Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,406)

Search Parameters:
Keywords = alternative grains

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1400 KB  
Article
Optimizing Biodegradable Films with Varying Induction Periods to Enhance Rice Growth and Soil Carbon and Nitrogen Dynamics
by Youliang Zhang, Xiaoming Li, Kaican Zhu, Shaoyuan Feng, Chaoying Dou, Xiaoping Chen, Yan Huang, Bai Wang, Yanling Sun, Fengxin Wang, Xiaoyu Geng and Huanhe Wei
Plants 2026, 15(3), 358; https://doi.org/10.3390/plants15030358 - 23 Jan 2026
Viewed by 91
Abstract
Polyethylene film (PE) mulching produces substantial “white pollution,” prompting the use of biodegradable film (BF) alternatives, yet their performance in rice systems on Northeast black soils is still uncertain. We compared three BFs with different induction periods (45 d, BF45; 60 [...] Read more.
Polyethylene film (PE) mulching produces substantial “white pollution,” prompting the use of biodegradable film (BF) alternatives, yet their performance in rice systems on Northeast black soils is still uncertain. We compared three BFs with different induction periods (45 d, BF45; 60 d, BF60; 80 d, BF80), PE and a no-film control (CK) to quantify their effects on soil hydrothermal conditions, rice growth, yield, grain quality, irrigation water use efficiency (IWUE) and soil C, N. Results showed that mulching increased soil temperature and soil moisture. Across the growing season, the mean soil temperature at the 0–5 cm depth under PE was 5.5% and 2.2–5.5% higher than that under CK and BFs, respectively. Specifically, compared with CK, PE increased grain yield by 31–77% and IWUE by 75–123%, while BFs improved yield by 25–73% and IWUE by 48–101%. PE only slightly outperformed BF80 in yield (by 2.3% in 2023 and 2.1% in 2024) but achieved higher IWUE (11.0–11.7%). Grain chalkiness and sensory scores under BFs were comparable to PE and better than CK. At 0–20 cm, PE increased SOC (2.3–6.8%) and the C/N ratio (0–0.8%) but reduced total nitrogen (TN) (2.7–3.9%) and total carbon (TC) (2.5–3.1%), whereas BFs increased Org-N by 0.4–4.2%, SOC by 2.9–7.1%, and TN by 0.2–0.7%, with BF80 showing the greatest stimulatory effect. Overall, BFs—particularly BF80—are promising substitutes for PE in black soil rice systems, supporting sustainable rice production with strong application potential. Full article
(This article belongs to the Section Crop Physiology and Crop Production)
Show Figures

Figure 1

18 pages, 9224 KB  
Article
Coupled Effects of Mg/Si Ratio and Recrystallization on Strength and Electrical Conductivity in Al-xMg-0.5Si Alloys
by Shanquan Deng, Xingsen Zhang, Junwei Zhu, Meihua Bian and Heng Chen
Crystals 2026, 16(1), 78; https://doi.org/10.3390/cryst16010078 - 22 Jan 2026
Viewed by 27
Abstract
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model [...] Read more.
The strategic balance between strength and electrical conductivity in Al-Mg-Si alloys is a critical challenge that must be overcome to enable their widespread adoption as viable alternatives to copper conductors in power transmission systems. To address this, the present study comprehensively investigates model alloys with Mg/Si ratios ranging from 1.0 to 2.0. A multi-faceted experimental approach was employed, combining tailored thermo-mechanical treatments (solution treatment, cold drawing, and isothermal annealing) with comprehensive microstructural characterization techniques, including electron backscatter diffraction (EBSD) and scanning electron microscopy (SEM). The results elucidate a fundamental competitive mechanism governing property optimization: excess Mg atoms concurrently contribute to solid-solution strengthening via the formation of Cottrell atmospheres around dislocations, while simultaneously enhancing electron scattering, which is detrimental to conductivity. A critical synergy was identified at the Mg/Si ratio of 1.75, which promotes the dense precipitation of fine β″ phase while facilitating extensive recovery of high dislocation density. Furthermore, EBSD analysis confirmed the development of a microstructure comprising 74.1% high-angle grain boundaries alongside a low dislocation density (KAM ≤ 2°). This specific microstructural configuration effectively minimizes electron scattering while providing moderate grain boundary strengthening, thereby synergistically achieving an optimal balance between strength and electrical conductivity. Consequently, this work elucidates the key quantitative relationships and competitive mechanisms among composition (Mg/Si ratio), processing parameters, microstructure evolution, and final properties within the studied Al-xMg-0.5Si alloy system. These findings establish a clear design guideline and provide a fundamental understanding for developing high-performance aluminum-based conductor alloys with tailored Mg/Si ratios. Full article
(This article belongs to the Special Issue Microstructure, Properties and Characterization of Aluminum Alloys)
Show Figures

