Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation
Abstract
1. Introduction
2. Results
2.1. Searching for Natural LDHB Inhibitors
2.1.1. Constructing a Virtual Library of Natural Compounds
2.1.2. Molecular Docking
2.1.3. Drug-Likeness Analysis
2.2. In Vitro Evaluation of Potential LDHB Inhibitors
2.3. Kinetic Studies
2.4. Molecular Interaction Analysis
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Preparation of Virtual Library of Natural Compounds
4.3. Virtual Screening
4.4. ADME and Toxicity Assessment of Selected Phytochemicals
4.5. LDHB Activity Assay
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Farhana, A.; Lappin, S.L. Biochemistry, lactate dehydrogenase. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Gladden, L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004, 558, 5–30. [Google Scholar] [CrossRef]
- Adeva, M.; González-Lucán, M.; Seco, M.; Donapetry, C. Enzymes involved in l-lactate metabolism in humans. Mitochondrion 2013, 13, 615–629. [Google Scholar] [CrossRef]
- Maeda, M.; Ko, M.; Mane, M.M.; Cohen, I.J.; Shindo, M.; Vemuri, K.; Serganova, I.; Blasberg, R. Genetic and drug inhibition of LDH-A: Effects on murine gliomas. Cancers 2022, 14, 2306. [Google Scholar] [CrossRef] [PubMed]
- Read, J.A.; Winter, V.J.; Eszes, C.M.; Sessions, R.B.; Brady, R.L. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 2001, 43, 175–185. [Google Scholar] [CrossRef]
- Papaneophytou, C. The Warburg effect: Is it always an enemy? Front. Biosci. 2024, 29, 402. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, C.; Zhang, T.; Chang, C.Y.; Wang, J.; Bazile, L.; Zhang, L.; Haffty, B.G.; Hu, W.; Feng, Z. Metabolic enzyme LDHA activates Rac1 GTPase as a noncanonical mechanism to promote cancer. Nat. Metab. 2022, 4, 1830–1846. [Google Scholar] [CrossRef] [PubMed]
- Sharma, D.; Singh, M.; Rani, R. Role of LDH in tumor glycolysis: Regulation of LDHA by small molecules for cancer therapeutics. Semin. Cancer Biol. 2022, 87, 184–195. [Google Scholar] [CrossRef]
- Ždralević, M.; Marchiq, I.; de Padua, M.M.C.; Parks, S.K.; Pouysségur, J. Metabolic plasiticy in cancers-distinct role of glycolytic enzymes GPI, LDHs or membrane transporters MCTs. Front. Oncol. 2017, 7, 313. [Google Scholar] [CrossRef]
- Claps, G.; Faouzi, S.; Quidville, V.; Chehade, F.; Shen, S.; Vagner, S.; Robert, C. The multiple roles of LDH in cancer. Nat. Rev. Clin. Oncol. 2022, 19, 749–762. [Google Scholar] [CrossRef]
- Dennison, J.B.; Molina, J.R.; Mitra, S.; González-Angulo, A.M.; Balko, J.M.; Kuba, M.G.; Sanders, M.E.; Pinto, J.A.; Gómez, H.L.; Arteaga, C.L.; et al. Lactate dehydrogenase B: A metabolic marker of response to neoadjuvant chemotherapy in breast cancer. Clin. Cancer Res. 2013, 19, 3703–3713. [Google Scholar] [CrossRef] [PubMed]
- McCleland, M.L.; Adler, A.S.; Shang, Y.; Hunsaker, T.; Truong, T.; Peterson, D.; Torres, E.; Li, L.; Haley, B.; Stephan, J.-P.; et al. An integrated genomic screen identifies LDHB as an essential gene for triple-negative breast cancer. Cancer Res. 2012, 72, 5812–5823. [Google Scholar] [CrossRef]
