Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (379)

Search Parameters:
Keywords = algal community

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2296 KiB  
Article
Distribution Characteristics of Epiphytic Algal Communities in the Third Largest River in China
by Weiwei Wei, Hanxue Lv, Chunhua Li, Hongchao Guo, Chun Ye, Yan Wang and Ning Hu
Water 2025, 17(17), 2508; https://doi.org/10.3390/w17172508 - 22 Aug 2025
Abstract
To elucidate the spatial distribution characteristics of algal communities and their correlation with environmental factors in the Heilongjiang River, algal surveys and water quality monitoring were carried out from May to October 2023. The results were as follows: (1) In total, 234 species [...] Read more.
To elucidate the spatial distribution characteristics of algal communities and their correlation with environmental factors in the Heilongjiang River, algal surveys and water quality monitoring were carried out from May to October 2023. The results were as follows: (1) In total, 234 species from 95 genera belonging to seven phyla were detected, mainly Bacillariophyta, Chlorophyta, and Cyanophyta. (2) The most dominant species in the Heilongjiang River in summer and autumn were Pseudanabaena minima (G. S. An) Anagnostidis and Phormidium gelatinosum Woronichin. The dominant species in the middle niche in summer and the dominant species in the broad niche in autumn were Bacillariophyta. (3) Canonical Correlation Analysis results revealed that the environmental factors that significantly affected the distribution of the epiphytic algae during the summer were COD, F-, and WT, while EC, TN, BOD5, and pH significantly influenced the distribution of epiphytic algae in autumn. (4) Significant correlation heatmaps revealed that the dominant species were significantly correlated with WT and TP in the Greater Khingan Mountains in summer, whereas the dominant species were significantly correlated with COD, NH3-N, and TP in the Heihe region, Lesser Khingan Mountains, and Sanjiang Plain. There was a significant correlation between the dominant species and TN in the Greater Khingan Mountains in autumn. The spatial distribution characteristics of the algal communities and the correlations between the dominant species and water environmental factors can provide a theoretical reference for the assessment of the water ecological health status. Full article
(This article belongs to the Section Water Resources Management, Policy and Governance)
25 pages, 7381 KiB  
Article
Noctiluca scintillans Bloom Reshapes Microbial Community Structure, Interaction Networks, and Metabolism Patterns in Qinhuangdao Coastal Waters, China
by Yibo Wang, Min Zhou, Xinru Yue, Yang Chen, Du Su and Zhiliang Liu
Microorganisms 2025, 13(8), 1959; https://doi.org/10.3390/microorganisms13081959 - 21 Aug 2025
Abstract
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses [...] Read more.
The coastal waters of Qinhuangdao are a major hotspot for harmful algal blooms (HABs) in the Bohai Sea, with Noctiluca scintillans being one of the primary algal species responsible for these events. A comprehensive understanding of the microbial community structure and functional responses to N. scintillans bloom events is crucial for elucidating their underlying mechanisms and ecological impacts. This study investigated the microbial community dynamics, metabolic shifts, and the environmental drivers associated with a N. scintillans bloom in the coastal waters of Qinhuangdao, China, using high-throughput sequencing of 16S and 18S rRNA genes, co-occurrence network analysis, and metabolic pathway prediction. The results revealed that the proliferation of autotrophic phytoplankton, such as Minutocellus spp., likely provided a nutritional foundation and favorable conditions for the N. scintillans bloom. The bloom significantly altered the community structures of