Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (371)

Search Parameters:
Keywords = allosteric inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4197 KiB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Viewed by 325
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

21 pages, 3431 KiB  
Article
Synthesis and Antibacterial Evaluation of an Indole Triazole Conjugate with In Silico Evidence of Allosteric Binding to Penicillin-Binding Protein 2a
by Vidyasrilekha Sanapalli, Bharat Kumar Reddy Sanapalli and Afzal Azam Mohammed
Pharmaceutics 2025, 17(8), 1013; https://doi.org/10.3390/pharmaceutics17081013 - 3 Aug 2025
Viewed by 557
Abstract
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial [...] Read more.
Background: Antibacterial resistance (ABR) poses a major challenge to global health, with methicillin-resistant Staphylococcus aureus (MRSA) being one of the prominent multidrug-resistant strains. MRSA has developed resistance through the expression of Penicillin-Binding Protein 2a (PBP2a), a key transpeptidase enzyme involved in bacterial cell wall biosynthesis. Objectives: The objective was to design and characterize a novel small-molecule inhibitor targeting PBP2a as a strategy to combat MRSA. Methods: We synthesized a new indole triazole conjugate (ITC) using eco-friendly and click chemistry approaches. In vitro antibacterial tests were performed against a panel of strains to evaluate the ITC antibacterial potential. Further, a series of in silico evaluations like molecular docking, MD simulations, free energy landscape (FEL), and principal component analysis (PCA) using the crystal structure of PBP2a (PDB ID: 4CJN), in order to predict the mechanism of action, binding mode, structural stability, and energetic profile of the 4CJN-ITC complex. Results: The compound ITC exhibited noteworthy antibacterial activity, which effectively inhibited the selected strains. Binding score and energy calculations demonstrated high affinity of ITC for the allosteric site of PBP2a and significant interactions responsible for complex stability during MD simulations. Further, FEL and PCA provided insights into the conformational behavior of ITC. These results gave the structural clues for the inhibitory action of ITC on the PBP2a. Conclusions: The integrated in vitro and in silico studies corroborate the potential of ITC as a promising developmental lead targeting PBP2a in MRSA. This study demonstrates the potential usage of rational drug design approaches in addressing therapeutic needs related to ABR. Full article
Show Figures

Figure 1

24 pages, 5906 KiB  
Article
In Silico Mining of the Streptome Database for Hunting Putative Candidates to Allosterically Inhibit the Dengue Virus (Serotype 2) RdRp
by Alaa H. M. Abdelrahman, Gamal A. H. Mekhemer, Peter A. Sidhom, Tarad Abalkhail, Shahzeb Khan and Mahmoud A. A. Ibrahim
Pharmaceuticals 2025, 18(8), 1135; https://doi.org/10.3390/ph18081135 - 30 Jul 2025
Viewed by 475
Abstract
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is [...] Read more.
Background/Objectives: In the last few decades, the dengue virus, a prevalent flavivirus, has demonstrated various epidemiological, economic, and health impacts around the world. Dengue virus serotype 2 (DENV2) plays a vital role in dengue-associated mortality. The RNA-dependent RNA polymerase (RdRp) of DENV2 is a charming druggable target owing to its crucial function in viral reproduction. In recent years, streptomycetes natural products (NPs) have attracted considerable attention as a potential source of antiviral drugs. Methods: Seeking prospective inhibitors that inhibit the DENV2 RdRp allosteric site, in silico mining of the Streptome database was executed. AutoDock4.2.6 software performance in predicting docking poses of the inspected inhibitors was initially conducted according to existing experimental data. Upon the assessed docking parameters, the Streptome database was virtually screened against DENV2 RdRp allosteric site. The streptomycetes NPs with docking scores less than the positive control (68T; calc. −35.6 kJ.mol−1) were advanced for molecular dynamics simulations (MDS), and their binding affinities were computed by employing the MM/GBSA approach. Results: SDB9818 and SDB4806 unveiled superior inhibitor activities against DENV2 RdRp upon MM/GBSA//300 ns MDS than 68T with ΔGbinding values of −246.4, −242.3, and −150.6 kJ.mol−1, respectively. A great consistency was found in both the energetic and structural analyses of the identified inhibitors within the DENV2 RdRp allosteric site. Furthermore, the physicochemical characteristics of the identified inhibitors demonstrated good oral bioavailability. Eventually, quantum mechanical computations were carried out to evaluate the chemical reactivity of the identified inhibitors. Conclusions: As determined by in silico computations, the identified streptomycetes NPs may act as DENV2 RdRp allosteric inhibitors and mandate further experimental assays. Full article
Show Figures