- McCleland, M.L.; Adler, A.S.; Deming, L.; Cosino, E.; Lee, L.; Blackwood, E.M.; Solon, M.; Tao, J.; Li, L.; Shames, D.; et al. Lactate dehydrogenase B is required for the growth of KRAS-dependent lung adenocarcinomas. Clin. Cancer Res. 2013, 19, 773–784. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Chen, Y.; Bai, P.; Wang, J.; Liu, Z.; Wang, T.; Cai, Q. LDHB may be a significant predictor of poor prognosis in osteosarcoma. Am. J. Transl. Res. 2016, 8, 4831–4843. [Google Scholar]
- Zha, X.; Wang, F.; Wang, Y.; He, S.; Jing, Y.; Wu, X.; Zhang, H. Lactate dehydrogenase B is critical for hyperactive mTOR-mediated tumorigenesis. Cancer Res. 2011, 71, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Pan, X.; Fan, Z.; Xia, J.; Ren, X. Lactate dehydrogenase B as a metabolism-related marker for immunotherapy in head and neck squamous cell carcinoma. Cell. Signal. 2024, 120, 111200. [Google Scholar] [CrossRef]
- Hu, X.; Huang, Z.; Li, L. LDHB mediates histone lactylation to activate PD-L1 and promote ovarian cancer immune escape. Cancer Investig. 2025, 43, 70–79. [Google Scholar] [CrossRef]
- Brisson, L.; Bański, P.; Sboarina, M.; Dethier, C.; Danhier, P.; Fontenille, M.J.; Van Hée, V.F.; Vazeille, T.; Tardy, M.; Falces, J.; et al. Lactate dehydrogenase B controls lysosome activity and autophagy in cancer. Cancer Cell 2016, 30, 418–431. [Google Scholar] [CrossRef]
- Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; et al. Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis. 2013, 4, e838. [Google Scholar] [CrossRef]
- Li, Y.J.; Lei, Y.H.; Yao, N.; Wang, C.R.; Hu, N.; Ye, W.C.; Zhang, D.M.; Chen, Z.S. Autophagy and multidrug resistance in cancer. Chin. J. Cancer 2017, 36, 52. [Google Scholar] [CrossRef]
- Shi, L.; Yan, H.; An, S.; Shen, M.; Jia, W.; Zhang, R.; Zhao, L.; Huang, G.; Liu, J. SIRT5-mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer. Mol. Oncol. 2019, 13, 358–375. [Google Scholar] [CrossRef] [PubMed]
- Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; et al. Targeting lactate-fueled respiration selectively kills hypoxic tumor cells in mice. J. Clin. Investig. 2008, 118, 3930–3942. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, K.M.; Scarbrough, P.M.; Ribeiro, A.; Richardson, R.; Yuan, H.; Sonveaux, P.; Landon, C.D.; Chi, J.T.; Pizzo, S.; Schroeder, T.; et al. Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS ONE 2013, 8, e75154. [Google Scholar] [CrossRef] [PubMed]
- Dhup, S.; Dadhich, R.K.; Porporato, P.E.; Sonveaux, P. Multiple biological activities of lactic acid in cancer: Influences on tumor growth, angiogenesis and metastasis. Curr. Pharm. Des. 2012, 18, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Leite, T.C.; Coelho, R.G.; Da Silva, D.; Coelho, W.S.; Marinho-Carvalho, M.M.; Sola-Penna, M. Lactate downregulates the glycolytic enzymes hexokinase and phosphofructokinase in diverse tissues from mice. FEBS Lett. 2011, 585, 92–98. [Google Scholar] [CrossRef]