Figure 1

18 pages, 1465 KB  
Article
Growth Performances and Nutritional Values of Tenebrio molitor Larvae: Influence of Different Agro-Industrial By-Product Diets
by Giuseppe Serra, Francesco Corrias, Mattia Casula, Maria Leonarda Fadda, Stefano Arrizza, Massimo Milia, Nicola Arru and Alberto Angioni
Foods 2026, 15(2), 393; https://doi.org/10.3390/foods15020393 - 22 Jan 2026
Viewed by 31
Abstract
Intensive livestock and aquaculture systems require high-quality feeds with the correct nutritional composition. The decrease in wild fish proteins has led to demands within the feed supply chain for new alternatives to fulfil the growing demand for protein. In this context, edible insects [...] Read more.
Intensive livestock and aquaculture systems require high-quality feeds with the correct nutritional composition. The decrease in wild fish proteins has led to demands within the feed supply chain for new alternatives to fulfil the growing demand for protein. In this context, edible insects like the yellow mealworm (Tenebrio molitor) have the greatest potential to become a valid alternative source of proteins. This study evaluated the growth performance and nutritional profile of yellow mealworm larvae reared under laboratory conditions on eight different agro-industrial by-products: wheat middling, durum wheat bran, rice bran, hemp cake, thistle cake, dried brewer’s spent grains, dried tomato pomace, and dried distilled grape marc. The quantitative and qualitative impacts of rearing substrates on larvae were compared. The results showed that larvae adapt well to different substrates with different nutritional compositions, including the fibrous fraction. However, substrates affect larval growth feed conversion and larval macro composition. Hemp cake stood out for its superior nutritional value, as reflected by its high protein content and moderate NDF (Neutral Detergent Fiber) levels, which determine fast larval growth. On the contrary, imbalanced substrate lipid or carbohydrate content (rice bran), as well as the presence of potential antinutritional compounds (thistle cake), appeared to negatively affect growth performances. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

20 pages, 13461 KB  
Article
Multi-View 3D Reconstruction of Ship Hull via Multi-Scale Weighted Neural Radiation Field
by Han Chen, Xuanhe Chu, Ming Li, Yancheng Liu, Jingchun Zhou, Xianping Fu, Siyuan Liu and Fei Yu
J. Mar. Sci. Eng. 2026, 14(2), 229; https://doi.org/10.3390/jmse14020229 - 21 Jan 2026
Viewed by 66
Abstract
The 3D reconstruction of vessel hulls is crucial for enhancing safety, efficiency, and knowledge in the maritime industry. Neural Radiance Fields (NeRFs) are an alternative to 3D reconstruction and rendering from multi-view images; particularly, tensor-based methods have proven effective in improving efficiency. However, [...] Read more.
The 3D reconstruction of vessel hulls is crucial for enhancing safety, efficiency, and knowledge in the maritime industry. Neural Radiance Fields (NeRFs) are an alternative to 3D reconstruction and rendering from multi-view images; particularly, tensor-based methods have proven effective in improving efficiency. However, existing tensor-based methods typically suffer from a lack of spatial coherence, resulting in gaps in the reconstruction of fine-grained geometric structures. This paper proposes a spatial multi-scale weighted NeRF (MDW-NeRF) for accurate and efficient surface reconstruction of vessel hulls. The proposed method develops a novel multi-scale feature decomposition mechanism that models 3D space by leveraging multi-resolution features, facilitating the integration of high-resolution details with low-resolution regional information. We designed separate color and density weighting, using a coarse-to-fine strategy, for density and a weighted matrix for color to decouple feature vectors from appearance attributes. To boost the efficiency of 3D reconstruction and rendering, we implement a hybrid sampling point strategy for volume rendering, selecting sample points based on volumetric density. Extensive experiments on the SVH dataset confirm MDW-NeRF’s superiority: quantitatively, it outperforms TensoRF by 1.5 dB in PSNR and 6.1% in CD, and shrinks the model size by 9%, with comparable training times; qualitatively, it resolves tensor-based methods’ inherent spatial incoherence and fine-grained gaps, enabling accurate restoration of hull cavities and realistic surface texture rendering. These results validate our method’s effectiveness in achieving excellent rendering quality, high reconstruction accuracy, and timeliness. Full article
Show Figures