Graphical abstract

23 pages, 1789 KiB  
Review
Multi-Enzyme Synergy and Allosteric Regulation in the Shikimate Pathway: Biocatalytic Platforms for Industrial Applications
by Sara Khan and David D. Boehr
Catalysts 2025, 15(8), 718; https://doi.org/10.3390/catal15080718 - 28 Jul 2025
Viewed by 531
Abstract
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key [...] Read more.
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key enzymes: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, chorismate mutase, and tryptophan synthase. We examine the structural diversity and distribution of these enzymes across evolutionary domains, highlighting conserved catalytic mechanisms alongside species-specific regulatory adaptations. The review covers directed evolution strategies that have transformed naturally regulated enzymes into standalone biocatalysts with enhanced activity and expanded substrate scope, enabling synthesis of non-canonical amino acids and complex organic molecules. Industrial applications demonstrate the pathway’s potential for sustainable production of pharmaceuticals, polymer precursors, and specialty chemicals through engineered microbial platforms. Additionally, we discuss the therapeutic potential of inhibitors targeting pathogenic organisms, particularly their mechanisms of action and antimicrobial efficacy. This comprehensive review establishes the shikimate pathway as a paradigmatic system where understanding allosteric networks enables the rational design of biocatalytic platforms, providing blueprints for biotechnological innovation and demonstrating how evolutionary constraints can be overcome through protein engineering to create superior industrial biocatalysts. Full article
Show Figures

Graphical abstract

27 pages, 4307 KiB  
Review
Subtype-Specific HIV-1 Protease and the Role of Hinge and Flap Dynamics in Drug Resistance: A Subtype C Narrative
by Dean Sherry, Zaahida Sheik Ismail, Tshele Mokhantso and Yasien Sayed
Viruses 2025, 17(8), 1044; https://doi.org/10.3390/v17081044 - 26 Jul 2025
Viewed by 671
Abstract
The HIV-1 aspartic protease is an effective target for the treatment of HIV/AIDS. Current therapy utilizes a selection of nine protease inhibitors (PIs) in combination with other classes of antiretroviral drugs. Although PIs were originally developed based on the knowledge of the HIV-1 [...] Read more.
The HIV-1 aspartic protease is an effective target for the treatment of HIV/AIDS. Current therapy utilizes a selection of nine protease inhibitors (PIs) in combination with other classes of antiretroviral drugs. Although PIs were originally developed based on the knowledge of the HIV-1 subtype B protease, the existence of other HIV-1 subtypes and the effects of drug resistance on currently available PIs have become a major challenge in the treatment of HIV/AIDS. Specifically, the HIV-1 subtype C accounts for more than half of the global HIV infections. Considering the importance and relevance of the subtype C virus, in this timely review we discuss the effect of polymorphisms in the HIV-1 subtype C protease on drug resistance, flap flexibility, and hinge region dynamics. We discuss novel paradigms of protease inhibition that attempt to overcome the limitations of currently available inhibitors which fall short considering genetic diversity and resistance mutations. Full article
(This article belongs to the Special Issue HIV Protease)
Show Figures

