Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Materials
2.2. Experimental Design for Extraction of ISs, AEPSs, and AEPTs
- Homogenized intracellular components of A. pyrenoidosa were centrifuged at 3000 rpm for 20 min at 4 °C. The supernatant was transferred via pipette into a dried beaker.
- The pellet was subjected to triplicate repetitions of Step a, with all supernatants pooled.
- The combined supernatant was stored overnight at −80 °C, concentrated to 40 mL by lyophilization, then mixed with 10 mL chloroform-n-butanol (4:1 v/v) under vigorous vortexing. After phase separation, the upper phase was collected and reapplied to a fresh chloroform-n-butanol solution. This partitioning procedure was repeated twice.
- Eighty milliliters of 95% (v/v) ethanol were added to the processed supernatant. Following 24 h static incubation at 4 °C, the upper phase was discarded. The lower phase was transferred to sterilized centrifuge tubes, stored overnight at −80 °C, and lyophilized. The resultant material was sequentially washed thrice with 10 mL aliquots of absolute ethanol, diethyl ether, and acetone, respectively. After oven-drying, purified polysaccharides were obtained and stored at −80 °C.
- Intracellular components of A. pyrenoidosa were centrifuged at 6500 rpm for 20 min at 4 °C. The supernatant was collected and stored at 4 °C for subsequent use.
- The pellet was resuspended in 10 mL of 10 mmol/L phosphate-buffered saline (PBS, pH 7.2). After combining supernatants from triplicate extractions, this procedure was repeated three times.
- Two volumes of acetone were added to the combined supernatant, followed by overnight incubation at −20 °C. The mixture was centrifuged at 6500 rpm for 20 min at 4 °C. The resultant pellet was stored at −80 °C overnight, lyophilized in a vacuum freeze-dryer, and the powder was preserved at −80 °C for further use.
2.3. Construction of Biofloc System and Design of Measurement Index
2.4. Determination Methods
2.5. Microbial Community Analysis
2.6. Statistical Analysis
3. Results
3.1. Formation and Characteristics of Biofloc Aggregates
3.2. Alterations in Water Quality
3.3. Microbial Community Structure of Biofloc Aggregates
3.3.1. Diversity Analysis
3.3.2. Composition Analysis
4. Discussion
4.1. Water Quality
4.2. Biofloc Formation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cui, Y.; Yuan, W.; Cheng, J. Understanding pH and Ionic Strength Effects on Aluminum Sulfate-Induced Microalgae Flocculation. Appl. Biochem. Biotechnol. 2014, 173, 1692–1702. [Google Scholar] [CrossRef] [PubMed]
- Li, O.; Lu, C.; Liu, A.; Zhu, L.; Wang, P.; Qian, C.; Jiang, X.; Wu, X. Optimization and Characterization of Polysaccharide-Based Bioflocculant Produced by Paenibacillus elgii B69 and Its Application in Wastewater Treatment. Bioresour. Technol. 2013, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Poorni, S.; Natarajan, K.A. Flocculation Behaviour of Hematite–Kaolinite Suspensions in Presence of Extracellular Bacterial Proteins and Polysaccharides. Colloids Surf. B 2014, 114, 186–192. [Google Scholar] [CrossRef] [PubMed]