prokaryotes and microeukaryotes, resulting in significantly lower α-diversity indices in the blooming region (BR) compared to the non-blooming region (NR). Co-occurrence network analyses demonstrated reduced network complexity and stability in the BR, with keystone taxa primarily belonging to Flavobacteriaceae and Rhodobacteraceae. Furthermore, the community structures of both prokaryotes and microeukaryotes correlated with multiple environmental factors, particularly elevated levels of NH4+-N and PO43−-P. Metabolic predictions indicated enhanced anaerobic respiration, fatty acid degradation, and nitrogen assimilation pathways, suggesting microbial adaptation to bloom-induced localized hypoxia and high organic matter. Notably, ammonia assimilation was upregulated, likely as a detoxification strategy. Additionally, carbon flux was redirected through the methylmalonyl-CoA pathway and pyruvate-malate shuttle to compensate for partial TCA cycle downregulation, maintaining energy balance under oxygen-limited conditions. This study elucidates the interplay between N. scintillans blooms, microbial interactions, and functional adaptations, providing insights for HAB prediction and management in coastal ecosystems. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 8868 KiB  
Article
Dual Influence of Rainfall and Water Temperature on Phytoplankton Diversity and Nutrient Dynamics in a Mountainous Riverine Reservoir
by Qihang Zhao, Lian Hu, Xinyue Ren, Xiang Hu, Tianchi Sun, Jun Zuo, Peng Xiao, He Zhang, Rongzhen Zhang and Renhui Li
Diversity 2025, 17(8), 573; https://doi.org/10.3390/d17080573 - 15 Aug 2025
Viewed by 225
Abstract
The combined effects of anthropogenic activities and climate change, particularly the increasing frequency of extreme rainfall events, continue to pose significant threats to the security of reservoir ecosystems and water quality. Effective prediction and management of aquatic ecosystems require a comprehensive understanding of [...] Read more.
The combined effects of anthropogenic activities and climate change, particularly the increasing frequency of extreme rainfall events, continue to pose significant threats to the security of reservoir ecosystems and water quality. Effective prediction and management of aquatic ecosystems require a comprehensive understanding of how environmental factors influence the dynamics of phytoplankton communities. However, the response patterns of phytoplankton community diversity, niche breadth, and cell density to rainfall disturbances in complex mountainous riverine reservoirs remain poorly understood. In this study, we systematically investigated the phytoplankton community structure and its environmental drivers in Zhaoshandu Reservoir (China) via field surveys, morphological identification of samples, and multivariate statistical analyses. Water temperature (WT), rainfall, and phytoplankton cell density in the study area ranged from 11.4 °C to 35.6 °C, from 0 to 72.5 mm, and from 3.33 × 103 to 7.95 × 107 cells/L, respectively. Total phosphorus and total nitrogen concentrations ranged from 0.002 to 0.633 mg/L and from 0.201 to 5.06 mg/L, respectively. Canonical correspondence analysis found that rainfall and WT were the pivotal drivers of phytoplankton density and biomass and were significantly correlated with phytoplankton diversity. Importantly, structural equation modeling revealed that the direct effects of both rainfall and WT on phytoplankton diversity and niche width, as well as the indirect effects of rainfall on ammonium nitrogen concentration, significantly modulated algal density and biomass in Zhaoshandu Reservoir. Our study highlights the role of rainfall as a potential major regulator of phytoplankton communities in this riverine reservoir. Full article
(This article belongs to the Special Issue 2025 Feature Papers by Diversity’s Editorial Board Members)
Show Figures