Figure 1

12 pages, 2266 KiB  
Article
Allosteric Inhibition of P-Glycoprotein-Mediated Efflux by DMH1
by Zhijun Wang, Chen Xie, Maggie Chou and Jijun Hao
Biomedicines 2025, 13(8), 1798; https://doi.org/10.3390/biomedicines13081798 - 23 Jul 2025
Viewed by 314
Abstract
Background/Objectives: P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, plays a key role in multidrug resistance by actively exporting chemotherapeutic agents and xenobiotics from cells. Overexpression of P-gp significantly reduces intracellular drug accumulation and compromises treatment efficacy. Despite extensive research, clinically approved P-gp inhibitors [...] Read more.
Background/Objectives: P-glycoprotein (P-gp), an ATP-binding cassette (ABC) transporter, plays a key role in multidrug resistance by actively exporting chemotherapeutic agents and xenobiotics from cells. Overexpression of P-gp significantly reduces intracellular drug accumulation and compromises treatment efficacy. Despite extensive research, clinically approved P-gp inhibitors remain elusive due to toxicity, poor specificity, and limited efficacy. This study investigates DMH1, a selective type I BMP receptor inhibitor, as a novel P-gp inhibitor. Methods: DMH1 cytotoxicity was assessed in P-gp-overexpressing (PC3-TxR, K562/Dox) and P-gp-deficient (PC3) cell lines using MTT assays. P-gp inhibition was evaluated using calcein AM retention and daunorubicin (DNR) accumulation assays. Kinetic analysis determined DMH1’s effect on P-gp-mediated transport (Vmax and Km). ATPase activity assays were performed to assess DMH1’s impact on ATP hydrolysis. Preliminary molecular docking (CB-Dock2) was used to predict DMH1’s binding site on the human P-gp structure (PDB ID: 6QEX). Results: DMH1 showed no cytotoxicity in P-gp-overexpressing or deficient cells. It significantly enhanced intracellular accumulation of Calcein AM and DNR, indicating effective inhibition of P-gp function. Kinetic data revealed that DMH1 reduced Vmax without affecting Km, consistent with noncompetitive, allosteric inhibition. DMH1 also inhibited ATPase activity in a dose-dependent manner. Docking analysis suggested DMH1 may bind to an allosteric site in the transmembrane domain, potentially stabilizing the inward-facing conformation. Conclusions: DMH1 is a promising noncompetitive, allosteric P-gp inhibitor that enhances intracellular drug retention without cytotoxicity, supporting its potential as a lead compound to overcome multidrug resistance and improve chemotherapeutic efficacy. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

24 pages, 7124 KiB  
Article
In Silico Discovery of a Novel Potential Allosteric PI3Kα Inhibitor Incorporating 3-(2-Chloro-5-fluorophenyl)isoindolin-1-one to Target Head and Neck Squamous Cell Carcinoma
by Wenqing Jia and Xianchao Cheng
Biology 2025, 14(7), 896; https://doi.org/10.3390/biology14070896 - 21 Jul 2025
Viewed by 439
Abstract
Phosphatidylinositol 3-kinase alpha (PI3Kα) is frequently mutated in head and neck squamous cell carcinoma (HNSCC), leading to the constitutive activation of the PI3K/Akt pathway, which promotes tumor cell proliferation, survival, and metastasis. PI3Kα allosteric inhibitors demonstrate therapeutic potential as both monotherapy and combination [...] Read more.
Phosphatidylinositol 3-kinase alpha (PI3Kα) is frequently mutated in head and neck squamous cell carcinoma (HNSCC), leading to the constitutive activation of the PI3K/Akt pathway, which promotes tumor cell proliferation, survival, and metastasis. PI3Kα allosteric inhibitors demonstrate therapeutic potential as both monotherapy and combination therapy, particularly in patients with PIK3CA mutations or resistance to immunotherapy, through the precise targeting of mutant PI3Kα. Compared to ATP-competitive PI3Kα inhibitors such as Alpelisib, the allosteric inhibitor RLY-2608 exhibits enhanced selectivity for mutant PI3Kα while minimizing the inhibition of wild-type PI3Kα, thereby reducing side effects such as hyperglycemia. To date, no allosteric PI3Kα inhibitors have been approved for clinical use. To develop novel PI3Kα inhibitors with improved safety and efficacy, we employed a scaffold hopping approach to structurally modify RLY-2608 and constructed a compound library. Based on the structural information of the PI3Kα allosteric site, we conducted the systematic virtual screening of 11,550 molecules from databases to identify lead compounds. Through integrated approaches, including molecular docking studies, target validation, druggability evaluation, molecular dynamics simulations, and metabolic pathway and metabolite analyses, we successfully identified a promising novel allosteric PI3Kα inhibitor, H-18 (3-(2-chloro-5-fluorophenyl)isoindolin-1-one). H-18 has not been previously reported as a PI3Kα inhibitor, and provides an excellent foundation for subsequent lead optimization, offering a significant starting point for the development of more potent PI3Kα allosteric inhibitors. Full article
(This article belongs to the Special Issue Protein Kinases: Key Players in Carcinogenesis)
Show Figures