- Altinoz, M.A.; Ozpinar, A. Oxamate targeting aggressive cancers with special emphasis to brain tumors. Biomed. Pharmacother. 2022, 147, 112686. [Google Scholar] [CrossRef]
- Li, X.; Lu, W.; Hu, Y.; Wen, S.; Qian, C.; Wu, W.; Huang, P. Effective inhibition of nasopharyngeal carcinoma in vitro and in vivo by targeting glycolysis with oxamate. Int. J. Oncol. 2013, 43, 1710–1718. [Google Scholar] [CrossRef]
- Cheng, A.; Zhang, P.; Wang, B.; Yang, D.; Duan, X.; Jiang, Y.; Xu, T.; Jiang, Y.; Shi, J.; Ding, C.; et al. Aurora-A mediated phosphorylation of LDHB promotes glycolysis and tumor progression by relieving the substrate-inhibition effect. Nat. Commun. 2019, 10, 5566. [Google Scholar] [CrossRef]
- Shibata, S.; Sogabe, S.; Miwa, M.; Fujimoto, T.; Takakura, N.; Naotsuka, A.; Kitamura, S.; Kawamoto, T.; Soga, T. Identification of the first highly selective inhibitor of human lactate dehydrogenase B. Sci. Rep. 2021, 11, 21353. [Google Scholar] [CrossRef]
- Vlasiou, M.; Nicolaidou, V.; Papaneophytou, C. Targeting lactate dehydrogenase-B as a strategy to fight cancer: Identification of potential inhibitors by In silico analysis and in vitro screening. Pharmaceutics 2023, 15, 2411. [Google Scholar] [CrossRef]
- Papaneophytou, C.; Zervou, M.-E.; Theofanous, A. Optimization of a colorimetric assay to determine lactate dehydrogenase B activity using design of experiments. SLAS Discov. 2021, 26, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Nasim, N.; Sandeep, I.S.; Mohanty, S. Plant-derived natural products for drug discovery: Current approaches and prospects. Nucleus 2022, 65, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Seidel, V. Plant-derived chemicals: A source of inspiration for new drugs. Plants 2020, 9, 1562. [Google Scholar] [CrossRef]
- Hua, F.; Shang, S.; Hu, Z.W. Seeking new anti-cancer agents from autophagy-regulating natural products. J. Asian Nat. Prod. Res. 2017, 19, 305–313. [Google Scholar] [CrossRef]
- Lee, D.Y.; Song, M.Y.; Kim, E.H. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: Mechanisms and therapeutic perspectives with phytochemicals. Antioxidants 2021, 10, 743. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Xiong, Y.; Qiao, T.; Li, X.; Jia, L.; Han, Y. Lactate dehydrogenase A: A key player in carcinogenesis and potential target in cancer therapy. Cancer Med. 2018, 7, 6124–6136. [Google Scholar] [CrossRef]
- Han, J.H.; Lee, E.J.; Park, W.; Ha, K.T.; Chung, H.S. Natural compounds as lactate dehydrogenase inhibitors: Potential therapeutics for lactate dehydrogenase inhibitors-related diseases. Front. Pharmacol. 2023, 14, 1275000. [Google Scholar] [CrossRef]
- Yao, H.; Yang, F.; Li, Y. Natural products targeting human lactate dehydrogenases for cancer therapy: A mini review. Front. Chem. 2022, 10, 1013670. [Google Scholar] [CrossRef]
- Ikeda, M. Inhibition kinetics of NAD-linked enzymes by gossypol acetic acid. Andrologia 1990, 22, 409–416. [Google Scholar] [CrossRef]