Figure 1

17 pages, 2439 KiB  
Article
Why Does the Water Color in a Natural Pool Turn into Reddish-Brown “Pumpkin Soup”?
by Donglin Li, Mingyang Zhao, Qi Liu, Lizeng Duan, Huayu Li, Yun Zhang, Qingyan Gao, Haonan Zhang and Bofeng Qiu
Sustainability 2025, 17(16), 7255; https://doi.org/10.3390/su17167255 - 11 Aug 2025
Viewed by 407
Abstract
Inland aquatic ecosystems, encompassing lakes, reservoirs, and ponds, serve as vital repositories of water resources and provide essential ecological, social, and cultural services. Water color, a key indicator of water quality, reflects the complex interactions among physicochemical, biological, and environmental drivers. Heilong Pool [...] Read more.
Inland aquatic ecosystems, encompassing lakes, reservoirs, and ponds, serve as vital repositories of water resources and provide essential ecological, social, and cultural services. Water color, a key indicator of water quality, reflects the complex interactions among physicochemical, biological, and environmental drivers. Heilong Pool (HP) in Southwest China, which consists of a Clear Pool (CP) and a Turbid Pool (TP), has recently exhibited an anomalous reddish-brown “pumpkin soup” phenomenon in the CP, while the TP remains unchanged. This unusual phenomenon has raised widespread public concern regarding water resource security and its potential association with geological disasters. To elucidate the ecological and geochemical mechanisms of this phenomenon, we employed a multifaceted analytical approach that included assessing nutrient elements, quantifying heavy metal concentrations, analyzing dissolved substances, characterizing algal community composition, and applying δD-δ18O isotope analytical models. Our findings illustrated that while Bacillariophyta predominate (>79.3% relative abundance) in the algal community of HP, they were not the primary determinant of water color changes. Instead, Fe(OH)3 colloidal particles, originating from groundwater–surface water interactions and controlled by redox environment dynamics periodically, emerged as the principal factors of the reddish-brown discoloration. The genesis of the “pumpkin soup” water coloration was attributed to the precipitation-induced displacement of anoxic groundwater from confined karst conduits. Subsequent exfiltration and atmospheric exposure facilitate oxidative precipitation, forming authigenic rust-hued Fe(OH)3 colloidal complexes. This study provides new insights into the geochemical and hydrological mechanisms underlying water color anomalies in karst-dominated catchments. Full article
Show Figures

Figure 1

16 pages, 2159 KiB  
Article
A Comparison of eDNA Metabarcoding and Microscopy Techniques to Analyze Algal Diversity in Lake Titicaca, Peru
by Maribel Baylón and Jorge L. Ramirez
Diversity 2025, 17(8), 560; https://doi.org/10.3390/d17080560 - 7 Aug 2025
Viewed by 405
Abstract
The monitoring of algal communities has traditionally relied on optical microscopy. However, this technique is time-consuming and requires significant expertise to accurately identify species. In recent years, molecular techniques such as environmental DNA (eDNA) metabarcoding have facilitated the identification of algal communities. This [...] Read more.
The monitoring of algal communities has traditionally relied on optical microscopy. However, this technique is time-consuming and requires significant expertise to accurately identify species. In recent years, molecular techniques such as environmental DNA (eDNA) metabarcoding have facilitated the identification of algal communities. This study aims to compare both approaches for assessing planktonic microalgal communities in three areas of Lake Titicaca, using inverted light microscopy and eDNA metabarcoding. We found that the taxonomic composition obtained using the two methods differs significantly for Bacillariophyta, Chlorophyta, Charophyta, and Cyanobacteria, although genus- and order-level richness was similar across both approaches. A pronounced shift in species composition between techniques was revealed, with few shared genera and a high proportion of unassigned sequences (>50%) for Bacillariophyta. While microscopy provided more accurate estimates of microalgal density, metabarcoding revealed greater diversity, particularly among nanoplanktonic microalgae from the phyla Cryptophyta, Ochrophyta, Haptophyta, and Rhodophyta. To improve the accuracy and complementarity of these methodologies, it is essential to expand regional reference databases and work toward standardizing both approaches, allowing them to be used synergistically rather than independently. Full article
(This article belongs to the Special Issue Diversity and Ecology of Freshwater Plankton)
Show Figures

Figure 1

20 pages, 2960 KiB  
Article
Effectiveness of Kaolinite with and Without Polyaluminum Chloride (PAC) in Removing Toxic Alexandrium minutum
by Cherono Sheilah Kwambai, Houda Ennaceri, Alan J. Lymbery, Damian W. Laird, Jeff Cosgrove and Navid Reza Moheimani
Toxins 2025, 17(8), 395; https://doi.org/10.3390/toxins17080395 - 6 Aug 2025
Viewed by 488
Abstract
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, [...] Read more.
Alexandrium spp. blooms and paralytic shellfish poisoning pose serious economic threats to coastal communities and aquaculture. This study evaluated the removal efficiency of two Alexandrium minutum strains using natural kaolinite clay (KNAC) and kaolinite with polyaluminum chloride (KPAC) at three concentrations (0.1, 0.25, and 0.3 g L−1), two pH levels (7 and 8), and two cell densities (1.0 and 2.0 × 107 cells L−1) in seawater. PAC significantly enhanced removal, achieving up to 100% efficiency within two hours. Zeta potential analysis showed that PAC imparted positive surface charges to the clay, promoting electrostatic interactions with negatively charged algal cells and enhancing flocculation through Van der Waals attractions. In addition, the study conducted a cost estimate analysis and found that treating one hectare at 0.1 g L−1 would cost approximately USD 31.75. The low KPAC application rate also suggests minimal environmental impact on benthic habitats. Full article
Show Figures