- Dominiak, D.M.; Nielsen, J.L.; Nielsen, P.H. Extracellular DNA Is Abundant and Important for Microcolony Strength in Mixed Microbial Biofilms. Environ. Microbiol. 2011, 13, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, Q.; Hao, D.; Hu, Z.; Song, D.; Yang, M. Characterization and Flocculation Mechanism of an Alkali-Activated Polysaccharide Flocculant from Arthrobacter sp. B4. Bioresour. Technol. 2014, 170, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Cheng, W. Effects of Low Nitrogen Stress on the Biochemical Components and Flocculation Property of Chlorella pyrenoidosa. J. Plant Nutr. Fertil. 2019, 25, 489–497. [Google Scholar] [CrossRef]
- Zhong, Y.; Lin, D.; Li, S.; Wang, Q.; Liu, H.; Ma, L.; Liu, H. Enhanced Nitrogen Removal via Yarrowia lipolytica-Mediated Nitrogen and Related Metabolism of Chlorella pyrenoidosa from Wastewater. Front. Bioeng. Biotechnol. 2023, 11, 1159297. [Google Scholar] [CrossRef] [PubMed]
- Vlaeminck, S.E.; Terada, A.; Smets, B.F.; Linden, D.V.D.; Boon, N.; Verstraete, W.; Carballa, M. Nitrogen Removal from Digested Black Water by One-Stage Partial Nitritation and Anammox. Environ. Sci. Technol. 2009, 43, 5035–5041. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Fu, Z.; Shen, Z.; Zhang, R.; Zhao, J.; Zhang, Y.; Xu, Q. Rapid Production Biofloc by Inoculating Chlorella pyrenoidosa in a Separate Way. Water 2023, 15, 536. [Google Scholar] [CrossRef]
- Salehizadeh, H.; Yan, N.; Farnood, R. Recent Advances in Polysaccharide Bio-Based Flocculants. Biotechnol. Adv. 2018, 36, 92–119. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tang, Z.; Yang, D.; Dai, X.; Chen, H. Enhanced Growth and Auto-Flocculation of Scenedesmus quadricauda in Anaerobic Digestate Using High Light Intensity and Nanosilica: A Biomineralization-Inspired Strategy. Water Res. 2023, 235, 119893. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Abtew, E.; Modani, S.; Domb, A. Polysaccharide Based Nanoparticles. Isr. J. Chem. 2018, 58, 1315–1329. [Google Scholar] [CrossRef]
- Shi, H.; Chang, Y.; Gao, Y.; Wang, X.; Chen, X.; Wang, Y.; Xue, C.; Tang, Q. Dietary Fucoidan of Acaudina molpadioides Alters Gut Microbiota and Mitigates Intestinal Mucosal Injury Induced by Cyclophosphamide. Food Funct. 2017, 8, 3383–3393. [Google Scholar] [CrossRef] [PubMed]
- O’Doherty, J.; Dillon, S.; Figat, S.; Callan, J.; Sweeney, T. The Effects of Lactose Inclusion and Seaweed Extract Derived from Laminaria Spp. on Performance, Digestibility of Diet Components and Microbial Populations in Newly Weaned Pigs. Anim. Feed Sci. Technol. 2010, 157, 173–180. [Google Scholar] [CrossRef]
- Hidalgo, D.; López, F.; Corona, F.; Martínez, J. A Novel Initiative to Counteract Illegal Dumping in Rural Areas of Valladolid Province (Spain). Environ. Sci. Pollut. Res. 2019, 26, 35317–35324. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.J.; Park, H.; Noh, G.J.; Lee, E.S. Tumor Cell-on Fluorescence Imaging Agent Using Hyaluronate Dots. Carbohydr. Polym. 2019, 209, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Xuan, D.; Ma, X.; Shang, Y. Can China’s Policy of Carbon Emission Trading Promote Carbon Emission Reduction? J. Clean. Prod. 2020, 270, 122383. [Google Scholar] [CrossRef]
- Sun, F.; Wang, X.; Li, X. Change in the Fouling Propensity of Sludge in Membrane Bioreactors (MBR) in Relation to the Accumulation of Biopolymer Clusters. Bioresour. Technol. 2011, 102, 4718–4725. [Google Scholar] [CrossRef] [PubMed]
- Tian, G.; Zhang, R.; Fan, L.; Gao, L.; Yang, Z.; Bian, B. Enhancement of Sludge Dewaterability Using Amphoteric Starch-Based Flocculant Coupled with Waste Synthetic Fibers. Sep. Purif. Technol. 2025, 354, 128731. [Google Scholar] [CrossRef]