- Gomez, M.S.; Piper, R.C.; Hunsaker, L.A.; Royer, R.E.; Deck, L.M.; Makler, M.T.; Vander Jagt, D.L. Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum. Mol. Biochem. Parasit 1997, 90, 235–246. [Google Scholar] [CrossRef]
- Yu, Y.; Deck, J.A.; Hunsaker, L.A.; Deck, L.M.; Royer, R.E.; Goldberg, E.; Vander Jagt, D.L. Selective active site inhibitors of human lactate dehydrogenases A4, B4, and C4. Biochem. Pharmacol. 2001, 62, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Di Magno, L.; Coluccia, A.; Bufano, M.; Ripa, S.; La Regina, G.; Nalli, M.; Di Pastena, F.; Canettieri, G.; Silvestri, R.; Frati, L. Discovery of novel human lactate dehydrogenase inhibitors: Structure-based virtual screening studies and biological assessment. Eur. J. Med. Chem. 2022, 240, 114605. [Google Scholar] [CrossRef] [PubMed]
- Yırtıcı, Ü. Natural flavonoids as promising lactate dehydrogenase A inhibitors: Comprehensive in vitro and in silico analysis. Arch. Pharm. 2024, 357, e2400455. [Google Scholar] [CrossRef]
- Ahmed, S.S.; Rahman, M.O.; Alqahtani, A.S.; Sultana, N.; Almarfadi, O.M.; Ali, M.A.; Lee, J. Anticancer potential of phytochemicals from Oroxylum indicum targeting Lactate Dehydrogenase A through bioinformatic approach. Toxicol. Rep. 2023, 10, 56–75. [Google Scholar] [CrossRef]
- Granchi, C.; Bertini, S.; Macchia, M.; Minutolo, F. Inhibitors of lactate dehydrogenase isoforms and their therapeutic potentials. Curr. Med. Chem. 2010, 17, 672–697. [Google Scholar] [CrossRef] [PubMed]
- McInnes, C. Virtual screening strategies in drug discovery. Curr. Opin. Chem. Biol. 2007, 11, 494–502. [Google Scholar] [CrossRef]
- Truchon, J.F.; Bayly, C.I. Evaluating virtual screening methods: Good and bad metrics for the “early recognition” problem. J. Chem. Inf. Model. 2007, 47, 488–508. [Google Scholar] [CrossRef]
- Sadybekov, A.V.; Katritch, V. Computational approaches streamlining drug discovery. Nature 2023, 616, 673–685. [Google Scholar] [CrossRef]
- Li, W.; Cui, X.; Chen, Z. Screening of lactate dehydrogenase inhibitor from bioactive compounds in natural products by electrophoretically mediated microanalysis. J. Chromatogr. A 2021, 1656, 462554. [Google Scholar] [CrossRef]
- Li, S.; Liu, S.; Liu, Z.; Liu, C.; Song, F.; Pi, Z. Bioactivity screening, extraction, and separation of lactate dehydrogenase inhibitors from Polygala tenuifolia Willd. based on a hyphenated strategy. J. Sep. Sci. 2017, 40, 1385–1395. [Google Scholar] [CrossRef]
- Cheng, G.; Pi, Z.; Zheng, Z.; Liu, S.; Liu, Z.; Song, F. Magnetic nanoparticles-based lactate dehydrogenase microreactor as a drug discovery tool for rapid screening inhibitors from natural products. Talanta 2020, 209, 120554. [Google Scholar] [CrossRef] [PubMed]
- Boudreau, A.; Purkey, H.E.; Hitz, A.; Robarge, K.; Peterson, D.; Labadie, S.; Kwong, M.; Hong, R.; Gao, M.; Del Nagro, C.; et al. Metabolic plasticity underpins innate and acquired resistance to LDHA inhibition. Nat. Chem. Biol. 2016, 12, 779–786. [Google Scholar] [CrossRef]