Figure 1

27 pages, 11944 KiB  
Article
Heatwave-Induced Thermal Stratification Shaping Microbial-Algal Communities Under Different Climate Scenarios as Revealed by Long-Read Sequencing and Imaging Flow Cytometry
by Ayagoz Meirkhanova, Adina Zhumakhanova, Polina Len, Christian Schoenbach, Eti Ester Levi, Erik Jeppesen, Thomas A. Davidson and Natasha S. Barteneva
Toxins 2025, 17(8), 370; https://doi.org/10.3390/toxins17080370 - 27 Jul 2025
Viewed by 517
Abstract
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were [...] Read more.
The effect of periodical heatwaves and related thermal stratification in freshwater aquatic ecosystems has been a hot research issue. A large dataset of samples was generated from samples exposed to temporary thermal stratification in mesocosms mimicking shallow eutrophic freshwater lakes. Temperature regimes were based on IPCC climate warming scenarios, enabling simulation of future warming conditions. Surface oxygen levels reached 19.37 mg/L, while bottom layers dropped to 0.07 mg/L during stratification. Analysis by FlowCAM revealed dominance of Cyanobacteria under ambient conditions (up to 99.2%), while Cryptophyta (up to 98.9%) and Chlorophyta (up to 99.9%) were predominant in the A2 and A2+50% climate scenarios, respectively. We identified temperature changes and shifts in nutrient concentrations, particularly phosphate, as critical factors in microbial community composition. Furthermore, five distinct Microcystis morphospecies identified by FlowCAM-based analysis were associated with different microbial clusters. The combined use of imaging flow cytometry, which differentiates phytoplankton based on morphological parameters, and nanopore long-read sequencing analysis has shed light into the dynamics of microbial communities associated with different Microcystis morphospecies. In our observations, a peak of algicidal bacteria abundance often coincides with or is followed by a decline in the Cyanobacteria. These findings highlight the importance of species-level classification in the analysis of complex ecosystem interactions and the dynamics of algal blooms in freshwater bodies in response to anthropogenic effects and climate change. Full article
Show Figures

Figure 1

13 pages, 893 KiB  
Article
Children and Adolescents’ Susceptibility to Domoic Acid in Southern China: Preliminary Evidence Revealing Baseline Exposure Profiles and Multidimensional Influencing Factors
by Yuxin Lin, Tingze Long, Siyi Zou, Rui Hua, Meixia Ye, Shengtao Ma and Bo Peng
Toxics 2025, 13(8), 628; https://doi.org/10.3390/toxics13080628 - 26 Jul 2025
Viewed by 822
Abstract
Domoic acid (DA) is a potent neurotoxin that poses public health concerns, especially for children and adolescents during critical neurodevelopmental periods. In the present study, urinary DA concentrations in 216 children and adolescents at the age of 6 to 18 in southern China [...] Read more.
Domoic acid (DA) is a potent neurotoxin that poses public health concerns, especially for children and adolescents during critical neurodevelopmental periods. In the present study, urinary DA concentrations in 216 children and adolescents at the age of 6 to 18 in southern China were determined using a novel dansyl-chloride (DNS-Cl) derivatization high performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method with ultrahigh sensitivity (LOQ: 0.087 ng/mL). The median urinary DA concentration was 2.17 ng/mL (interquartile range (IQR): 0.87–4.08 ng/mL). When analyzed by age group, the medians were 1.40 ng/mL (6–9 years; IQR: 0.55–3.49 ng/mL), 2.16 ng/mL (10–13 years; IQR: 0.94–4.07 ng/mL), and 2.93 ng/mL (14–18 years; IQR: 1.06–5.06 ng/mL). Our findings revealed that urinary DA concentrations increased with age and varied significantly across different body mass index groups (p < 0.05), while no significant gender differences were observed. The estimated daily intake (1.73–374 ng/kg/day) remained below established safety thresholds. This study represents the first systematic biomonitoring of urinary DA exposure in children and adolescents from southern China’s coastal communities, addressing critical knowledge gaps and establishing baseline data amid rising harmful algal bloom frequency. Full article
(This article belongs to the Section Exposome Analysis and Risk Assessment)
Show Figures