- Lou, T.; Wang, X.; Song, G.; Cui, G. Synthesis and Flocculation Performance of a Chitosan-Acrylamide-Fulvic Acid Ternary Copolymer. Carbohydr. Polym. 2017, 170, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Li, H.; Huang, M.; Yang, H.; Li, A. A Review on Chitosan-Based Flocculants and Their Applications in Water Treatment. Water Res. 2016, 95, 59–89. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Qu, D.; Li, K.; Li, M. Composition of Extracellular and Intracellular Polymeric Substances Produced by Scenedesmus and Microcystis. Environ. Eng. Sci. 2017, 34, 887–894. [Google Scholar] [CrossRef]
- Song, H.; He, M.; Gu, C.; Wei, D.; Liang, Y.; Yan, J.; Wang, C. Extraction Optimization, Purification, Antioxidant Activity, and Preliminary Structural Characterization of Crude Polysaccharide from an Arctic Chlorella sp. Polymers 2018, 10, 292. [Google Scholar] [CrossRef] [PubMed]
- Jing, R.; Liu, X.; Yang, Q.; Wang, Y.; Zhang, N.; Zhang, S. Indigenous Fungi Derived from a Municipal Wastewater Treatment Plant with Rapid Flocculation of Chlorella Sp.: Convenience, Mechanisms, and Conditions Optimization. J. Water Process. Eng. 2025, 73, 107693. [Google Scholar] [CrossRef]
- Lei, X.; Chen, Y.; Shao, Z.; Chen, Z.; Li, Y.; Zhu, H.; Zhang, J.; Zheng, W.; Zheng, T. Effective Harvesting of the Microalgae Chlorella vulgaris via Flocculation–Flotation with Bioflocculant. Bioresour. Technol. 2015, 198, 922–925. [Google Scholar] [CrossRef] [PubMed]
- Aljuboori, A.R.; Uemura, Y.; Thanh, N.T. Flocculation and Mechanism of Self-Flocculating Lipid Producer Microalga Scenedesmus quadricauda for Biomass Harvesting. Biomass Bioenerg. 2016, 93, 38–42. [Google Scholar] [CrossRef]
- Salim, S.; Kosterink, N.R.; Tchetkoua Wacka, N.D.; Vermuë, M.H.; Wijffels, R.H. Mechanism behind Autoflocculation of Unicellular Green Microalgae Ettlia texensis. J. Biotechnol. 2014, 174, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Zhang, M.; Zhang, Y.; Zhou, H.; Zhang, Y.; Sheng, Q.; Zhao, J.; Xu, Q.; Zhang, R. Effects of Intracellular and Extracellular Substances of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in Biofloc System. J. Environ. Chem. Eng. 2025, 13, 117994. [Google Scholar] [CrossRef]
- Dhahri, M.; Sioud, S.; Alsuhaymi, S.; Almulhim, F.; Haneef, A.; Saoudi, A.; Jaremko, M.; Emwas, A.H. Extraction, Characterization, and Antioxidant Activity of Polysaccharides from Ajwa Seed and Flesh. Separations 2023, 10, 103. [Google Scholar] [CrossRef]
- Wang, J.; Peng, W.; Fowowe, M.; Daramola, O.; Mechref, Y. An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022, 12, 1285. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Zhang, J.; Xu, J.; Niu, T.; Lü, X.; Liu, M. Effects of Monosaccharide Composition on Quantitative Analysis of Total Sugar Content by Phenol-Sulfuric Acid Method. Front. Nutr. 2022, 9, 963318. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.-W.; Jiang, J.; Yu, L.-Q. Langmuir Aggregation of Coomassie Brill Blue on Protein and Determination of Protein by MPASC. J. Anal. Chem. 2002, 57, 694–700. [Google Scholar] [CrossRef]
- Dai, J.; Zhao, X.; Mu, S.; Yang, Q.; Zhao, C.; Zhao, Z. A Novel Polysaccharide-Based Bioflocculant Produced by Bacillus subtilis 35A and Its Application in the Treatment of Dye Decolorization, Heavy Metal Ion Adsorption and Meat Product Wastewater. Front. Microbiol. 2024, 15, 1457909. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Abakari, G.; Tan, H.; Liu, W.; Luo, G. Effects of Different Probiotics (Bacillus subtilis) Addition Strategies on a Culture of Litopenaeus vannamei in Biofloc Technology (BFT) Aquaculture System. Aquaculture 2023, 566, 739216. [Google Scholar] [CrossRef]
- Park, J.B.K.; Craggs, R.J.; Shilton, A.N. Recycling Algae to Improve Species Control and Harvest Efficiency from a High Rate Algal Pond. Water Res. 2011, 45, 6637–6649. [Google Scholar] [CrossRef] [PubMed]
- Avnimelech, Y.; Kochba, M. Evaluation of Nitrogen Uptake and Excretion by Tilapia in Bio Floc Tanks, Using 15N Tracing. Aquaculture 2009, 287, 163–168. [Google Scholar] [CrossRef]
- Kazemzadeh, A.; Ensafi, A.A. Simultaneous Determination of Nitrite and Nitrate in Various Samples Using Flow-Injection Spectrophotometric Detection. Microchem. J. 2001, 69, 61–68. [Google Scholar] [CrossRef]
- Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential Abundance Analysis for Microbial Marker-Gene Surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yan, Y.; Zhao, Y.; Shi, Q.; Wang, Y. Characterization of Stratified EPS and Their Role in the Initial Adhesion of Anammox Consortia. Water Res. 2020, 169, 115223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Su, J.; Liu, S.; Ren, Y.; Cao, S. Regulating Mechanism of Denitrifier Comamonas Sp. YSF15 in Response to Carbon Deficiency: Based on Carbon/Nitrogen Functions and Bioaggregation. Environ. Res. 2023, 235, 116661. [Google Scholar] [CrossRef] [PubMed]
- James, S.N. Recent Advances in Simultaneous Nitrification and Denitrification for Nitrogen and Micropollutant Removal: A Review. Biodegradation 2023, 34, 103–123. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Xie, F.; Zhou, K.; Zhang, Y.; Zhao, Q.; Song, Z.; Cui, H. Nitrogen Removal Performance of Novel Isolated Bacillus sp. Capable of Simultaneous Heterotrophic Nitrification and Aerobic Denitrification. Appl. Biochem. Biotechnol. 2022, 194, 3196–3211. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Li, L.; Dai, Z.; Senbati, Y.; Song, K.; He, X. Aerobic Denitrification Affects Gaseous Nitrogen Loss in Biofloc-Based Recirculating Aquaculture System. Aquaculture 2020, 529, 735686. [Google Scholar] [CrossRef]
- Stepien, A.E.; Zebrowski, J.; Piszczyk, Ł.; Boyko, V.V.; Riabov, S.V.; Dmitrieva, T.; Bortnitskiy, V.I.; Gonchar, M.; Wojnarowska-Nowak, R.; Ryszkowska, J. Assessment of the Impact of Bacteria Pseudomonas denitrificans, Pseudomonas fluorescens, Bacillus subtilis and Yeast Yarrowia lipolytica on Commercial Poly(Ether Urethanes). Polym. Test. 2017, 63, 484–493. [Google Scholar] [CrossRef]
- Shu, H.; Sun, H.; Huang, W.; Zhao, Y.; Ma, Y.; Chen, W.; Sun, Y.; Chen, X.; Zhong, P.; Yang, H.; et al. Nitrogen Removal Characteristics and Potential Application of the Heterotrophic Nitrifying-Aerobic Denitrifying Bacteria Pseudomonas mendocina S16 and Enterobacter cloacae DS’5 Isolated from Aquaculture Wastewater Ponds. Bioresour. Technol. 2022, 345, 126541. [Google Scholar] [CrossRef] [PubMed]