- Friberg, A.; Rehwinkel, H.; Nguyen, D.; Pütter, V.; Quanz, M.; Weiske, J.; Eberspächer, U.; Heisler, I.; Langer, G. Structural evidence for isoform-selective allosteric inhibition of lactate dehydrogenase A. ACS Omega 2020, 5, 13034–13041. [Google Scholar] [CrossRef]
- Shu, Y.; Yue, J.; Li, Y.; Yin, Y.; Wang, J.; Li, T.; He, X.; Liang, S.; Zhang, G.; Liu, Z.; et al. Development of human lactate dehydrogenase a inhibitors: High-throughput screening, molecular dynamics simulation and enzyme activity assay. J. Comput. Aided Mol. Des. 2024, 38, 28. [Google Scholar] [CrossRef] [PubMed]
- Vesell, E.S. Lactate dehydrogenase Isozymes: Substrate inhibition in various human tissues. Science 1965, 150, 1590–1593. [Google Scholar] [CrossRef] [PubMed]
- Vanderlinde, R.E. Measurement of total lactate dehydrogenase activity. Ann. Clin. Lab. Sci. 1985, 15, 13–31. [Google Scholar]
- Ždralević, M.; Brand, A.; Di Ianni, L.; Dettmer, K.; Reinders, J.; Singer, K.; Peter, K.; Schnell, A.; Bruss, C.; Decking, S.M.; et al. Double genetic disruption of lactate dehydrogenases A and B is required to ablate the “Warburg effect” restricting tumor growth to oxidative metabolism. J. Biol. Chem. 2018, 293, 15947–15961. [Google Scholar] [CrossRef]
- Urbańska, K.; Orzechowski, A. Unappreciated role of LDHA and LDHB to control apoptosis and autophagy in tumor cells. Int. J. Mol. Sci. 2019, 20, 2085. [Google Scholar] [CrossRef]
- Osis, G.; Traylor, A.M.; Black, L.M.; Spangler, D.; George, J.F.; Zarjou, A.; Verlander, J.W.; Agarwal, A. Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am. J. Physiol. Renal Physiol. 2021, 320, F706–F718. [Google Scholar] [CrossRef]
- Świderek, K.; Paneth, P. Differences and similarities in binding of pyruvate and l-lactate in the active site of M4 and H4 isoforms of human lactate dehydrogenase. Arch. Biochem. Biophys. 2011, 505, 33–41. [Google Scholar] [CrossRef]
- Wang, X.; Zhuang, Y.; Wang, Y.; Jiang, M.; Yao, L. The recent developments of camptothecin and its derivatives as potential anti-tumor agents. Eur. J. Med. Chem. 2023, 260, 115710. [Google Scholar] [CrossRef] [PubMed]
- Sayers, E.W.; Barrett, T.; Benson, D.A.; Bolton, E.; Bryant, S.H.; Canese, K.; Chetvernin, V.; Church, D.M.; DiCuccio, M.; Federhen, S.; et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2010, 39, D38–D51. [Google Scholar] [CrossRef]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Meng, E.C.; Couch, G.S.; Croll, T.I.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Structure visualization for researchers, educators, and developers. Protein Sci. 2021, 30, 70–82. [Google Scholar] [CrossRef] [PubMed]
- Theerawatanasirikul, S.; Lekcharoensuk, P. Virtual screening of catural compounds targeting proteases of coronaviruses and picornaviruses. In Silico Modeling of Drugs Against Coronaviruses: Computational Tools and Protocols; Roy, K., Ed.; Springer: New York, NY, USA, 2021; pp. 661–681. [Google Scholar]
- Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical Biology: Methods and Protocols; Hempel, J.E., Williams, C.H., Hong, C.C., Eds.; Springer: New York, NY, USA, 2015; pp. 243–250. [Google Scholar]