Graphical abstract

18 pages, 2565 KiB  
Article
Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System
by Mengsha Lou, Yuhan Zhang, Manman Zhang, Hangxian Zhou, Yixiang Zhang, Qiang Sheng, Jianhua Zhao, Qiyou Xu and Rongfei Zhang
Microorganisms 2025, 13(7), 1704; https://doi.org/10.3390/microorganisms13071704 - 21 Jul 2025
Viewed by 408
Abstract
The use of Auxenochlorella pyrenoidosa (formerly Chlorella pyrenoidosa) and its intracellular substances (ISs) to promote biofloc development has been extensively studied. To identify the key components of the ISs of A. pyrenoidosa that drive biofloc formation, algal-extracted polysaccharides (AEPSs) and algal-extracted proteins [...] Read more.
The use of Auxenochlorella pyrenoidosa (formerly Chlorella pyrenoidosa) and its intracellular substances (ISs) to promote biofloc development has been extensively studied. To identify the key components of the ISs of A. pyrenoidosa that drive biofloc formation, algal-extracted polysaccharides (AEPSs) and algal-extracted proteins (AEPTs) were isolated from the ISs. In this study, we established four groups: ISs, AEPSs, AEPTs, and tap water (TW, control), to investigate the effects of AEPSs and AEPTs on biofloc formation dynamics, water quality parameters, and microbial community composition. The results indicated no significant differences were observed between the ISs and AEPSs groups during the cultivation period. AEPSs significantly enhanced flocculation efficiency, achieving a final floc volume of 60 mL/L. This enhancement was attributed to the selective promotion of floc-forming microbial taxa, such as Comamonas, which can secrete procoagulants like EPS, and Pseudomonas and Enterobacter, which have denitrification capabilities. Water quality monitoring revealed that both AEPSs and AEPTs achieved nitrogen removal efficiencies exceeding 50% in the biofloc system, with AEPSs outperforming AEPTs. This is closely related to the fact that the microorganisms with increased flocculation contain numerous nitrifying and denitrifying bacteria. So, the intracellular polysaccharides were the key component of the ISs of A. pyrenoidosa that drive biofloc formation. These findings provide critical insights into the functional roles of algal-derived macromolecules in biofloc dynamics and their potential applications in wastewater treatment. Full article
(This article belongs to the Special Issue Microbes, Society and Sustainable Solutions)
Show Figures

Figure 1

13 pages, 1593 KiB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 556
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

19 pages, 2285 KiB  
Review
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Viewed by 1569
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as [...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