- Luo, G.; Li, L.; Liu, Q.; Xu, G.; Tan, H. Effect of Dissolved Oxygen on Heterotrophic Denitrification Using Poly(Butylene Succinate) as the Carbon Source and Biofilm Carrier. Bioresour. Technol. 2014, 171, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.R.; de Oliveira, L.B.; Nicoloso, F.T.; Jacques, R.J.S.; Giacomini, S.J.; Quadros, F.L.F. Biological Nitrogen Fixation in C4 Grasses of Different Growth Strategies of South America Natural Grasslands. Appl. Soil Ecol. 2017, 113, 54–62. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Cao, L.; Huang, Z.; Zhou, Y.; Fan, R.; Li, C. Preparation and Characterization of Intracellular and Exopolysaccharides during Cycle Cultivation of Spirulina platensis. Foods 2023, 12, 1067. [Google Scholar] [CrossRef] [PubMed]
- Dong, B.; Shen, L.; Yang, M.; Yang, K.; Cheng, F. Structure and Bioactivity of Intracellular and Extracellular Polysaccharides of Trametes lactinea Mycelium. Microorganisms 2024, 12, 1431. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Wang, Q.; Chen, L.; Li, J.; Fan, L.; Gu, Z.; Shi, G.; Ding, Z. Rheological Properties and Thickening Effect of High Molecular Weight Exopolysaccharide and Intracellular Polysaccharide from Schizophyllum commune. Food Hydrocoll. 2023, 144, 108920. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, H.; Cheng, S.; Zhang, W.; Zhang, X. Enhanced Microalgal Harvesting Using Microalgae-Derived Extracellular Polymeric Substance as Flocculation Aid. ACS Sustain. Chem. Eng. 2020, 8, 4069–4075. [Google Scholar] [CrossRef]
- More, T.T.; Yadav, J.S.S.; Yan, S.; Tyagi, R.D.; Surampalli, R.Y. Extracellular Polymeric Substances of Bacteria and Their Potential Environmental Applications. J. Environ. Manag. 2014, 144, 1–25. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Li, H.; Yang, R.; Wang, Y.; Li, R.; Yang, H.; Li, A.; Cheng, R. Efficient Flocculation of an Anionic Dye from Aqueous Solutions Using a Cellulose-Based Flocculant. Cellulose 2015, 22, 1439–1449. [Google Scholar] [CrossRef]
- Ghimici, L.; Nichifor, M. Flocculation Properties of Some Cationic Polysaccharides. J. Macromol. Sci. B 2009, 48, 106–113. [Google Scholar] [CrossRef]
- Zhang, Z.; Xia, S.; Zhao, J.; Zhang, J. Characterization and Flocculation Mechanism of High Efficiency Microbial Flocculant TJ-F1 from Proteus mirabilis. Colloids Surf. B 2010, 75, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Sam, S.; Kucukasik, F.; Yenigun, O.; Nicolaus, B.; Oner, E.T.; Yukselen, M.A. Flocculating Performances of Exopolysaccharides Produced by a Halophilic Bacterial Strain Cultivated on Agro-Industrial Waste. Bioresour. Technol. 2011, 102, 1788–1794. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Gao, B.; Wang, S.; Guo, K.; Shen, X.; Yue, Q.; Xu, X. Synthesis, Characterization and Flocculation Performance of a Novel Sodium Alginate-Based Flocculant. Carbohydr. Polym. 2020, 248, 116790. [Google Scholar] [CrossRef] [PubMed]
- Ghimici, L.; Constantin, M.; Fundueanu, G. Novel Biodegradable Flocculanting Agents Based on Pullulan. J. Hazard. Mater. 2010, 181, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Parikh, A.; Madamwar, D. Partial Characterization of Extracellular Polysaccharides from Cyanobacteria. Bioresour. Technol. 2006, 97, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Bar-Or, Y.; Shilo, M. The Role of Cell-Bound Flocculants in Coflocculation of Benthic Cyanobacteria with Clay Particles. FEMS Microbiol. Lett. 1988, 53, 169–174. [Google Scholar] [CrossRef]