- Banerjee, P.; Kemmler, E.; Dunkel, M.; Preissner, R. ProTox 3.0: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2024, 52, W513–W520. [Google Scholar] [CrossRef]
- Borba, J.V.B.; Alves, V.M.; Braga, R.C.; Korn, D.R.; Overdahl, K.; Silva, A.C.; Hall, S.U.S.; Overdahl, E.; Kleinstreuer, N.; Strickland, J.; et al. STopTox: An in silico alternative to animal testing for acute systemic and topical toxicity. Environ. Health Perspect. 2022, 130, 27012. [Google Scholar] [CrossRef]
- Copeland, R.A. Reversible inhibitors. In Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 266–304. [Google Scholar]
Study | Main Outcomes | Reference |
---|---|---|
1 | A review on the potential of natural compounds as LDH inhibitors. | [38] |
2 | A screening of LDH inhibitors from natural bioactive compounds using electrophoretically mediated microanalysis (EMMA). Quercetin, luteolin, and ursolic acid were identified as potent LDH inhibitors. | [50] |
3 | A review of LDH inhibition potential across diverse structural classes including phenolics, alkaloids, and carotenoids. | [39] |
4 | A screening of potential LDHA inhibitors from Polygala tenuifolia. Sibiricose A5, 3,6′-di-O-sinapoyl-sucrose, glomeratose A, tenuifoliside B, and tenuifoliside C emerged as LDHA inhibitors | [51] |
5 | The inhibitory effects of 17 flavonoids on LDHA were analyzed, with fisetin demonstrating the strongest activity. | [44] |
6 | A magnetic nanoparticle-based assay was employed to identify LDH inhibitors from Rhubarb and Polygonum cuspidatum. In total, 12 potential inhibitors were successfully detected and characterized. | [52] |
7 | A total of 52 phytochemicals derived from the plant species Oroxylum indicum (L.) Kurz were screened against LDHA using a bioinformatics approach. Oroxindin, Chrysin-7-O-glucuronide, and Oroxin A were identified as potential inhibitors. | [45] |
Parameters | Camptothecin | Fisetin | Luteolin | Quercetin | |
---|---|---|---|---|---|
Physicochemical Properties | Formula | C20H16N2O4 | C15H10O6 | C15H10O6 | C15H10O7 |
Molecular weight | 348.35 | 286.24 | 286.24 | 302.24 | |
H-bond acceptors | 5 | 6 | 6 | 7 | |
H-bond donors | 1 | 1 | 4 | 5 | |
Molar refractivity | 95.31 | 76.01 | 76.01 | 78.03 | |
TPSA (A) | 81.42 | 111.13 | 111.13 | 131.36 | |
Lipophilicity | Log Po/w (iLOGP) | 2.49 | 1.5 | 1.86 | 1.63 |
Log Po/w (XLOGP3) | 1.74 | 1.97 | 2.53 | 1.54 | |
Log Po/w (WLOGP) | 1.82 | 2.28 | 2.28 | 1.99 | |
Log Po/w (MLOGP) | 1.64 | −0.03 | −0.03 | −0.56 | |
Log Po/w (SILICOS-IT) | 3.29 | 2.03 | 2.03 | 1.54 | |
Consensus Log Po/w | 2.2 | 1.55 | 1.73 | 1.23 | |
Water Solubility | Log S (SILICOS-IT) | −5.83 | −3.35 | −3.82 | −3.82 |
Solubility (mg/mg; mol/L) | 5.20 × 10−4; 1.49 × 10−6 | 1.27 × 10−1; 4.43 × 10−4 | 4.29 × 10−2; 1.50 × 10−4 | 1.73 × 10−1; 5.73 × 10−4 | |
Class | Moderately soluble | Soluble | Soluble | Soluble | |
Pharmacokinetics | GI absorption | High | High | High | High |