Figure 1

23 pages, 10928 KiB  
Article
Myricetin Potentiates Antibiotics Against Resistant Pseudomonas aeruginosa by Disrupting Biofilm Formation and Inhibiting Motility Through FimX-Mediated c-di-GMP Signaling Interference
by Derong Zeng, Fangfang Jiao, Yuqi Yang, Shuai Dou, Jiahua Yu, Xiang Yu, Yongqiang Zhou, Juan Xue, Xue Li, Hongliang Duan, Yan Zhang, Jingjing Guo and Wude Yang
Biology 2025, 14(7), 859; https://doi.org/10.3390/biology14070859 - 15 Jul 2025
Viewed by 339
Abstract
Pseudomonas aeruginosa biofilm formation is critical to antibiotic resistance and persistence. Targeting cyclic di-GMP (c-di-GMP) signaling, a master biofilm formation and virulence regulator, presents a promising strategy to combat resistant bacterial infections. Myricetin, a natural polyphenolic flavonoid with documented antimicrobial and anti-biofilm activities, [...] Read more.
Pseudomonas aeruginosa biofilm formation is critical to antibiotic resistance and persistence. Targeting cyclic di-GMP (c-di-GMP) signaling, a master biofilm formation and virulence regulator, presents a promising strategy to combat resistant bacterial infections. Myricetin, a natural polyphenolic flavonoid with documented antimicrobial and anti-biofilm activities, may enhance antibiotic efficacy against Pseudomonas aeruginosa. This study evaluated the synergistic effects of myricetin combined with azithromycin, ciprofloxacin, or cefdinir against both standard and drug-resistant Pseudomonas aeruginosa strains. Antibacterial activity, biofilm disruption, and motility inhibition were experimentally assessed, while molecular dynamic (MD) simulations elucidated myricetin’s molecular mechanism of action. Our results suggested that myricetin synergistically potentiated all three antibiotics, reducing c-di-GMP synthesis by 28% (azithromycin), 57% (ciprofloxacin), and 30% (cefdinir). It enhanced bactericidal effects, suppressed biofilm formation, and impaired swimming, swarming, and twitching motility. Computational analyses revealed that myricetin binds allosterically to FimX very well, a key regulator in the c-di-GMP signaling pathway. Hence, myricetin may act as a c-di-GMP inhibitor, reversing biofilm-mediated resistance in Pseudomonas aeruginosa and augmenting antibiotic efficacy. This integrated experimental and computational approach provides a framework for developing anti-virulence and antibiotic combination therapies against recalcitrant Gram-negative pathogens. Full article
Show Figures

Figure 1

29 pages, 6460 KiB  
Article
Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation
by Amanda El Khoury and Christos Papaneophytou
Molecules 2025, 30(14), 2923; https://doi.org/10.3390/molecules30142923 - 10 Jul 2025
Viewed by 878
Abstract
Lactate dehydrogenase (LDH) catalyzes the reversible interconversion of pyruvate and lactate, coupled with the redox cycling of NADH and NAD+. While LDHA has been extensively studied as a therapeutic target, particularly in cancer, due to its role in the Warburg effect, [...] Read more.
Lactate dehydrogenase (LDH) catalyzes the reversible interconversion of pyruvate and lactate, coupled with the redox cycling of NADH and NAD+. While LDHA has been extensively studied as a therapeutic target, particularly in cancer, due to its role in the Warburg effect, LDHB remains underexplored, despite its involvement in the metabolic reprogramming of specific cancer types, including breast and lung cancers. Most known LDH inhibitors are designed against the LDHA isoform and act competitively at the active site. In contrast, LDHB exhibits distinct kinetic properties, substrate preferences, and structural features, warranting isoform-specific screening strategies. In this study, 115 natural compounds previously reported as LDHA inhibitors were systematically evaluated for LDHB inhibition using an integrated in silico and in vitro approach. Virtual screening identified 16 lead phytochemicals, among which luteolin and quercetin exhibited uncompetitive inhibition of LDHB, as demonstrated by enzyme kinetic assays. These findings were strongly supported by molecular docking analyses, which revealed that both compounds bind at an allosteric site located at the dimer interface, closely resembling the binding mode of the established LDHB uncompetitive inhibitor AXKO-0046. In contrast, comparative docking against LDHA confirmed their active-site binding and competitive inhibition, underscoring their isoform-specific behavior. Our findings highlight the necessity of assay conditions tailored to LDHB’s physiological role and demonstrate the application of a previously validated colorimetric assay for high-throughput screening. This work lays the foundation for the rational design of selective LDHB inhibitors from natural product libraries. Full article
Show Figures

