shift in the microbiota at the peri-implant site of titanium (Ti) and zirconia (Zr) implants subjected to experimental peri-implantitis (PI) and, for the first time, of implants made of ceria-stabilized alumina-reinforced zirconia (Ce-TZP/Al), a revolutionary zirconia that is set to play a key role in modern implant dentistry. One- and two-piece (TP) implants, including Ce-TZP/AL TP/G3 glass, were placed bilaterally (six implants/side) in five beagle dogs to mimic a natural vs. ligature-induced PI following a split-mouth design. The experiment spanned 30 weeks from tooth extraction. Both PI models promoted plaque deposition at peri-implant sites. Comparatively, the PI induced by ligatures favored the deposition of anaerobes (p = 0.047 vs. natural). Regardless of the model, the plaque deposition pattern was entirely dependent on the implanted material. Ligated Ti and Zr implant sites accumulated up to 2.14 log CFU/mL unit anaerobic load (p ≤ 0.033 vs. non-ligated implant sites), predominantly comprising obligate anaerobes. Naturally occurring PI induced the deposition of co-occurring networks of obligate anaerobes and less oxygen-dependent bacteria. PI induction favored the enrichment of Ti and Zr sites with bacterial taxa belonging to the orange and red complexes (up to 28% increase naturally and up to 71% in the ligated hemiarch). Anaerobic deposition was significantly lower in ligated Ce-TZP/Al implant sites (p ≤ 0.014 vs. TI and Zr) and independent of the induction model (0.63–1 log units of increase). Facultative bacteria prevailed at Ce-TZP/AL sites. The abundance was lower in the Ce-TZP/AL TP implant. Unlike Ti and Zr sites, taxa from the orange and red complexes were negligible. Biofilms configured at the Ti and Zr sites after ligation-induced PI resemble those found in severe IP. We hypothesize that, although surface properties (surface energy and surface roughness) and physicochemical properties of the substrate play an important role in bacterial adhesion and subsequent plaque formation, Ce-TZP/Al modulates several biological activities that preserve the integrity of the gingival seal by limiting PI progression. In conclusion, biofilm progression differs in peri-implant sites according to the specific properties of the material. Ce-TZP/A, unlike titanium or zirconia, prevents dysbiosis in sites subjected to experimental PI and preserves the microbial signature of emergent obligate anaerobes related to PI development. Full article
(This article belongs to the Section Antimicrobial Materials and Surfaces)
Show Figures

Figure 1

12 pages, 1393 KB  
Article
Ultra-Stable Inorganic Mesoporous Membranes for Water Purification
by Ralph A. Bauer, Minghui Qiu, Melissa C. Schillo-Armstrong, Matthew T. Snider, Zi Yang, Yi Zhou and Hendrik Verweij
Membranes 2024, 14(2), 34; https://doi.org/10.3390/membranes14020034 - 27 Jan 2024
Cited by 6 | Viewed by 3151
Abstract
Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80–100% selectivity through a space [...] Read more.
Thin, supported inorganic mesoporous membranes are used for the removal of salts, small molecules (PFAS, dyes, and polyanions) and particulate species (oil droplets) from aqueous sources with high flux and selectivity. Nanofiltration membranes can reject simple salts with 80–100% selectivity through a space charge mechanism. Rejection by size selectivity can be near 100% since the membranes can have a very narrow size distribution. Mesoporous membranes have received particular interest due to their (potential) stability under operational conditions and during defouling operations. More recently, membranes with extreme stability became interesting with the advent of in situ fouling mitigation by means of ultrasound emitted from within the membrane structure. For this reason, we explored the stability of available and new membranes with accelerated lifetime tests in aqueous solutions at various temperatures and pH values. Of the available ceria, titania, and magnetite membranes, none were actually stable under all test conditions. In earlier work, it was established that mesoporous alumina membranes have very poor stability. A new nanofiltration membrane was made of cubic zirconia membranes that exhibited near-perfect stability. A new ultrafiltration membrane was made of amorphous silica that was fully stable in ultrapure water at 80 °C. This work provides details of membrane synthesis, stability characterization and data and their interpretation. Full article
Show Figures

Figure 1

42 pages, 7626 KB  
Review
Ceramic Matrix Composites for Aero Engine Applications—A Review
by George Karadimas and Konstantinos Salonitis
Appl. Sci. 2023, 13(5), 3017; https://doi.org/10.3390/app13053017 - 26 Feb 2023
Cited by 134 | Viewed by 41504
Abstract
Ceramic matrix materials have attracted great attention from researchers and industry due to their material properties. When used in engineering systems, and especially in aero-engine applications, they can result in reduced weight, higher temperature capability, and/or reduced cooling needs, each of which increases [...] Read more.
Ceramic matrix materials have attracted great attention from researchers and industry due to their material properties. When used in engineering systems, and especially in aero-engine applications, they can result in reduced weight, higher temperature capability, and/or reduced cooling needs, each of which increases efficiency. This is where high-temperature ceramics have made considerable progress, and ceramic matrix composites (CMCs) are in the foreground. CMCs are classified into non-oxide and oxide-based ones. Both families have material types that have a high potential for use in high-temperature propulsion applications. The oxide materials discussed will focus on alumina and aluminosilicate/mullite base material families, whereas for non-oxides, carbon, silicon carbide, titanium carbide, and tungsten carbide CMC material families will be discussed and analyzed. Typical oxide-based ones are composed of an oxide fiber and oxide matrix (Ox-Ox). Some of the most common oxide subcategories are alumina, beryllia, ceria, and zirconia ceramics. On the other hand, the largest number of non-oxides are technical ceramics that are classified as inorganic, non-metallic materials. The most well-known non-oxide subcategories are carbides, borides, nitrides, and silicides. These matrix composites are used, for example, in combustion liners of gas turbine engines and exhaust nozzles. Until now, a thorough study on the available oxide and non-oxide-based CMCs for such applications has not been presented. This paper will focus on assessing a literature survey of the available oxide and non-oxide ceramic matrix composite materials in terms of mechanical and thermal properties, as well as the classification and fabrication methods of those CMCs. The available manufacturing and fabrication processes are reviewed and compared. Finally, the paper presents a research and development roadmap for increasing the maturity of these materials allowing for the wider adoption of aero-engine applications. Full article
(This article belongs to the Special Issue Processing, Properties and Applications of Composite Materials)
Show Figures

Figure 1

25 pages, 3973 KB  
Article
CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements
by Vigni V. González-Rangulan, Inés Reyero, Fernando Bimbela, Francisca Romero-Sarria, Marco Daturi and Luis M. Gandía
Catalysts 2023, 13(2), 448; https://doi.org/10.3390/catal13020448 - 20 Feb 2023
Cited by 40 | Viewed by 8486
Abstract
Renewed interest in CO2 methanation is due to its role within the framework of the Power-to-Methane processes. While the use of nickel-based catalysts for CO2 methanation is well stablished, the support is being subjected to thorough research due to its complex [...] Read more.
Renewed interest in CO2 methanation is due to its role within the framework of the Power-to-Methane processes. While the use of nickel-based catalysts for CO2 methanation is well stablished, the support is being subjected to thorough research due to its complex effects. The objective of this work was the study of the influence of the support with a series of catalysts supported on alumina, ceria, ceria–zirconia, and titania. Catalysts’ performance has been kinetically and spectroscopically evaluated over a wide range of temperatures (150–500 °C). The main results have shown remarkable differences among the catalysts as concerns Ni dispersion, metallic precursor reducibility, basic properties, and catalytic activity. Operando infrared spectroscopy measurements have evidenced the presence of almost the same type of adsorbed species during the course of the reaction, but with different relative intensities. The results indicate that using as support of Ni a reducible metal oxide that is capable of developing the basicity associated with medium-strength basic sites and a suitable balance between metallic sites and centers linked to the support leads to high CO2 methanation activity. In addition, the results obtained by operando FTIR spectroscopy suggest that CO2 methanation follows the formate pathway over the catalysts under consideration. Full article
Show Figures

Figure 1

13 pages, 2986 KB  
Article
New Ceramic Multi-Unit Dental Abutments with an Antimicrobial Glassy Coating
by Roberto López-Píriz, Lidia Goyos-Ball, Belén Cabal, Susana Martínez, José S. Moya, José F. Bartolomé and Ramón Torrecillas
Materials 2022, 15(15), 5422; https://doi.org/10.3390/ma15155422 - 6 Aug 2022
Cited by 7 | Viewed by 3422
Abstract
The choice of suitable materials and new designs in oral implantology and the subsequent enhancement of the characteristics of the dental implant developed is an important research topic with wide scope. The present work aims to develop a new multifunctional zirconia–ceria/alumina (Ce–TZP/Al2 [...] Read more.
The choice of suitable materials and new designs in oral implantology and the subsequent enhancement of the characteristics of the dental implant developed is an important research topic with wide scope. The present work aims to develop a new multifunctional zirconia–ceria/alumina (Ce–TZP/Al2O3) composite with an antimicrobial glass-based coating to be used in multi-unit abutments compatible with commercially available Ti implants for peri-implantitis prevention. An airbrush spraying technique was effectively applied to coat the sintered ceramic composite starting from a glass powder suspension. This deposition technique was appropriate for obtaining continuous antimicrobial glass-based coatings with homogenous thickness (~35 µm) on ceramic dental implant components. The dental implant systems with the antimicrobial glassy coating were subjected to a mechanical integrity test following ISO 14801 to determine their long-term stability. The tested implant-coating structure seems to be stable under in vitro conditions with ultimate applied forces exceeding the maximum physiological occlusal loading force. This paper also presents a pilot clinical case report that shows peri-implant tissue around the mechanically stable glass coating with no signs of inflammation 1 year after implant insertion. This result is a preliminary probe of the durability and biological tolerance of the glassy material by the gingiva, as well as the antimicrobial effect on the peri-implant microbiota displayed by the coating. Full article
(This article belongs to the Special Issue Advanced Ceramics and Implants for Dentistry)
Show Figures

Graphical abstract

31 pages, 16898 KB  
Review
Alumina, Zirconia and Their Composite Ceramics with Properties Tailored for Medical Applications
by Wolfgang Burger and Gundula Kiefer
J. Compos. Sci. 2021, 5(11), 306; https://doi.org/10.3390/jcs5110306 - 22 Nov 2021
Cited by 27 | Viewed by 8312
Abstract
Although in 1977 the first ceramic composite material had been introduced into the market, it was a long time before composite materials were qualified for medical applications. For a long period high purity alumina ceramics have been used as ball-heads and cups. Because [...] Read more.
Although in 1977 the first ceramic composite material had been introduced into the market, it was a long time before composite materials were qualified for medical applications. For a long period high purity alumina ceramics have been used as ball-heads and cups. Because of their brittleness, in 1986 yttria stabilized zirconia has been introduced into this application, because of higher strength and fracture toughness. However, due to its hydrothermal instability this material disappeared in orthopaedic applications in 2000. Meanwhile a composite materials based on an alumina matrix with dispersed metastable tetragonal zirconia particles and in-situ formed hexagonal platelets became the standard material for ceramic ball-heads, because of their excellent mechanical strength, hardness and improved fracture toughness. Especially fracture toughness can be improved further by special material formulations and tailored microstructure. It has been shown that a mixed stabilisation of zirconia by yttria and ceria with dispersed alumina and hexagonal platelets overcomes the hydrothermal instability and excellent materials properties can be achieved. Such materials do have big potential to be used in dental applications. Furthermore, these materials also can be seen as a new generation for ball-heads, because of their enhanced fracture toughness. All materials are described within these articles. In order to achieve the required properties of the materials, special raw materials are required. Therefore, it is quite important to understand and know the raw material manufacturing procedures. Full article
(This article belongs to the Special Issue Bioceramic Composites)
Show Figures