Figure 1

21 pages, 2171 KB  
Article
Production of Gluten-Free Craft Beers of High Antioxidant and Sensory Quality
by Antonietta Baiano, Teresa De Pilli and Anna Fiore
Foods 2026, 15(2), 379; https://doi.org/10.3390/foods15020379 - 21 Jan 2026
Viewed by 202
Abstract
Usually, gluten-free “beers” are produced by replacing cereals containing gluten with substitutes that do not contain it or, alternatively, through enzymatic, precipitation, and/or clarification steps. The research was aimed at increasing the concentration of antioxidant compounds and improving the sensory quality of gluten-free [...] Read more.
Usually, gluten-free “beers” are produced by replacing cereals containing gluten with substitutes that do not contain it or, alternatively, through enzymatic, precipitation, and/or clarification steps. The research was aimed at increasing the concentration of antioxidant compounds and improving the sensory quality of gluten-free craft beers produced from gluten-containing raw materials according to a patented brewing method that represented the starting point of the research. The experiments were organized to evaluate the effects of original combinations of four brewing procedures (Strong, Light, Very Light, Ultra-Light—differing from each other by grains/water ratio, hops/water ratio, protein rest, and boiling time), three yeast strains (M21, K97, S33), and a possible dry hopping. The beer gluten contents ranged from <5 to 13.90 mg/L. The maximum total phenolic content (200 mg/L) was detected in beers produced by combining the Light procedure, inoculation with M21 strain, and dry hopping. The highest overall sensory quality scores (4.0) were assigned to the beers obtained through the Light and Ultra-Light procedures, fermented by M21 and S33 strains, and dry hopped. Dry hopping was the main factor capable of differentiating the beers, increasing antioxidant content and improving perlage, foam characteristics, the intensity of many olfactory and gustatory characteristics, and the overall sensory quality. The brewing procedure affected all the physico-chemical indices and most sensory characteristics, except for color, citrous and spicy flavors, sweetness, effervescence, and body. The use of different yeasts did not impart significant differences for most of the variables considered. Full article
Show Figures

Graphical abstract

13 pages, 3005 KB  
Article
A Study of Effect of Bidirectional Drawing on the Mechanical Properties of 30MnSi6 Non-Heat-Treated Steel
by Jaehan Lim, Jonghyeok Lee and Byounglok Jang
Metals 2026, 16(1), 118; https://doi.org/10.3390/met16010118 - 20 Jan 2026
Viewed by 131
Abstract
As the work hardening rate increases during the cold drawing of non-heat-treated steel (NHT steel), a significant loss in ductility and toughness can occur, leading to reduced formability and part quality. In this study, a bidirectional drawing process consisting of alternating forward and [...] Read more.
As the work hardening rate increases during the cold drawing of non-heat-treated steel (NHT steel), a significant loss in ductility and toughness can occur, leading to reduced formability and part quality. In this study, a bidirectional drawing process consisting of alternating forward and reverse passes is proposed to mitigate these issues and enhance the mechanical performance of the steel. Mechanical property evaluations, including tensile testing and three-point bending tests, were conducted to assess the effects of bidirectional drawing compared to conventional unidirectional drawing. The results showed that the bidirectionally drawn wire maintained a similar tensile strength to that of the unidirectionally drawn wire at a 70% area reduction, while exhibiting a 12% improvement in elongation. Microstructural analysis revealed grain refinement and reduced texture anisotropy in the bidirectionally drawn specimens, contributing to the observed enhancement in ductility. These findings indicate that bidirectional drawing is a promising approach for improving the formability and overall quality of high-strength, NHT steel components. Full article
Show Figures