Graphical abstract

15 pages, 575 KiB  
Review
Neuroactive Steroids as Novel Promising Drugs in Therapy of Postpartum Depression—Focus on Zuranolone
by Jolanta B. Zawilska and Ewa Zwierzyńska
Int. J. Mol. Sci. 2025, 26(13), 6545; https://doi.org/10.3390/ijms26136545 - 7 Jul 2025
Viewed by 1234
Abstract
Postpartum depression (PPD) remains a significant health concern worldwide. Both non-pharmacological and pharmacological treatments are available for patients with PPD; however, the standard approach involving selective serotonin reuptake inhibitors (SSRIs) and other antidepressants fails to provide a rapid response. This narrative review presents [...] Read more.
Postpartum depression (PPD) remains a significant health concern worldwide. Both non-pharmacological and pharmacological treatments are available for patients with PPD; however, the standard approach involving selective serotonin reuptake inhibitors (SSRIs) and other antidepressants fails to provide a rapid response. This narrative review presents basic clinical and epidemiological data on PPD, summarizes currently used pharmacotherapies of PPD, highlights their limitations, and discusses new therapies based on a revised understanding of the disease’s pathogenesis. Numerous studies indicate that dysregulation of GABAergic neurotransmission, which may result from fluctuating levels of neuroactive steroids during pregnancy and the postpartum period, plays an important role in the complex pathology of PPD. Considering this, neuroactive steroids, which act as positive allosteric modulators of central GABAA receptors (GABAARs), may offer new promising avenues for treating PPD. The first rapid-acting neurosteroid approved by the FDA to treat PPD in women is brexanolone, although its use is constrained by pharmacokinetic properties. The first oral neuroactive steroid-based antidepressant approved by the FDA for PPD is zuranolone. This review discusses the molecular mechanism of zuranolone action and the results of preclinical and clinical studies regarding the effectiveness and safety of the drug in treating PPD. Full article
Show Figures

Figure 1

35 pages, 1877 KiB  
Review
Dysregulation of the Cannabinoid System in Childhood Epilepsy: From Mechanisms to Therapy
by Gloria Montebello and Giuseppe Di Giovanni
Int. J. Mol. Sci. 2025, 26(13), 6234; https://doi.org/10.3390/ijms26136234 - 27 Jun 2025
Viewed by 2236
Abstract
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and [...] Read more.
Epilepsy affects over 12 million children worldwide, with approximately 30% classified as having drug-resistant epilepsy (DRE), often accompanied by neuropsychiatric comorbidities that severely impact quality of life. The endocannabinoid system (ECS) functions as a multifaceted neuromodulatory network regulating neuronal excitability, synaptic plasticity, and immune homeostasis from early life through adolescence and into aging. In pediatric epilepsies, alterations in ECS components, particularly CB1 receptor expression and endocannabinoid levels, reveal disorder-specific vulnerabilities and therapeutic opportunities. Cannabidiol (CBD), a non-psychoactive compound from Cannabis sativa, has shown strong preclinical and clinical efficacy in treating DRE and is approved for Dravet syndrome, Lennox–Gastaut syndrome, and Tuberous Sclerosis Complex. Other ECS-based strategies, such as the use of CB1 receptor-positive allosteric modulators, can selectively enhance endogenous cannabinoid signaling where and when it is active, potentially reducing seizures in conditions like Dravet and absence epilepsy. Similarly, FAAH and MAGL inhibitors may help restore ECS tone without directly activating CB1 receptors. Precision targeting of ECS components based on regional expression and syndrome-specific pathophysiology may optimize seizure control and associated comorbidities. Nonetheless, long-term pediatric use must be approached with caution, given the critical role of the ECS in brain development. Full article
Show Figures