BBB permeant | No | No | No | No | |
P-gp substrate | Yes | No | No | No | |
CYP1A2 inhibitor | Yes | Yes | Yes | Yes | |
CYP2C19 inhibitor | No | No | No | No | |
CYP2C9 inhibitor | Yes | No | No | No | |
CYP2D6 inhibitor | No | Yes | Yes | Yes | |
CYP3A4 inhibitor | Yes | Yes | Yes | Yes | |
Log Kp (skin permeation) (cm/s) | −7.19 | −6.65 | −6.25 | −7.05 | |
Drug-Likeness | Lipinski | Yes; 0 violations | Yes; 0 violations | Yes; 0 violations | Yes; 0 violations |
Ghose | Yes | Yes | Yes | Yes | |
Bioavailability score | 0.55 | 0.55 | 0.55 | 0.55 | |
Medicinal Chemistry | PAINS | 0 alerts | 1 alert: catechol_A | 1 alert: catechol_A | 1 alert: catechol_A |
Lead-likeness | Yes | Yes | Yes | Yes | |
Synthetic accessibility | 3.84 | 3.16 | 3.16 | 3.23 |
Classification | Target | Camptothecin | Fisetin | Luteolin | Quercetin |
---|---|---|---|---|---|
Organ toxicity | Hepatotoxicity | Inactive (0.83) | Inactive (0.70) | Inactive (0.69) | Inactive (0.69) |
Neurotoxicity | Active (0.74) | Inactive (0.88) | Inactive (0.89) | Inactive (0.89) | |
Nephrotoxicity | Active (0.61) | Active (0.57) | Active (0.62) | Active (0.62) | |
Respiratory toxicity | Active (0.70) | Active (0.82) | Active (0.83) | Active (0.83) | |
Cardiotoxicity | Inactive (0.73) | Inactive (0.93) | Inactive (0.99) | Inactive (0.99) | |
Toxicity endpoints | Carcinogenicity | Inactive (0.57) | Active (0.71) | Active (0.68) | Active (0.68) |
Immunotoxicity | Active (0.99) | Inactive (0.51) | Inactive (0.97) | Inactive (0.87) | |
Mutagenicity | Inactive (0.59) | Inactive (0.53) | Active (0.51) | Active (0.51) | |
Cytotoxicity | Active (0.98) | Inactive (0.98) | Inactive (0.99) | Inactive (0.99) | |
Ecotoxicity | Inactive (0.63) | Inactive (0.54) | Inactive (0.53) | Inactive (0.53) | |
Clinical toxicity | Active (0.77) | Inactive (0.54) | Inactive (0.53) | Inactive (0.53) | |
Tox21–nuclear receptor signaling pathways | Aryl hydrocarbon Receptor (AhR) | Inactive (0.91) | Active (0.84) | Active (0.91) | Active (0.91) |
Androgen receptor | Inactive (0.99) | Inactive (0.99) | Inactive (0.99) | Inactive (0.99) | |
Androgen receptor ligand-binding domain (AR-LBD) | Inactive (0.98) | Inactive (0.72) | Inactive (0.97) | Inactive (0.97) | |
Aromatase | Inactive (0.66) | Inactive (0.88) | Inactive (0.91) | Inactive (0.91) | |
Estrogen receptor alpha | Inactive (0.95) | Active (0.69) | Active (0.87) | Active (0.87) | |
Estrogen receptor ligand-binding domain (ER-LBD) | Inactive (0.99) | Active (0.86) | Active (0.95) | Active (0.95) | |
Peroxisome proliferator activated receptor gamma | Inactive (0.93) | Inactive (0.98) | Inactive (0.98) | Inactive (0.98) | |
Tox21–stress response pathways | Nuclear factor (erythroid-derived 2)-like 2/antioxidant responsive element | Inactive (0.69) | Inactive (0.98) | Inactive (0.99) | Inactive (0.99) |
Heat shock factor response element | Inactive (0.69) | Inactive (0.98) | Inactive (0.99) | Inactive (0.99) | |
Mitochondrial membrane potential | Inactive (0.58) | Active (0.82) | Active (1.00) | Active (1.00) | |