25 pages, 867 KiB  
Article
Remote Sensing Reveals Multi-Dimensional Functional Changes in Fish Assemblages Under Eutrophication and Hydrological Stress
by Anastasiia Zymaroieva, Dmytro Bondarev, Olga Kunakh, Jens-Christian Svenning and Oleksander Zhukov
Fishes 2025, 10(7), 338; https://doi.org/10.3390/fishes10070338 - 9 Jul 2025
Viewed by 475
Abstract
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) [...] Read more.
Understanding how fish communities respond to long-term environmental changes in regulated floodplain ecosystems is essential for managing biodiversity amid increasing anthropogenic and climatic pressures. This study evaluates the spatiotemporal dynamics of functional diversity in juvenile fish assemblages within the Dnipro-Orilskiy Nature Reserve (Ukraine) from 1997 to 2015. By employing a combination of extensive ichthyological field surveys and satellite-derived environmental indices (including NDVI, chlorophyll-a, turbidity, and spectral proxies for algal blooms), we assessed the impacts of eutrophication, hydrological alterations, and climate warming on functional structure. Our results reveal three key responses in fish functional diversity: (1) a decline in functional specialization and imbalance, indicating the loss of unique ecological roles and increased redundancy; (2) a rise in functional divergence, reflecting a shift toward species with outlying trait combinations; and (3) a complex pattern in functional richness, with trends varying by site and trait structure. These shifts are linked to increasing eutrophication and warming, particularly in floodplain areas. Remote sensing effectively captured spatial variation in eutrophication-related water quality and proved to be a powerful tool for linking environmental change to fish community dynamics, not least in inaccessible areas. Full article
Show Figures

Figure 1

24 pages, 685 KiB  
Review
Comparative Phycoremediation Potential of Micro-Green Algae and Dinoflagellates in Coastal and Inland Qatar
by Roda F. Al-Thani and Bassam Taha Yasseen
Processes 2025, 13(7), 2190; https://doi.org/10.3390/pr13072190 - 9 Jul 2025
Viewed by 493
Abstract
The Arabian Gulf, bordered by major energy-producing nations, harbors diverse microalgal communities with strong potential for the bioremediation of environmental pollutants, particularly petroleum hydrocarbons. This review evaluates two key microalgal groups—micro-green algae and dinoflagellates—highlighting their distinct physiological traits and ecological roles in pollution [...] Read more.
The Arabian Gulf, bordered by major energy-producing nations, harbors diverse microalgal communities with strong potential for the bioremediation of environmental pollutants, particularly petroleum hydrocarbons. This review evaluates two key microalgal groups—micro-green algae and dinoflagellates—highlighting their distinct physiological traits and ecological roles in pollution mitigation. Dinoflagellates, including Prorocentrum and Protoperidinium, have demonstrated hydrocarbon-degrading abilities but are frequently linked to harmful algal blooms (HABs), marine toxins, and bioluminescence, posing ecological and health risks. The toxins produced by these algae can be hemolytic or neurotoxic and include compounds such as azaspiracids, brevetoxins, ciguatoxins, okadaic acid, saxitoxins, and yessotoxins. In contrast, micro-green algae such as Oedogonium and Pandorina are generally non-toxic, seldom associated with HABs, and typically found in clean freshwater and brackish environments. Some species, like Chlorogonium, indicate pollution tolerance, while Dunaliella has shown promise in remediating contaminated seawater. Both groups exhibit unique enzymatic pathways and metabolic mechanisms for degrading hydrocarbons and remediating heavy metals. Due to their respective phycoremediation capacities and environmental adaptability, these algae offer sustainable, nature-based solutions for pollution control in coastal, estuarine, and inland freshwater systems, particularly in mainland Qatar. This review compares their remediation efficacy, ecological impacts, and practical limitations to support the selection of effective algal candidates for eco-friendly strategies targeting petroleum-contaminated marine environments. Full article
(This article belongs to the Special Issue Microbial Bioremediation of Environmental Pollution (2nd Edition))
Show Figures