Figure 1

23 pages, 8539 KiB  
Article
Allosteric Coupling in Full-Length Lyn Kinase Revealed by Molecular Dynamics and Network Analysis
by Mina Rabipour, Floyd Hassenrück, Elena Pallaske, Fernanda Röhrig, Michael Hallek, Juan Raul Alvarez-Idaboy, Oliver Kramer and Rocio Rebollido-Rios
Int. J. Mol. Sci. 2025, 26(12), 5835; https://doi.org/10.3390/ijms26125835 - 18 Jun 2025
Viewed by 488
Abstract
Lyn is a multifunctional Src-family kinase (SFK) that regulates immune signaling and has been implicated in diverse types of cancer. Unlike other SFKs, its full-length structure and regulatory dynamics remain poorly characterized. In this study, we present the first long-timescale molecular dynamics analysis [...] Read more.
Lyn is a multifunctional Src-family kinase (SFK) that regulates immune signaling and has been implicated in diverse types of cancer. Unlike other SFKs, its full-length structure and regulatory dynamics remain poorly characterized. In this study, we present the first long-timescale molecular dynamics analysis of full-length Lyn, including the SH3, SH2, and SH1 domains, across wildtype, ligand-bound, and cancer-associated mutant states. Using principal component analysis, dynamic cross-correlation matrices, and network-based methods, we show that ATP binding stabilizes the kinase core and promotes interdomain coordination, while the ATP-competitive inhibitor dasatinib and specific mutations (e.g., E290K, I364N) induce conformational decoupling and weaken long-range communication. We identify integration modules and develop an interface-weighted scoring scheme to rank dynamically central residues. This analysis reveals 44 allosteric hubs spanning SH3, SH2, SH1, and interdomain regions. Finally, a random forest classifier trained on 16 MD-derived features highlights key interdomain descriptors, distinguishing functional states with an AUC of 0.98. Our results offer a dynamic and network-level framework for understanding Lyn regulation and identify potential regulatory hotspots for structure-based drug design. More broadly, our approach demonstrates the value of integrating full-length MD simulations with network and machine learning techniques to probe allosteric control in multidomain kinases. Full article
Show Figures

Graphical abstract

28 pages, 8154 KiB  
Article
Overcoming Clusterin-Induced Chemoresistance in Cancer: A Computational Study Using a Fragment-Based Drug Discovery Approach
by Engelo John Gabriel V. Caro, Marineil C. Gomez, Po-Wei Tsai and Lemmuel L. Tayo
Biology 2025, 14(6), 639; https://doi.org/10.3390/biology14060639 - 30 May 2025
Viewed by 818
Abstract
Clusterin is one of the many known proteins implicated in cancer chemoresistance, which hinders the effectiveness of chemotherapy. This study aimed to design novel inhibitors targeting clusterin using fragment-based drug discovery (FBDD). This approach aims to develop new medicines by identifying small, simple [...] Read more.
Clusterin is one of the many known proteins implicated in cancer chemoresistance, which hinders the effectiveness of chemotherapy. This study aimed to design novel inhibitors targeting clusterin using fragment-based drug discovery (FBDD). This approach aims to develop new medicines by identifying small, simple molecules known as “fragments” that can bind to a specific target, such as a disease-causing protein. In this study, a primary ligand-binding site and an allosteric site on the clusterin molecule were identified through hotspot analysis. We screened commercially available fragment libraries for anti-cancer activity and applied the “rule of three” to ensure drug-like properties. The highest-affinity fragment underwent “fragment-growing” to develop potential drug candidates. After docking and toxicity screening, 194 candidate drugs were identified. Quantitative structure-activity relationship (QSAR) analysis revealed that the chemical size and complexity of the fragments significantly contributed to their binding affinity. Pharmacokinetic analyses of candidate drugs from FBDD followed by molecular dynamics simulation of the top 1 final candidate drug precursor demonstrated comparatively better affinity (average = −34.01 kcal/mol) than the reference compound (average = −6.15 kcal/mol) and significant ligand flexibility. This study offers a potential strategy to identify fragments or molecules that may serve as drugs against clusterin-related chemoresistance. Full article
(This article belongs to the Special Issue Computational Modeling of Drug Delivery)
Show Figures