Figure 1

16 pages, 2458 KB  
Article
Reducing Aflatoxin Accumulation in Maize: Development and Performance of a Novel Biological Input
by Paloma Rhein, Marianela Bossa, María del Pilar Monge, Diego Giovanini, César Alfredo Barbero, Sofía Noemí Chulze, María Laura Chiotta and María Silvina Alaniz-Zanon
Toxins 2026, 18(1), 49; https://doi.org/10.3390/toxins18010049 - 17 Jan 2026
Viewed by 150
Abstract
Aflatoxin contamination of maize by Aspergillus section Flavi constitutes a major health and economic concern. While biological control using non-toxigenic strains has proven effective, the increasing global food demand underscores the need for alternative carrier materials to replace seeds and grains. The aims [...] Read more.
Aflatoxin contamination of maize by Aspergillus section Flavi constitutes a major health and economic concern. While biological control using non-toxigenic strains has proven effective, the increasing global food demand underscores the need for alternative carrier materials to replace seeds and grains. The aims of the present study were (1) to develop an innovative macroporous starch polymer in which the biocontrol agent can grow and be transported to fields where the bioformulate is applied, and (2) to evaluate the effectiveness of this new formulate in reducing AF contamination in maize kernels in field trials, in comparison with the traditional formulate based on long-grain rice as a substrate. Several methods and different starch sources were tested, and the formulation consisting of 10% maize starch, 0.5% citric acid, 3% sucrose, 0.3% urea, and distilled water was the most effective. Furthermore, this bioformulate demonstrated a performance comparable to that of the traditional long-grain rice-based formulation, reducing AF accumulation by up to 81% in maize kernels under field conditions. The implementation of this macroporous starch polymer-based formulation, in combination with the biological control agent A. flavus AFCHG2, would not only reduce aflatoxin contamination in maize kernels but also minimise the use of food-grade seeds and grains for industrial purposes, thereby preserving their availability for human and animal nutrition. Consequently, this development could enhance the availability of these substrates for food and feed use, thereby contributing to improved safety and food security. Full article
(This article belongs to the Special Issue Mycotoxins in Food Safety: Challenges and Biocontrol Strategies)
Show Figures

Figure 1

18 pages, 950 KB  
Article
Selected Essential Oils Act as Repellents Against the House Cricket, Acheta domesticus
by Torben K. Heinbockel, Rasha O. Alzyoud, Shazia Raheel and Vonnie D. C. Shields
Insects 2026, 17(1), 106; https://doi.org/10.3390/insects17010106 - 16 Jan 2026
Viewed by 285
Abstract
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring [...] Read more.
The house cricket, Acheta domesticus, is found globally. It is an agricultural pest causing economic damage to a wide variety of crops including cereal seedlings, vegetable crops, fruit plants, and stored grains. Additionally, crickets act as mechanical vectors of pathogens by harboring bacteria, fungi, viruses, and toxins, causing foodborne illnesses. They can contaminate stored grains, packaged foods, or animal feed due to deposition of their feces, lowering the quality of the food and creating food safety risks. Synthetic insect repellents, such as pyrethroids and carbamates, have been used previously in integrated pest management practices to control crickets. Though successful as repellents, they have been associated with health and environmental risks and concerns. The use of organic green repellents, such as plant essential oils, may be a viable alternative in pest management practices. In this study, we tested the effects of 27 plant-based essential oils on the behavior of A. domesticus. A. domesticus were introduced into an open arena to allow them unrestricted movement. A transparent plastic bottle containing an essential oil treatment was placed in the arena to allow voluntary entry by the crickets. Following a predetermined observation period, the number of crickets that entered the bottle was recorded, and percent entry was calculated as the proportion of individuals inside the bottle relative to the total number in the arena. Analysis of the percentage entry into the bottles allowed for a comparative assessment of repellency of the selected essential oils examined in this study. Essential oils that elicited high levels of entry into the bottle were categorized as having weak or no repellency, while those that demonstrated reduced entry were classified as moderate or strong repellents. Our results indicated that A. domesticus responded with strong repellent behavior to nearly half of the essential oils tested, while four essential oils and two synthetic repellents evoked no significant repellent responses. Four strong repellent essential oils, namely peppermint, rosemary, cinnamon, and lemongrass, were tested at different concentrations and showed a clear dose-dependent repellent effect. The results suggest that selected essential oils can be useful in the development of more natural “green” insect repellents. Full article
Show Figures

Figure 1

27 pages, 12605 KB  
Article
YOLOv11n-CGSD: Lightweight Detection of Dairy Cow Body Temperature from Infrared Thermography Images in Complex Barn Environments
by Zhongwei Kang, Hang Song, Hang Xue, Miao Wu, Derui Bao, Chuang Yan, Hang Shi, Jun Hu and Tomas Norton
Agriculture 2026, 16(2), 229; https://doi.org/10.3390/agriculture16020229 - 15 Jan 2026
Viewed by 201
Abstract
Dairy cow body temperature is a key physiological indicator that reflects metabolic level, immune status, and environmental stress responses, and it has been widely used for early disease recognition. Infrared thermography (IRT), as a non-contact imaging technique capable of remotely acquiring the surface [...] Read more.
Dairy cow body temperature is a key physiological indicator that reflects metabolic level, immune status, and environmental stress responses, and it has been widely used for early disease recognition. Infrared thermography (IRT), as a non-contact imaging technique capable of remotely acquiring the surface radiation temperature distribution of animals, is regarded as a powerful alternative to traditional temperature measurement methods. Under practical cowshed conditions, IRT images of dairy cows are easily affected by complex background interference and generally suffer from low resolution, poor contrast, indistinct boundaries, weak structural perception, and insufficient texture information, which lead to significant degradation in target detection and temperature extraction performance. To address these issues, a lightweight detection model named YOLOv11n-CGSD is proposed for dairy cow IRT images, aiming to improve the accuracy and robustness of region of interest (ROI) detection and body temperature extraction under complex background conditions. At the architectural level, a C3Ghost lightweight module based on the Ghost concept is first constructed to reduce redundant feature extraction while lowering computational cost and enhancing the network capability for preserving fine-grained features during feature propagation. Subsequently, a space-to-depth convolution module is introduced to perform spatial rearrangement of feature maps and achieve channel compression via non-strided convolution, thereby improving the sensitivity of the model to local temperature variations and structural details. Finally, a dynamic sampling mechanism is embedded in the neck of the network, where the upsampling and scale alignment processes are adaptively driven by feature content, enhancing the model response to boundary temperature changes and weak-texture regions. Experimental results indicate that the YOLOv11n-CGSD model can effectively shift attention from irrelevant background regions to ROI contour boundaries and increase attention coverage within the ROI. Under complex IRT conditions, the model achieves P, R, and mAP50 values of 89.11%, 86.80%, and 91.94%, which represent improvements of 3.11%, 5.14%, and 4.08%, respectively, compared with the baseline model. Using Tmax as the temperature extraction parameter, the maximum error (Max. Error) and mean error (MAE. Error) in the lower udder region are reduced by 33.3% and 25.7%, respectively, while in the around the anus region, the Max. Error and MAE. Error are reduced by 87.5% and 95.0%, respectively. These findings demonstrate that, under complex backgrounds and low-quality IRT imaging conditions, the proposed model achieves lightweight and high-performance detection for both lower udder (LU) and around the anus (AA) regions and provides a methodological reference and technical support for non-contact body temperature measurement of dairy cows in practical cowshed production environments. Full article
(This article belongs to the Section Farm Animal Production)
Show Figures