Figure 1

17 pages, 4387 KiB  
Article
Algal Community Dynamics in Three Water Intakes of Poyang Lake: Implications for Drinking Water Safety and Management Strategies
by Bo Li, Jing Li, Yuehang Hu, Shaozhe Cheng, Shouchun Li and Xuezhi Zhang
Water 2025, 17(13), 2034; https://doi.org/10.3390/w17132034 - 7 Jul 2025
Viewed by 469
Abstract
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were [...] Read more.
This study aimed to investigate phytoplankton dynamics and water quality at three drinking water intakes (Duchang, Hukou, and Xingzi) in Poyang Lake through monthly monitoring from May 2023 to April 2024. The results showed that a total of 168 species of phytoplankton were identified in nine phyla, and there were significant spatial and temporal differences in the abundance of phytoplankton at the three waterworks intakes, with a spatial trend of annual mean values of Duchang > Xingzi > Hukou and a seasonal trend of summer and autumn > spring and winter. The dominant species of phytoplankton in the waterworks intakes of the three waterworks also showed obvious spatial and temporal differences. Cyanobacteria (particularly Pseudanabaena sp. and Microcystis sp.) dominated the phytoplankton communities during summer and autumn, demonstrating significant water degradation potential. In contrast, Cyclotella sp. prevailed in winter and spring assemblages. Based on water quality assessments at the three intake sites, the Duchang County intake exhibited year-round mild eutrophication with persistent mild cyanobacterial blooms (June–October), while the other two sites maintained no obvious bloom conditions. Further analyzing the toxic/odor-producing algal strains, the numbers of dominant species of Pseudanabaena sp. and Microcystis sp. in June–October in Duchang County both exceeded 1.0 × 107 cells·L−1. It is necessary to focus on their release of ATX-a (ichthyotoxin-a), 2MIB (2-Methylisoborneol), MCs (microcystins), etc., to ensure the safety of the water supply at the intake. Building upon these findings, we propose a generalized algal monitoring framework, encompassing three operational pillars: (1) key monitoring area identification, (2) high-risk period determination, and (3) harmful algal warnings. Each of these is substantiated by our empirical observations in Poyang Lake. Full article
(This article belongs to the Special Issue Freshwater Species: Status, Monitoring and Assessment)
Show Figures

Graphical abstract

14 pages, 1301 KiB  
Article
Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy
by Bo Liu, Yuan Gao, Jing Zhou, Yun Wang and Junxia He
Water 2025, 17(13), 1985; https://doi.org/10.3390/w17131985 - 1 Jul 2025
Viewed by 330
Abstract
(1) Although lotus ponds exhibit ecological benefits in wetland restoration, their efficacy in water purification and eutrophication mitigation remains unclear. (2) This study utilized Jinluo lotus pond as the experimental group and the adjacent river as the control. Five sampling points were established [...] Read more.
(1) Although lotus ponds exhibit ecological benefits in wetland restoration, their efficacy in water purification and eutrophication mitigation remains unclear. (2) This study utilized Jinluo lotus pond as the experimental group and the adjacent river as the control. Five sampling points were established in each area, with water samples collected in June 2022, April 2025, and May 2025. (3) The pH, BOD, COD, TN, and NH3-N concentrations in Jinluo lotus pond water are higher than those in rivers, while the TP, NO3-N, Chl-a, and algal cell density in rivers are higher. However, there was no significant difference in the nine parameters (p > 0.05) in June 2022. The pH, DO, algal cell density, and algal biomass of the Jinluo lotus pond were significantly higher (p < 0.05 for DO); the concentrations of BOD, COD, TN, TP, NH3-N, NO3-N, PI, and Chl-a in rivers are higher, with significant differences in Chl-a (p < 0.05) in April 2025. The BOD, COD, TP, NO3-N, and PI of the Jinluo lotus pond were relatively high (p < 0.05 for PI); the pH, TN, NH3-N, DO, Chl-a, algal cell density, and algal biomass of rivers are higher, with significant differences in Chl-a (p < 0.05) in May 2025. The results showed that there was no significant difference in the four diversity indicators in June 2022, April 2025, and May 2025. There was no significant difference in the algal diversity indices, including species richness (S), Shannon–Wiener diversity index (H), Simpson diversity index (P), and Pielou evenness index (E) between Jinluo lotus pond and rivers. (4) Conclusions and Recommendations: The Jinluo lotus pond and adjacent rivers suffer from severe nutrient overload, especially with BOD, COD, and TN all being classified as Class 5 water. Expanding natural and constructed reed communities is recommended to enhance nutrient removal. However, given the limited purification capacity of lotus ponds, maintaining or increasing their area may not be justified. Full article
Show Figures

Figure 1

Back to TopTop