Figure 1

24 pages, 4458 KB  
Article
Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane
by Ersi Nikolaraki, Grammatiki Goula, Paraskevi Panagiotopoulou, Martin J. Taylor, Kalliopi Kousi, Georgios Kyriakou, Dimitris I. Kondarides, Richard M. Lambert and Ioannis V. Yentekakis
Nanomaterials 2021, 11(11), 2880; https://doi.org/10.3390/nano11112880 - 28 Oct 2021
Cited by 33 | Viewed by 4321
Abstract
The production of syngas (H2 and CO)—a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen—through the dry (CO2−) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we [...] Read more.
The production of syngas (H2 and CO)—a key building block for the manufacture of liquid energy carriers, ammonia and hydrogen—through the dry (CO2−) reforming of methane (DRM) continues to gain attention in heterogeneous catalysis, renewable energy technologies and sustainable economy. Here we report on the effects of the metal oxide support (γ-Al2O3, alumina-ceria-zirconia (ACZ) and ceria-zirconia (CZ)) on the low-temperature (ca. 500–750 C) DRM activity, selectivity, resistance against carbon deposition and iridium nanoparticles sintering under oxidative thermal aging. A variety of characterization techniques were implemented to provide insight into the factors that determine iridium intrinsic DRM kinetics and stability, including metal-support interactions and physicochemical properties of materials. All Ir/γ-Al2O3, Ir/ACZ and Ir/CZ catalysts have stable DRM performance with time-on-stream, although supports with high oxygen storage capacity (ACZ and CZ) promoted CO2 conversion, yielding CO-enriched syngas. CZ-based supports endow Ir exceptional anti-sintering characteristics. The amount of carbon deposition was small in all catalysts, however decreasing as Ir/γ-Al2O3 > Ir/ACZ > Ir/CZ. The experimental findings are consistent with a bifunctional reaction mechanism involving participation of oxygen vacancies on the support’s surface in CO2 activation and carbon removal, and overall suggest that CZ-supported Ir nanoparticles are promising catalysts for low-temperature dry reforming of methane (LT-DRM). Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Graphical abstract

12 pages, 3519 KB  
Article
A Novel Zirconia-Based Composite Presents an Aging Resistant Material for Narrow-Diameter Ceramic Implants
by Felix Burkhardt, Markus Harlass, Erik Adolfsson, Kirstin Vach, Benedikt Christopher Spies and Ralf-Joachim Kohal
Materials 2021, 14(9), 2151; https://doi.org/10.3390/ma14092151 - 23 Apr 2021
Cited by 9 | Viewed by 2568
Abstract
A novel ceria-stabilized zirconia-alumina-aluminate composite (Ce-TZP-comp) that is not prone to aging presents a potential alternative to yttrium-stabilized zirconia for ceramic oral implants. The objective of this study was to evaluate the long-term stability of a one-piece narrow-diameter implant made of Ce-TZP-comp. Implant [...] Read more.
A novel ceria-stabilized zirconia-alumina-aluminate composite (Ce-TZP-comp) that is not prone to aging presents a potential alternative to yttrium-stabilized zirconia for ceramic oral implants. The objective of this study was to evaluate the long-term stability of a one-piece narrow-diameter implant made of Ce-TZP-comp. Implant prototypes with a narrow (3.4 mm) and regular (4.0 mm) diameter were embedded according to ISO 14801, and subgroups (n = 8) were subsequently exposed to dynamic loading (107 cycles, 98N) and/or hydrothermal treatment (aging, 85 °C). Loading/aging was only applied as a combined protocol for the 4.0 mm diameter implants. One subgroup of each diameter remained untreated. One sample was cross-sectioned from each subgroup and evaluated with a scanning electron microscope for phase-transformation of the lattice. Finally, the remaining samples were loaded to fracture. A multivariate linear regression model was applied for statistical analyses (significance at p < 0.05). All samples withstood the different loading/aging protocols and no transformation propagation was observed. The narrow diameter implants showed the lowest fracture load after combined loading/aging (628 ± 56 N; p < 0.01), whereas all other subgroups exhibited no significantly reduced fracture resistance (between 762 ± 62 and 806 ± 73 N; p > 0.05). Therefore, fracture load values of Ce-TZP-comp implants suggest a reliable intraoral clinical application in the anterior jaw regions. Full article
(This article belongs to the Special Issue Zirconia Implants: Current Status and Future Prospects)
Show Figures