Figure 1

29 pages, 446 KB  
Article
Revision of the Choices Nutrient Profiling System
by Herbert Smorenburg, Katrina R. Kissock, Eleanor J. Beck, Pulkit Mathur, Bruce Hamaker, Lauren Lissner, Mario R. Marostica, Ngozi Nnam, Hidemi Takimoto and Annet J. C. Roodenburg
Nutrients 2026, 18(2), 258; https://doi.org/10.3390/nu18020258 - 14 Jan 2026
Viewed by 306
Abstract
Background/Objectives: Poor dietary habits are a major contributor to non-communicable diseases (NCDs), the leading cause of mortality worldwide. To promote healthier eating, governments and stakeholders have implemented various nutrition policies, including front-of-pack nutrition labeling (FOPNL). The Choices International Foundation (Choices), through its criteria, [...] Read more.
Background/Objectives: Poor dietary habits are a major contributor to non-communicable diseases (NCDs), the leading cause of mortality worldwide. To promote healthier eating, governments and stakeholders have implemented various nutrition policies, including front-of-pack nutrition labeling (FOPNL). The Choices International Foundation (Choices), through its criteria, supports these efforts through its standardized nutrient profiling system (NPS). Originally developed to underpin a positive FOPNL logo, in 2021, the criteria were expanded into a globally oriented five-level profiling system covering 23 basic and 10 discretionary food groups, addressing key nutrients such as trans-fatty acids, saturated fat, sodium, sugar, fiber, and energy. To ensure continued scientific relevance, the Choices criteria are periodically reviewed by an independent International Scientific Committee (ISC). Methods: This paper presents the 2025 revision of the Choices criteria, focusing on priority areas identified through stakeholder consultation and recent scientific developments. Results: Key updates include the introduction of nutrient-based equivalence criteria for plant-based alternatives to meat and dairy, based on protein and selected micronutrient thresholds. Non-sugar sweeteners (NSSs) were newly included as a factor that lowers a product’s health classification and makes it ineligible for a positive FOPNL. Additionally, the industrially produced trans-fatty acid (iTFA) criteria were revised and aligned with the latest World Health Organization (WHO) recommendations, improving both technical feasibility and policy coherence. While options for incorporating whole-grain and micronutrient criteria were explored, these were not included in the current revision. Conclusions: The 2025 update system enhances the scientific rigor, policy alignment, and global applicability of the Choices system. By providing a harmonized and evidence-based tool, it aims to support national policies that foster healthier food environments and, ultimately, improve public health outcomes worldwide. Full article
Show Figures

Figure 1

12 pages, 1720 KB  
Article
Field- and Angle-Dependent AC Susceptibility in Multigrain La0.66Sr0.34MnO3 Thin Films on YSZ(001) Substrates
by Gražina Grigaliūnaitė-Vonsevičienė and Artūras Jukna
Materials 2026, 19(2), 331; https://doi.org/10.3390/ma19020331 - 14 Jan 2026
Viewed by 218
Abstract
Experimental and numerical investigations of the alternating current (AC) susceptibility, χH ~ dM/dH, examined multigrain La0.66Sr0.34MnO3 (LSMO) thin films (thickness d = 250 nm) grown by radio-frequency (RF) magnetron sputtering [...] Read more.
Experimental and numerical investigations of the alternating current (AC) susceptibility, χH ~ dM/dH, examined multigrain La0.66Sr0.34MnO3 (LSMO) thin films (thickness d = 250 nm) grown by radio-frequency (RF) magnetron sputtering on lattice-mismatched yttria-stabilized zirconia YSZ(001) substrates. The films exhibit a columnar structure comprising two types of grains, with (001)- and (011)-oriented planes of a pseudocubic lattice aligned parallel to the film surface. Field- and angle-dependent AC susceptibility measurements at 78 K reveal characteristic peak- and tip-like anomalies, attributed to contributions from grains with three distinct directions of easy magnetization axes within the film plane. Numerical modeling based on the transverse susceptibility theory for single-domain ferromagnetic grains, incorporating first- and second-order anisotropy constants, corroborates the experimental findings and elucidates the role of different grain types in magnetization switching and AC susceptibility response. This study provides a quantitative determination of the three in-plane easy magnetization axes in LSMO/YSZ(001) films and clarifies their influence on the magnetization dynamics of multigrain thin films. The demonstrated control over multigrain LSMO/YSZ(001) thin films with distinct in-plane easy magnetization axes and well-characterized AC susceptibility suggests potential applications in magnetic memory, spintronic devices, and precision magnetic sensing. Full article
Show Figures