- Chen, L.; Men, X.; Ma, M.; Li, P.; Jiao, Q.; Lu, S.; Kong, F.; Wu, S. Polysaccharide Release by Aphanothece halophytica Inhibits Cyanobacteria/Clay Flocculation. J. Phycol. 2010, 46, 417–423. [Google Scholar] [CrossRef]
- Morris, G.A.; Li, P.; Puaud, M.; Liu, Z.; Mitchell, J.R.; Harding, S.E. Hydrodynamic Characterisation of the Exopolysaccharide from the Halophilic Cyanobacterium Aphanothece halophytica GR02: A Comparison with Xanthan. Carbohydr. Polym. 2001, 44, 261–268. [Google Scholar] [CrossRef]
- Javor, B. Industrial Microbiology of Solar Salt Production. J. Ind. Microbiol. Biotechnol. 2002, 28, 42–47. [Google Scholar] [CrossRef] [PubMed]
- Maruyama, H. Evaluation of Flocculation Performance of Polysaccharide-Protamine Complex Flocculant by Flocculation Model. Biochem. Eng. J. 2022, 180, 08356. [Google Scholar] [CrossRef]
- Avnimelech, Y.; Troeger, B.W.; Reed, L.W. Mutual Flocculation of Algae and Clay: Evidence and Implications. Science 1982, 216, 63–65. [Google Scholar] [CrossRef] [PubMed]
Groups | ISs | AEPSs | AEPTs | TW (Control) |
---|---|---|---|---|
Microalgae intracellular components | Intracellular substances | Algal-extracted polysaccharides | Algal-extracted proteins | Tap water |
Theoretical amount of extract added (mg) | 2.16 + 0.37 | 2.16 | 0.37 | / |
Practical amount of extract added (mg) | / | 6.05 | 1 | / |
Bacillus subtilis (CFU/L) | 2 × 107 | 2 × 107 | 2 × 107 | 2 × 107 |
Nitrogen (mg/L) | 10 | 10 | 10 | 10 |
C:N | 15:1 | 15:1 | 15:1 | 15:1 |
Time | Groups | Shannon | Simpson | Ace | Chao1 | Coverage |
---|---|---|---|---|---|---|
Day 7 | ISs | 2.79 ± 0.36 | 0.12 ± 0.04 | 184.26 ± 21.61 a | 176.61 ± 27.95 a | 1.00 |
AEPSs | 2.26 ± 0.38 | 0.20 ± 0.10 | 147.61 ± 32.32 ab | 154.00 ± 34.19 ab | 1.00 | |
AEPTs | 2.43 ± 0.40 | 0.16 ± 0.06 | 144.07 ± 24.52 ab | 137.88 ± 21.51 ab | 1.00 | |
TW | 2.26 ± 0.21 | 0.19 ± 0.05 | 127.73 ± 5.66 b | 125.72 ± 6.43 b | 1.00 | |
Day 13 | ISs | 3.03 ± 0.32 a | 0.11 ± 0.04 | 240.83 ± 40.51 | 236.97 ± 42.21 | 1.00 |
AEPSs | 2.97 ± 0.08 a | 0.10 ± 0.01 | 234.45 ± 37.39 | 231.18 ± 42.37 | 1.00 | |
AEPTs | 2.19 ± 0.80 b | 0.27 ± 0.24 | 188.63 ± 36.94 | 183.95 ± 43.76 | 1.00 | |
TW | 2.80 ± 0.22 ab | 0.13 ± 0.04 | 187.54 ± 3.49 | 192.06 ± 12.28 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, M.; Zhang, Y.; Zhang, M.; Zhou, H.; Zhang, Y.; Sheng, Q.; Zhao, J.; Xu, Q.; Zhang, R. Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System. Microorganisms 2025, 13, 1704. https://doi.org/10.3390/microorganisms13071704
Lou M, Zhang Y, Zhang M, Zhou H, Zhang Y, Sheng Q, Zhao J, Xu Q, Zhang R. Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System. Microorganisms. 2025; 13(7):1704. https://doi.org/10.3390/microorganisms13071704
Chicago/Turabian StyleLou, Mengsha, Yuhan Zhang, Manman Zhang, Hangxian Zhou, Yixiang Zhang, Qiang Sheng, Jianhua Zhao, Qiyou Xu, and Rongfei Zhang. 2025. "Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System" Microorganisms 13, no. 7: 1704. https://doi.org/10.3390/microorganisms13071704
APA StyleLou, M., Zhang, Y., Zhang, M., Zhou, H., Zhang, Y., Sheng, Q., Zhao, J., Xu, Q., & Zhang, R. (2025). Effects of Intracellular Polysaccharides and Proteins of Auxenochlorella pyrenoidosa on Water Quality, Floc Formation, and Microbial Composition in a Biofloc System. Microorganisms, 13(7), 1704. https://doi.org/10.3390/microorganisms13071704