Figure 1

16 pages, 6952 KB  
Article
Effects of Plasma Treatment on the Bioactivity of Alkali-Treated Ceria-Stabilised Zirconia/Alumina Nanocomposite (NANOZR)
by Seiji Takao, Satoshi Komasa, Akinori Agariguchi, Tetsuji Kusumoto, Giuseppe Pezzotti and Joji Okazaki
Int. J. Mol. Sci. 2020, 21(20), 7476; https://doi.org/10.3390/ijms21207476 - 10 Oct 2020
Cited by 9 | Viewed by 3636
Abstract
Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion [...] Read more.
Zirconia ceramics such as ceria-stabilized zirconia/alumina nanocomposites (nano-ZR) are applied as implant materials due to their excellent mechanical properties. However, surface treatment is required to obtain sufficient biocompatibility. In the present study, we explored the material surface functionalization and assessed the initial adhesion of rat bone marrow mesenchymal stem cells, their osteogenic differentiation, and production of hard tissue, on plasma-treated alkali-modified nano-ZR. Superhydrophilicity was observed on the plasma-treated surface of alkali-treated nano-ZR along with hydroxide formation and reduced surface carbon. A decreased contact angle was also observed as nano-ZR attained an appropriate wettability index. Treated samples showed higher in vitro bovine serum albumin (BSA) adsorption, initial adhesion of bone marrow and endothelial vascular cells, high alkaline phosphatase activity, and increased expression of bone differentiation-related factors. Furthermore, the in vivo performance of treated nano-ZR was evaluated by implantation in the femur of male Sprague–Dawley rats. The results showed that the amount of bone formed after the plasma treatment of alkali-modified nano-ZR was higher than that of untreated nano-ZR. Thus, induction of superhydrophilicity in nano-ZR via atmospheric pressure plasma treatment affects bone marrow and vascular cell adhesion and promotes bone formation without altering other surface properties. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

28 pages, 2202 KB  
Review
Chemical Preparation Routes and Lowering the Sintering Temperature of Ceramics
by Philippe Colomban
Ceramics 2020, 3(3), 312-339; https://doi.org/10.3390/ceramics3030029 - 18 Aug 2020
Cited by 29 | Viewed by 12085
Abstract
Chemically and thermally stable ceramics are required for many applications. Many characteristics (electrochemical stability, high thermomechanical properties, etc.) directly or indirectly imply the use of refractory materials. Many devices require the association of different materials with variable melting/decomposition temperatures, which requires their co-firing [...] Read more.
Chemically and thermally stable ceramics are required for many applications. Many characteristics (electrochemical stability, high thermomechanical properties, etc.) directly or indirectly imply the use of refractory materials. Many devices require the association of different materials with variable melting/decomposition temperatures, which requires their co-firing at a common temperature, far from being the most efficient for materials prepared by conventional routes (materials having the stability lowest temperature determines the maximal firing temperature). We review here the different strategies that can be implemented to lower the sintering temperature by means of chemical preparation routes of oxides, (oxy)carbides, and (oxy)nitrides: wet chemical and sol–gel process, metal-organic precursors, control of heterogeneity and composition, transient liquid phase at the grain boundaries, microwave sintering, etc. Examples are chosen from fibers and ceramic matrix composites (CMCs), (opto-)ferroelectric, electrolytes and electrode materials for energy storage and production devices (beta alumina, ferrites, zirconia, ceria, zirconates, phosphates, and Na superionic conductor (NASICON)) which have specific requirements due to multivalent composition and non-stoichiometry. Full article
(This article belongs to the Special Issue High-Temperature Ceramics)
Show Figures