Figure 1

29 pages, 3529 KB  
Article
Aggregation of Air Conditioning Loads in Building Microgrids: A Day-Ahead and Real-Time Control Strategy Considering User Privacy Requirements
by Jinjin Ding, Wangchao Dong, Bin Xu, Dan Hu, Zheng Tian, Donglin Qin and Hongbin Wu
Processes 2026, 14(2), 280; https://doi.org/10.3390/pr14020280 - 13 Jan 2026
Viewed by 129
Abstract
Air conditioning loads play a critical role in maintaining the supply–demand balance of building microgrids (BMGs), yet their distributed nature and volatile response may undermine secure and stable operation. This paper proposes a day-ahead and real-time aggregated control strategy for BMG air conditioning [...] Read more.
Air conditioning loads play a critical role in maintaining the supply–demand balance of building microgrids (BMGs), yet their distributed nature and volatile response may undermine secure and stable operation. This paper proposes a day-ahead and real-time aggregated control strategy for BMG air conditioning loads with user privacy protection. First, an approximate aggregation model is developed based on building heat transfer characteristics, and the aggregated response potential is evaluated by jointly considering user comfort and willingness. Second, without sharing fine-grained user information, a Building Microgrid Operator (BMO)–Load Aggregator (LA) day-ahead distributed-scheduling model is formulated and solved using the alternating direction method of multipliers (ADMM). Finally, to address load fluctuations caused by heterogeneous initial indoor temperature distributions, a real-time control strategy based on State-Queueing (SQ) temperature-state pre-transfer is proposed. Case studies show that, compared with the baseline scheme, the proposed method reduces the system operating cost from CNY 50,694.58 to CNY 47,131.64, a 7% decrease, and decreases load shedding from 1466.35 kWh to 257.31 kWh, an 82% decrease. Meanwhile, the real-time control effectively suppresses power fluctuations in the early control stage, thereby improving both economic performance and response smoothness. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 264 KB  
Article
Timelike Thin-Shell Evolution in Gravitational Collapse: Classical Dynamics and Thermodynamic Interpretation
by Axel G. Schubert
Entropy 2026, 28(1), 96; https://doi.org/10.3390/e28010096 - 13 Jan 2026
Viewed by 93
Abstract
This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for [...] Read more.
This work explores late-time gravitational collapse using timelike thin-shell methods in classical general relativity. A junction surface separates a regular de Sitter interior from a Schwarzschild or Schwarzschild–de Sitter exterior in a post-transient regime with fixed exterior mass M (ADM for Λ+=0), modelling a vacuum–energy core surrounded by an asymptotically classical spacetime. The configuration admits a natural thermodynamic interpretation based on a geometric area functional SshellR2 and Tolman redshift, both derived from classical junction conditions and used as an entropy-like coarse-grained quantity rather than a fundamental statistical entropy. Key results include (i) identification of a deceleration mechanism at the balance radius Rthr=(3M/Λ)1/3 for linear surface equations of state p=wσ; (ii) classification of the allowable radial domain V(R)0 for outward evolution; (iii) bounded curvature invariants throughout the shell-supported spacetime region; and (iv) a mass-scaled frequency bound fcRSξ/(33π) for persistent near-shell spectral modes. All predictions follow from standard Israel junction techniques and provide concrete observational tests. The framework offers an analytically tractable example of regular thin-shell collapse dynamics within classical general relativity, with implications for alternative compact object scenarios. Full article
(This article belongs to the Special Issue Coarse and Fine-Grained Aspects of Gravitational Entropy)
22 pages, 1873 KB  
Review
Electron Transfer-Mediated Heavy Metal(loid) Bioavailability, Rice Accumulation, and Mitigation in Paddy Ecosystems: A Critical Review
by Zheng-Xian Cao, Zhuo-Qi Tian, Hui Guan, Yu-Wei Lv, Sheng-Nan Zhang, Tao Song, Guang-Yu Wu, Fu-Yuan Zhu and Hui Huang
Agriculture 2026, 16(2), 202; https://doi.org/10.3390/agriculture16020202 - 13 Jan 2026
Viewed by 209
Abstract
Electron transfer (ET) is a foundational biogeochemical process in paddy soils, distinctively molded by alternating anaerobic-aerobic conditions from flooding-drainage cycles. Despite extensive research on heavy metal(loid) (denoted as “HM”, e.g., As, Cd, Cr, Hg) dynamics in paddies, ET has not been systematically synthesized [...] Read more.
Electron transfer (ET) is a foundational biogeochemical process in paddy soils, distinctively molded by alternating anaerobic-aerobic conditions from flooding-drainage cycles. Despite extensive research on heavy metal(loid) (denoted as “HM”, e.g., As, Cd, Cr, Hg) dynamics in paddies, ET has not been systematically synthesized as a unifying regulatory mechanism, and the trade-offs of ET-based mitigation strategies remain unclear. These critical gaps have drastically controlled HMs’ mobility, which further modulates bioavailability and subsequent accumulation in rice (Oryza sativa L., a staple sustaining half the global population), posing substantial food safety risks. Alongside progress in electroactive microorganism (EAM) research, extracellular electron transfer (EET) mechanism delineation, and soil electrochemical monitoring, ET’s role in orchestrating paddy soil HM dynamics has garnered unparalleled attention. This review explicitly focuses on the linkage between ET processes and HM biogeochemistry in paddy ecosystems: (1) elucidates core ET mechanisms in paddy soils (microbial EET, Fe/Mn/S redox cycling, organic matter-mediated electron shuttling, rice root-associated electron exchange) and their acclimation to flooded conditions; (2) systematically unravels how ET drives HM valence transformation (e.g., As(V) to As(III), Cr(VI) to Cr(III)), speciation shifts (e.g., exchangeable Cd to oxide-bound Cd), and mobility changes; (3) expounds on ET-regulated HM bioavailability by modulating soil retention capacity and iron plaque formation; (4) synopsizes ET-modulated HM accumulation pathways in rice (root uptake, xylem/phloem translocation, grain sequestration); (5) evaluates key factors (water management, fertilization, straw return) impacting ET efficiency and associated HM risks. Ultimately, we put forward future avenues for ET-based mitigation strategies to uphold rice safety and paddy soil sustainability. Full article
Show Figures