Phosphoprotein (Tumor Suppressor) p53 | Active (0.54) | Inactive (0.97) | Inactive (0.97) | Inactive (0.97) | |
ATPase family AAA domain-containing protein 5 (ATAD5) | Inactive (0.98) | Inactive (0.77) | Inactive (0.99) | Inactive (0.99) |
Endpoint | Camptothecin | Fisetin | Luteolin | Quercetin |
---|---|---|---|---|
Acute inhalation toxicity | Non-toxic (74%) | Non-Toxic (67%) | Non-Toxic (69%) | Non-Toxic (69%) |
Acute oral toxicity | Toxic (90%) | Non-Toxic (75%) | Non-Toxic (78%) | Non-Toxic (72%) |
Acute dermal toxicity | Non-Toxic (68%) | Toxic (69%) | Toxic (64%) | Toxic (64%) |
Eye irritation and corrosion | Toxic (71%) | Toxic (57%) | Toxic (51%) | Toxic (51%) |
Skin sensitization | Non-Sensitizer (70%) | Sensitizer (80%) | Sensitizer (70%) | Sensitizer (70%) |
Skin irritation and corrosion | Negative (70%) | Negative (90%) | Negative (80%) | Negative (80%) |
Luteolin (μΜ) | ||||||||
---|---|---|---|---|---|---|---|---|
Control | 10 | 20 | 30 | 40 | 50 | 75 | 100 | |
Lactate | ||||||||
Vmax (mU/mL) | 1020 ± 28 | 942 ± 31 | 888 ± 16 | 832 ± 21 | 749.2 ± 17 | 624 ± 24 | 506 ± 15 | 406 ± 22 |
Km (mΜ) | 18.6 ± 1.6 | 17.6 ± 1.3 | 17.2 ± 1.6 | 16.5 ± 1.2 | 15.9 ± 1.1 | 14.3 ± 2.1 | 10.5 ± 0.9 | 8.5 ± 1.0 |
NAD+ | ||||||||
Vmax (mU/mL) | 1006 ± 35 | 945 ± 27 | 868 ± 35 | 774 ± 32 | 664 ± 40 | 563 ± 29 | 456 ± 27 | 417 ± 22 |
Km (μΜ) | 311 ± 19 | 309 ± 19 | 299 ± 21 | 286 ± 25 | 258 ± 32 | 238 ± 22 | 189 ± 19 | 173 ± 15 |
Quercetin (μΜ) | ||||||||
Control | 10 | 20 | 30 | 40 | 50 | 75 | 100 | |
Lactate | ||||||||
Vmax (mU/mL) | 1020 ± 28 | 938 ± 29 | 881 ± 19 | 791 ± 37 | 689 ± 53 | 621 ± 23 | 557 ± 37 | 478 ± 26 |
Km (mΜ) | 18.6 ± 1.6 | 17.1 ± 2.0 | 16.5 ± 1.9 | 15.8 ± 1.4 | 14.4 ± 1.1 | 13.3 ± 1.3 | 12.2 ± 1.1 | 11.8 ± 1.3 |
NAD+ | ||||||||
Vmax (mU/mL) | 1006 ± 35 | 952 ± 36 | 861 ± 22 | 761 ± 52 | 701 ± 44 | 605 ± 46 | 504 ± 44 | 454 ± 33 |
Km (μΜ) | 311 ± 19 | 298 ± 29 | 267 ± 24 | 254 ± 27 | 220 ± 19 | 209 ± 25 | 178 ± 16 | 158 ± 15 |
Parameter | Luteolin | Quercetin | ||
---|---|---|---|---|
Lactate | NAD+ | Lactate | NAD+ | |
Κi (μM) | 349 | 194 | 265 | 539 |
α a | 0.21 | 0.34 | 0.31 | 0.14 |
r2 b | 0.9868 | 0.9802 | 0.9908 | 0.9857 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Khoury, A.; Papaneophytou, C. Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation. Molecules 2025, 30, 2923. https://doi.org/10.3390/molecules30142923
El Khoury A, Papaneophytou C. Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation. Molecules. 2025; 30(14):2923. https://doi.org/10.3390/molecules30142923
Chicago/Turabian StyleEl Khoury, Amanda, and Christos Papaneophytou. 2025. "Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation" Molecules 30, no. 14: 2923. https://doi.org/10.3390/molecules30142923
APA StyleEl Khoury, A., & Papaneophytou, C. (2025). Flipping the Target: Evaluating Natural LDHA Inhibitors for Selective LDHB Modulation. Molecules, 30(14), 2923. https://doi.org/10.3390/molecules30142923