Graphical abstract

26 pages, 5427 KB  
Article
CO2 Methanation on Supported Rh Nanoparticles: The combined Effect of Support Oxygen Storage Capacity and Rh Particle Size
by Georgia Botzolaki, Grammatiki Goula, Anatoli Rontogianni, Ersi Nikolaraki, Nikolaos Chalmpes, Panagiota Zygouri, Michalis Karakassides, Dimitrios Gournis, Nikolaos Charisiou, Maria Goula, Stylianos Papadopoulos and Ioannis Yentekakis
Catalysts 2020, 10(8), 944; https://doi.org/10.3390/catal10080944 - 17 Aug 2020
Cited by 47 | Viewed by 6405
Abstract
CO2 hydrogenation toward methane, a reaction of high environmental and sustainable energy importance, was investigated at 200–600 °C and H2/CO2 = 4/1, over Rh nanoparticles dispersed on supports with different oxygen storage capacity characteristics (γ-Al2O3, [...] Read more.
CO2 hydrogenation toward methane, a reaction of high environmental and sustainable energy importance, was investigated at 200–600 °C and H2/CO2 = 4/1, over Rh nanoparticles dispersed on supports with different oxygen storage capacity characteristics (γ-Al2O3, alumina-ceria-zirconia, and ceria-zirconia). The effects of the support OSC and Rh particle size on reaction behavior under both integral and differential conditions were investigated, to elucidate the combined role of these crucial catalyst design parameters on methanation efficiency. A volcano-type variation of methanation turnover frequency was found in respect to support OSC; Rh/ACZ, with intermediate OSC, was the optimal catalyst. The structure sensitivity of the reaction was found to be a combined function of support OSC and Rh particle size: For Rh/γ-Al2O3 (lack of OSC) methanation was strongly favored on small particles—the opposite for Rh/CZ (high OSC). The findings are promising for rational design and optimization of CO2 methanation catalysts by tailoring the aforementioned characteristics. Full article
(This article belongs to the Special Issue Nanomaterials in Catalysis Applications)
Show Figures

Graphical abstract

15 pages, 9333 KB  
Article
Effects of UV Treatment on Ceria-Stabilized Zirconia/Alumina Nanocomposite (NANOZR)
by Satoshi Komasa, Seiji Takao, Yuanyuan Yang, Yuhao Zeng, Min Li, Sifan Yan, Honghao Zhang, Chisato Komasa, Yasuyuki Kobayashi, Hiroshi Nishizaki, Hisataka Nishida, Tetsuji Kusumoto and Joji Okazaki
Materials 2020, 13(12), 2772; https://doi.org/10.3390/ma13122772 - 18 Jun 2020
Cited by 6 | Viewed by 3132
Abstract
Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group [...] Read more.
Nanostructured zirconia/alumina composite (NANOZR) has been explored as a suitable material for fabricating implants for patients with metal allergy. In this study, we examined the effect of UV treatment on the NANOZR surface. The experimental group was UV-treated NANOZR and the control group was untreated NANOZR. Observation of the surface of the UV-treated materials revealed no mechanical or structural change; however, the carbon content on the material surface was reduced, and the material surface displayed superhydrophilicity. Further, the effects of the UV-induced superhydrophilic properties of NANOZR plates on the adhesion behavior of various cells were investigated. Treatment of the NANOZR surface was found to facilitate protein adsorption onto it. An in vitro evaluation using rat bone marrow cells, human vascular endothelial cells, and rat periodontal ligament cells revealed high levels of adhesion in the experimental group. In addition, it was clarified that the NANOZR surface forms active oxygen and suppresses the generation of oxidative stress. Overall, the study results suggested that UV-treated NANOZR is useful as a new ceramic implant material. Full article
(This article belongs to the Special Issue The Application of Nano-Modified Titanium)
Show Figures

Figure 1

Back to TopTop