Figure 1

30 pages, 17519 KB  
Article
Cl-Bearing Mineral Microinclusions in Arc Lavas: An Overview of Recent Findings with Some Metallogenic Implications
by Pavel Kepezhinskas, Nikolai Berdnikov, Irina Voinova, Nikita Kepezhinskas, Nadezhda Potapova and Valeria Krutikova
Geosciences 2026, 16(1), 40; https://doi.org/10.3390/geosciences16010040 - 12 Jan 2026
Viewed by 202
Abstract
Quaternary lavas (ankaramite, basalt, basaltic andesite, andesite, dacite) from the Kamchatka, Kurile, Ecuador and Cascade volcanic arcs contain Cl-bearing mineral microinclusions in rock-forming minerals and groundmass volcanic glass. They are represented by chlorargyrite (with a variable amount of native Ag), Cu, Ag, Sn, [...] Read more.
Quaternary lavas (ankaramite, basalt, basaltic andesite, andesite, dacite) from the Kamchatka, Kurile, Ecuador and Cascade volcanic arcs contain Cl-bearing mineral microinclusions in rock-forming minerals and groundmass volcanic glass. They are represented by chlorargyrite (with a variable amount of native Ag), Cu, Ag, Sn, and Zn compounds with Cl and S, Sn- and Pb-Sb oxychlorides compositionally similar to abhurite and nadorite, as well as bismoclite and Cl-F-apatite. The Cl-bearing compounds with chalcophile metals are best approximated by mixtures of chlorargyrite with Cu sulfides, malachite, or azurite. Some Cl-bearing solid microinclusions in magmatic rock-forming minerals could have formed from Cl-rich melts exsolved from arc magmas during differentiation. Alternatively, specific magmatic microinclusions may record the decomposition of primary sulfides in the presence of Cl-bearing magmatic volatiles. Post-magmatic Cl microminerals found in fractures, pores, grain contacts, and groundmass glass are most probably precipitated from hydrothermal fluids accompanying their emplacement at the surface and post-eruption transformations in active fumarole fields. Assemblages of Cl-bearing microminerals with native metal, alloy, sulfide, oxide, and sulfate microinclusions in arc lavas potentially record late-magmatic to post-magmatic stages of formation of the epithermal and possibly porphyry mineralization beneath arc volcanoes. Full article
Show Figures

Figure 1

Back to TopTop