Graphical abstract

15 pages, 5633 KiB  
Article
Mechanistic Insights into the Mechanism of Allosteric Inhibition of Ubiquitin-Specific Protease 7 (USP7)
by Xuebin Wang, Ning Liu, Nuan Li, Shaoyong Lu and Zongtao Chai
Biomolecules 2025, 15(6), 749; https://doi.org/10.3390/biom15060749 - 22 May 2025
Viewed by 737
Abstract
Ubiquitin-specific protease 7 (USP7), a deubiquitinase enzyme responsible for removing ubiquitin (Ub) from target proteins, plays a crucial role in oncogenic pathways and has been implicated in various human diseases. X-ray crystallography has revealed distinct conformations of USP7, including apo (ligand-free), allosteric inhibitor-, [...] Read more.
Ubiquitin-specific protease 7 (USP7), a deubiquitinase enzyme responsible for removing ubiquitin (Ub) from target proteins, plays a crucial role in oncogenic pathways and has been implicated in various human diseases. X-ray crystallography has revealed distinct conformations of USP7, including apo (ligand-free), allosteric inhibitor-, and Ub-bound states. However, the dynamic mechanisms underlying the allosteric inhibition of USP7 remain unclear. This study investigates the effect of allosteric inhibitor binding on the dynamics of USP7 through multiple replica molecular dynamics simulations. Our results demonstrate that Ub binding stabilizes the USP7 conformation, while allosteric inhibitor binding increases flexibility and variability in the fingers and palm domains of USP7. Furthermore, our analysis of USP7 local regions reveals that allosteric inhibitor binding not only restrains the dynamics of the C-terminal Ub binding site, thereby impeding the accessibility of Ub to USP7, but also disrupts the proper alignment of the catalytic triad (Cys223-His464-Asp481) in USP7. Additionally, community network analysis indicates that intra-domain communications within the fingers domain in USP7 are significantly enhanced upon allosteric inhibitor binding. This study reveals that the binding of an allosteric inhibitor induces a dynamic shift in enzyme’s conformational equilibrium, effectively disrupting its catalytic activity through allosteric modulation. Full article
Show Figures

Figure 1

24 pages, 5400 KiB  
Article
Design, Synthesis, Anticancer Evaluation and Molecular Docking of Pyrimidine, Pyrido[4,3-d]pyrimidine and 5,6,7,8-Tetrahydropyrido[3,4-d]pyrimidine Derivatives as Novel KRAS-G12D Inhibitors and PROTACs
by Hailong Yang, Lu Gan and Huabei Zhang
Pharmaceuticals 2025, 18(5), 696; https://doi.org/10.3390/ph18050696 - 8 May 2025
Viewed by 1740
Abstract
Background: KRAS-G12D mutations drive 20–50% of pancreatic/biliary cancers yet remain challenging to target due to GTP-pocket conservation and high cellular GTP levels. While allosteric inhibitors targeting the SWII pocket (e.g., MRTX1133) show promise, limited chemical diversity and paradoxical cellular/enzymatic activity relationships necessitate [...] Read more.
Background: KRAS-G12D mutations drive 20–50% of pancreatic/biliary cancers yet remain challenging to target due to GTP-pocket conservation and high cellular GTP levels. While allosteric inhibitors targeting the SWII pocket (e.g., MRTX1133) show promise, limited chemical diversity and paradoxical cellular/enzymatic activity relationships necessitate the exploration of novel scaffolds. This study aims to develop KRAS-G12D inhibitors and PROTACs to offer a selection of new chemical entities through systematic structure–activity optimization and evaluate their therapeutic potential through PROTAC derivatization. Methods: Eleven compounds featuring heterocyclic cores (pyrimidine/pyrido[4,3-d]pyrimidine/5,6,7,8-tetrahydroprodo[3,4-d]pyrimidine) were designed via structure-based drug design. Antiproliferative activity against KRAS-G12D (Panc1), KRAS-G13D (HCT116) and wild-type (A549) cells was assessed using the CCK-8 assay. KRAS-G12D enzymatic inhibition was measured using a GTPase activity assay. Molecular docking simulations (Sybyl 2.0; PDB:7RPZ) elucidated binding modes. Two PROTACs were synthesized from lead compounds by conjugating E3 ligase linkers. All the novel inhibitors and PROTACs were characterized by means of NMR or HRMS. Results: Compound 10c demonstrated selective anti-proliferation in Panc1 cells (IC50 = 1.40 μM) with 4.9-fold greater selectivity over wild-type cells, despite weak enzymatic inhibition (IC50 > 10 μM). Docking revealed critical hydrogen bonds between its protonated 3,8-diazabicyclo[3.2.1]octane moiety and Asp12/Gly60. The enzymatic inhibitor 10k showed potent KRAS-G12D inhibition (IC50 = 0.009 μM) through homopiperazine-mediated interactions with Glu92/His95. Derived PROTACs 26a/b exhibited reduced potency (IC50 = 3–5 μM vs. parental 10k: 2.22 μM), potentially due to impaired membrane permeability. Conclusions: Eleven novel KRAS-G12D inhibitors with a seven-membered ring pharmacophore were synthesized. Compound 10c showed strong anti-proliferative activity, while 10k exhibited potent enzymatic inhibition. Two PROTACs were designed but showed no clear advantage over 10k. This study provides valuable insights for KRAS-targeted drug development. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop