Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy
Abstract
1. Introduction
2. Materials and Methods
2.1. Site Description and Sampling Procedure
2.2. Analytical Methods
2.3. Diversity Indices Calculation
2.4. Statistical and Spatial Analysis
3. Results
3.1. Differences in Water Quality Factors
3.2. Water Quality Assessment
3.3. The Correlation of Water Quality Factors
3.4. Phytoplankton Diversity
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, D.; Gan, X.; Wang, Z.; Jiang, S.; Zheng, X.; Zhao, M.; Zhang, Y.; Fan, C.; Wu, S.; Du, L. Research status on remediation of eutrophic water by submerged macrophytes: A review. Process. Saf. Environ. Prot. 2023, 169, 671–684. [Google Scholar] [CrossRef]
- Nimma, D.; Devi, O.R.; Laishram, B.; Ramesh, J.V.N.; Boddupalli, S.; Ayyasamy, R.; Tirth, V.; Arabil, A. Implications of climate change on freshwater ecosystems and their biodiversity. Desalination Water Treat. 2025, 321, 100889. [Google Scholar] [CrossRef]
- Li-Kun, Y.; Sen, P.; Xin-Hua, Z.; Xia, L. Development of a two-dimensional eutrophication model in an urban lake (China) and the application of uncertainty analysis. Ecol. Model. 2017, 345, 63–74. [Google Scholar] [CrossRef]
- Asad, A.A.; El-Hawary, A.M.; Abbas, M.H.H.; Mohamed, I.; Abdelhafez, A.A.; Bassouny, M.A. Reclamation of wastewater in wetlands using reed plants and biochar. Sci. Rep. 2022, 12, 19516. [Google Scholar] [CrossRef]
- Greve, P.; Kahil, T.; Mochizuki, J.; Schinko, T.; Satoh, Y.; Burek, P.; Fischer, G.; Tramberend, S.; Burtscher, R.; Langan, S.; et al. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 2018, 1, 486–494. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Knieper, C.; Lukat, E.; Meergans, F.; Schoderer, M.; Schütze, N.; Schweigatz, D.; Dombrowsky, I.; Lenschow, A.; Stein, U.; et al. Enhancing the capacity of water governance to deal with complex management challenges: A framework of analysis. Environ. Sci. Policy 2020, 107, 23–35. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, D. Research on Regional Disparities, Dynamic Evolution, and Influencing Factors of Water Environment Governance Efficiency in China. Water 2025, 17, 515. [Google Scholar] [CrossRef]
- Bakker, E.S.; Van Donk, E.; Declerck, S.A.J.; Helmsing, N.R.; Hidding, B.; Nolet, B.A. Effect of macrophyte community composition and nutrient enrichment on plant biomass and algal blooms. Basic Appl. Ecol. 2010, 11, 432–439. [Google Scholar] [CrossRef]
- Wu, H.; Wang, R.; Yan, P.; Wu, S.; Chen, Z.; Zhao, Y.; Cheng, C.; Hu, Z.; Zhuang, L.; Guo, Z.; et al. Constructed wetlands for pollution control. Nat. Rev. Earth Environ. 2023, 4, 218–234. [Google Scholar] [CrossRef]
- Abd Rasid, N.S.; Naim, M.N.; Che Man, H.; Abu Bakar, N.F.; Mokhtar, M.N. Evaluation of surface water treated with lotus plant; Nelumbo nucifera. J. Environ. Chem. Eng. 2019, 7, 103048. [Google Scholar] [CrossRef]
- Mustafa, H.M.; Hayder, G. Recent studies on applications of aquatic weed plants in phytoremediation of wastewater: A review article. Ain Shams Eng. J. 2021, 12, 355–365. [Google Scholar] [CrossRef]
- Xiao, H.; Peng, S.; Liu, X.; Jia, J.; Wang, H. Phytoremediation of nutrients and organic carbon from contaminated water by aquatic macrophytes and the physiological response. Environ. Technol. Innov. 2021, 21, 101295. [Google Scholar] [CrossRef]
- Kou, S.; Yang, J.; Li, Y.; Li, S.; Shen, Y.; Gao, J. Design and Application of an Integrated Landscape Water Purification Device: Long-Term Performance in Nitrogen and Phosphorus Removal. Water 2025, 17, 556. [Google Scholar] [CrossRef]
- Rillig, M.C. Global change refugia could shelter species from multiple threats. Nat. Rev. Biodivers. 2025, 1, 10–11. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.; Zhu, F.; Tang, Y.-T.; Xu, Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Kašanin-Grubin, M.; Solomun, M.K.; Sushkova, S.; Minkina, T.; Zhao, W.; Kalantari, Z. Wetlands as nature-based solutions for water management in different environments. Curr. Opin. Environ. Sci. Health 2023, 33, 100476. [Google Scholar] [CrossRef]
- Wilkins, N.R.; Fallowfield, H.; Baring, R. Spatial performance assessment of reed bed filtration in a constructed wetland. Sci. Total Environ. 2022, 820, 153060. [Google Scholar] [CrossRef]
- Chen, J.; Guo, F.; Wu, F.; Bryan, B.A. Costs and benefits of constructed wetlands for meeting new water quality standards from China’s wastewater treatment plants. Resour. Conserv. Recycl. 2023, 199, 107248. [Google Scholar] [CrossRef]
- Zhao, Y.; Ji, B.; Liu, R.; Ren, B.; Wei, T. Constructed treatment wetland: Glance of development and future perspectives. Water Cycle 2020, 1, 104–112. [Google Scholar] [CrossRef]
- Gebeyehu, A.; Shebeshe, N.; Kloos, H.; Belay, S. Suitability of nutrients removal from brewery wastewater using a hydroponic technology with Typha latifolia. BMC Biotechnol. 2018, 18, 74. [Google Scholar] [CrossRef]
- Hadad, H.R.; Mufarrege, M.M.; Pinciroli, M.; Di Luca, G.A.; Maine, M.A. Morphological Response of Typha domingensis to an Industrial Effluent Containing Heavy Metals in a Constructed Wetland. Arch. Environ. Contam. Toxicol. 2010, 58, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Grisey, E.; Laffray, X.; Contoz, O.; Cavalli, E.; Mudry, J.; Aleya, L. The Bioaccumulation Performance of Reeds and Cattails in a Constructed Treatment Wetland for Removal of Heavy Metals in Landfill Leachate Treatment (Etueffont, France). Water Air Soil Pollut. 2012, 223, 1723–1741. [Google Scholar] [CrossRef]
- Licata, M.; Gennaro, M.C.; Tuttolomondo, T.; Leto, C.; La Bella, S.; Singer, A.C. Research focusing on plant performance in constructed wetlands and agronomic application of treated wastewater—A set of experimental studies in Sicily (Italy). PLoS ONE 2019, 14, e0219445. [Google Scholar] [CrossRef] [PubMed]
- Qin, H.; Zhang, Z.; Liu, M.; Liu, H.; Wang, Y.; Wen, X.; Zhang, Y.; Yan, S. Site test of phytoremediation of an open pond contaminated with domestic sewage using water hyacinth and water lettuce. Ecol. Eng. 2016, 95, 753–762. [Google Scholar] [CrossRef]
- Rezania, S.; Ponraj, M.; Talaiekhozani, A.; Mohamad, S.E.; Din, M.F.M.; Taib, S.M.; Sabbagh, F.; Sairan, F.M. Perspectives of phytoremediation using water hyacinth for removal of heavy metals, organic and inorganic pollutants in wastewater. J. Environ. Manag. 2015, 163, 125–133. [Google Scholar] [CrossRef]
- Wang, J.; Chen, G.; Liu, F.; Song, X.; Zou, G. Combined ozonation and aquatic macrophyte (Vallisneria natans) treatment of piggery effluent: Water matrix and antioxidant responses. Ecol. Eng. 2017, 102, 39–45. [Google Scholar] [CrossRef]
- Wu, H.; Gao, X.; Wu, M.; Zhu, Y.; Xiong, R.; Ye, S. The efficiency and risk to groundwater of constructed wetland system for domestic sewage treatment—A case study in Xiantao, China. J. Clean. Prod. 2020, 277, 123384. [Google Scholar] [CrossRef]
- Shaharuddin, S.; Chan, N.W.; Zakaria, N.A.; Ab Ghani, A.; Chang, C.K.; Roy, R. Constructed Wetlands as a Natural Resource for Water Quality Improvement in Malaysia. Nat. Resour. 2014, 5, 292–298. [Google Scholar] [CrossRef]
- Billore, S.K.; Prashant; Sharma, J.K. Treatment performance of artificial floating reed beds in an experimental mesocosm to improve the water quality of river Kshipra. Water Sci. Technol. 2009, 60, 2851–2859. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Z.; Zhang, W.; Zhang, T.; Meng, H.; Yan, H.; Shen, Y.; Li, Z.; Ma, X. Wetland Park Planning and Management Based on the Valuation of Ecosystem Services: A Case Study of the Tieling Lotus Lake National Wetland Park (LLNWP), China. Int. J. Environ. Res. Public Health 2023, 20, 2939. [Google Scholar] [CrossRef]
- Pang, J.; Feng, X.; Wang, X. Purification and utilization of garlic processing wastewater in lotus pond wetlands. Water Sci. Eng. 2014, 7, 395–402. [Google Scholar] [CrossRef]
- Xu, S.Z.; Wang, Y.X.; Wang, Y.D.; Zhao, Y.J.; Gao, Y. Seasonal influence of reed (Phragmites australis) and lotus (Nelumbo nucifera) on urban wetland of Yi river. Appl. Ecol. Environ. Res. 2019, 17, 7891–7900. [Google Scholar] [CrossRef]
- He, L.S.; Meng, F.L.; Meng, R.; Huang, C.H.; Li, Y.W.; Xi, B.D.; Shu, J.M. In Situ Enclosure Experiment on Nelumbo nucifera for Eutrophication Control in Baiyangdian Lake. Wetl. Sci. 2013, 11, 282–285. [Google Scholar] [CrossRef]
- Li, L.; Hou, W.-H. Inhibitory effects of liquor cultured with Nelumbo nucifera and Nymphaea tetragona on the growth of Microcystis aeruginosa. Environ. Sci. 2007, 28, 2180–2186. [Google Scholar]
- Li, X.; Xu, X.Q.; Gou, M.M. Study on the influence of lotus planting in Wuliangsu of Inner Mongolia on water environment. J. Environ. Health 2018, 35, 457–459. [Google Scholar] [CrossRef]
- Li, X.; Gao, Y. Influence of the island with grass and the island with trees to water quality in Yihe River, China. Desalination Water Treat. 2018, 121, 186–190. [Google Scholar] [CrossRef]
- Gao, Y.; Ci, H.X.; Qi, S.C.; Su, Y.X. Seasonal changes of phytoplankton diversity and assessment of water quality in four tributaries of Yi River. Res. Environ. Sci. 2009, 22, 176–180. [Google Scholar]
- Gao, Y.; Qi, S.C.; Su, Y.X. Seasonal changes of phytoplankton diversity and water quality in Yi River and Beng River. Trans. Oceanol. Limnol. 2010, 32, 109–113. [Google Scholar] [CrossRef]
- Gao, Y.; Su, Y.X.; Qi, S.C. Phytoplankton and evaluation of water quality in Yi River watershed. J. Lake Sci. 2008, 20, 544–548. [Google Scholar]
- Zhang, W.-H.; Gao, Y.; Wang, Y.; Zhou, J. Water Quality Assessment and Management Strategies for Nishan Reservoir, Sihe River, and Yihe River Based on Scientific Evaluation. Water 2024, 16, 1958. [Google Scholar] [CrossRef]
- Ge, Z.W.; Fang, S.Y.; Li, C.; Li, Q.; Bu, Q.Q.; Xue, Y.H. Analysis of the plant N and P sequestration from common reed and common reed+ cattail communities in wetland soil in Qinhu Lake of northern Jiangsu, China. J. Lake Sci. 2017, 29, 585–593. [Google Scholar] [CrossRef]
- Guildford, S.J.; Hecky, R.E. Total Nitrogen, Total Phosphorus, and Nutrient Limitation in Lakes and Oceans: Is There A Common Relationship? Limnol. Oceanogr. 2000, 45, 1213–1223. [Google Scholar] [CrossRef]
- HJ 1147-2020; Water Quality-Determination of pH-Electrode Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2020.
- HJ 505-2009; Water Quality-Determination of Biochemical Oxygen Demand After 5 Days (BOD5) for Dilution and Seeding Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2009.
- HJ 828-2017; Water Quality-Determination of the Chemical Oxygen Demand-Dichromate Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2017.
- HJ 636-2012; Water Quality-Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2012.
- GB 11893-89; Water Quality-Determination of Total Phosphorus-Ammonium Molybdate Spectrophotometric Method. State Administration of Technical Supervision of the People’s Republic of China: Beijing, China, 1989.
- HJ 535-2009; Water Quality-Determination of Ammonia Nitrogen-Nessler’s Reagent Spectrophotometry. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2009.
- HJ 84-2016; Water Quality-Determination of Inorganic Anions (F−, Cl−, NO2−, Br−, NO3−, PO43−, SO32−, SO42−)-Ion Chromatography. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2016.
- HJ 506-2009; Water Quality-Determination of Dissolved Oxygen-Electrochemical Probe Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2009.
- GB 11892-89; Water Quality-Determination of Permanganate Index. Environmental Protection Administration of the People’s Republic of China: Beijing, China, 1989.
- GB 3838-2002; Environmental Quality Standards for Surface Water. State Environmental Protection Administration of the People’s Republic of China and General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China: Beijing, China, 2002.
- HJ 1296-2023; Technical Guidelines for Water Ecological Monitoring-Aquatic Organism Monitoring and Evaluation of Lakes and Reservoirs (on Trial). Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2023.
- HJ 897-2017; Water Quality-Determination of Chlorophyll a-Spectrophotometric Method. Ministry of Environmental Protection of the People’s Republic of China: Beijing, China, 2017.
- Borics, G.; Abonyi, A.; Salmaso, N.; Ptacnik, R. Freshwater phytoplankton diversity: Models, drivers and implications for ecosystem properties. Hydrobiologia 2021, 848, 53–75. [Google Scholar] [CrossRef] [PubMed]
- Pielou, E.C. The measurement of diversity in different types of biological collections. J. Theor. Biol. 1966, 13, 131–144. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Colares, G.S.; Dell’Osbel, N.; Wiesel, P.G.; Oliveira, G.A.; Lemos, P.H.Z.; da Silva, F.P.; Lutterbeck, C.A.; Kist, L.T.; Machado, Ê.L. Floating treatment wetlands: A review and bibliometric analysis. Sci. Total. Environ. 2020, 714, 136776. [Google Scholar] [CrossRef]
- Wang, W.-H.; Wang, Y.; Sun, L.-Q.; Zheng, Y.-C.; Zhao, J.-C. Research and application status of ecological floating bed in eutrophic landscape water restoration. Sci. Total Environ. 2020, 704, 135434. [Google Scholar] [CrossRef]
- Zhu, Z.; Wang, Y.; Han, X.-Y.; Wang, W.-H.; Li, H.-M.; Yue, Z.-Q.; Chen, W.; Xue, F.-R. Strengthen the purification of eutrophic water and improve the characteristics of sediment by functional ecological floating bed suspended calcium peroxide and sponge iron jointly. J. Environ. Manag. 2023, 325, 116610. [Google Scholar] [CrossRef]
- Carleton, J.N.; Montas, H.J. An analysis of performance models for free water surface wetlands. Water Res. 2010, 44, 3595–3606. [Google Scholar] [CrossRef]
- Pan, X.; Liu, S.; Li, R.; Sun, H.; Feng, J.; Cheng, X.; Yao, J. Research on the purification enhancement of ecological ponds: Integrating water cycle optimization and plants layout. J. Environ. Manag. 2023, 344, 118487. [Google Scholar] [CrossRef]
- Sabokrouhiyeh, N.; Bottacin-Busolin, A.; Savickis, J.; Nepf, H.; Marion, A. A numerical study of the effect of wetland shape and inlet-outlet configuration on wetland performance. Ecol. Eng. 2017, 105, 170–179. [Google Scholar] [CrossRef]
- Gong, Y.; Zhang, X.; Li, H.; Zhang, X.; He, S.; Miao, Y. A comparison of the growth status, rainfall retention and purification effects of four green roof plant species. J. Environ. Manag. 2021, 278, 111451. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.-A.; Uchiyama, K.; Inadama, D.; Ishida, Y.; Yamagiwa, K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour. Technol. 2010, 101, 7239–7244. [Google Scholar] [CrossRef] [PubMed]
- Frenzel, P.; Brunings, O.; Esler, K.J.; le Maitre, D.; Rebelo, A.J. How well do endemic wetland plant species perform in water purification? Wetlands 2024, 44, 124. [Google Scholar] [CrossRef]
- Bai, X.; Zhu, X.; Jiang, H.; Wang, Z.; He, C.; Sheng, L.; Zhuang, J. Purification effect of sequential constructed wetland for the polluted water in Urban River. Water 2020, 12, 1054. [Google Scholar] [CrossRef]
- Kurniawan, S.B.; Abdullah, S.R.S.; Imron, M.F.; Ahmad, A.; Said, N.S.M.; Rahim, N.F.M.; Alnawajha, M.M.; Abu Hasan, H.; Othman, A.R.; Purwanti, I.F. Potential of valuable materials recovery from aquaculture wastewater: An introduction to resource reclamation. Aquac. Res. 2021, 52, 2954–2962. [Google Scholar] [CrossRef]
- Chao, C.; Gong, S.; Xie, Y. The Performance of a multi-stage surface flow constructed wetland for the treatment of aquaculture wastewater and changes in epiphytic biofilm formation. Microorganisms 2025, 13, 494. [Google Scholar] [CrossRef]
- Ni, M.; Yuan, J.; Zhang, L.; Hua, J.; Rong, H.; Gu, Z. In- situ and ex- situ purification effect of ecological ponds of Euryale ferox Salisb on shrimp aquaculture. Aquaculture 2021, 540, 736678. [Google Scholar] [CrossRef]
- Wang, C.; Lei, J.; Guo, C. Application studies on purification of piggery waste water by multi-level artificial system of ecological lotus pond-surface flow wetland. Ecol. Environ. Sci. 2019, 28, 2289–2298. [Google Scholar]
- Harrington, C.; Scholz, M. Assessment of pre-digested piggery wastewater treatment operations with surface flow integrated constructed wetland systems. Bioresour. Technol. 2010, 101, 7713–7723. [Google Scholar] [CrossRef]
- Harrington, R.; McInnes, R. Integrated Constructed Wetlands (ICW) for livestock wastewater management. Bioresour. Technol. 2009, 100, 5498–5505. [Google Scholar] [CrossRef] [PubMed]
- Scholz, M.; Harrington, R.; Carroll, P.; Mustafa, A. The Integrated Constructed Wetlands (ICW) concept. Wetlands 2007, 27, 337–354. [Google Scholar] [CrossRef]
- Keck, F.; Lepori, F. Can we predict nutrient limitation in streams and rivers? Freshw. Biol. 2012, 57, 1410–1421. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Li, Y.; Liu, X.; Jiang, Y.; Fu, Y.; Jin, W.; Wu, J. Ecosystem N:P stoichiometric ratios determine the catchment surface water N:P ratio through subsurface hydrological processes. CATENA 2020, 194, 104740. [Google Scholar] [CrossRef]
- Gal, G.; Hipsey, M.; Parparov, A.; Wagner, U.; Makler, V.; Zohary, T. Implementation of ecological modeling as an effective management and investigation tool: Lake Kinneret as a case study. Ecol. Model. 2009, 220, 1697–1718. [Google Scholar] [CrossRef]
Jinluo Lotus Pond | River Outside the Pond | |
---|---|---|
BOD | Super Class V water (2022) Super Class V water (2025) | Super Class V water (2022) Super Class V water (2025) |
COD | Super Class V water (2022) Super Class V water (2025) | Super Class V water (2022) Super Class V water (2025) |
TN | Super Class V water (2022) Super Class V water (2025) | Super Class V water (2022) Super Class V water (2025) |
TP | Class III water (2022) Super Class V water (2025) | Class III water (2022) Super Class V water (2025) |
NH3-N | Class II water (2022) Class III water (2025) | Class II water (2022) Class IV water (2025) |
PI | Class V water (2025) | Class V water (2025) |
DO | Class IV water (2025) | Class IV water (2025) |
pH | BOD | COD | TP | TN | NH3-N | NO3−-N | Chl-a | ACD | |
---|---|---|---|---|---|---|---|---|---|
pH | 1.000 | ||||||||
BOD | −0.240 | 1.000 | |||||||
COD | −0.123 | 0.927 ** | 1.000 | ||||||
TP | −0.452 | −0.027 | −0.104 | 1.000 | |||||
TN | −0.030 | 0.318 | 0.169 | −0.105 | 1.000 | ||||
NH3-N | −0.160 | 0.381 | 0.331 | −0.206 | 0.775 ** | 1.000 | |||
NO3−-N | 0.230 | −0.431 | −0.452 | 0.331 | 0.103 | −0.292 | 1.000 | ||
Chl-a | 0.023 | 0.252 | 0.547 * | −0.066 | −0.119 | 0.341 | −0.293 | 1.000 | |
ACD | −0.035 | 0.176 | 0.245 | 0.231 | 0.224 | 0.584 * | −0.106 | 0.536 * | 1.000 |
pH | BOD | COD | TP | TN | NH3-N | NO3−-N | PI | DO | Chl-a | ACD | AB | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1.000 | |||||||||||
BOD | −0.089 | 1.000 | ||||||||||
COD | −0.428 * | 0.835 ** | 1.000 | |||||||||
TP | 0.181 | 0.642 ** | 0.452 * | 1.000 | ||||||||
TN | 0.179 | 0.536 ** | 0.179 | 0.526 ** | 1.000 | |||||||
NH3-N | 0.235 | 0.647 ** | 0.384 * | 0.518 ** | 0.685 ** | 1.000 | ||||||
NO3−-N | 0.136 | −0.181 | −0.392 * | 0.004 | 0.461 * | −0.243 | 1.000 | |||||
PI | −0.093 | 0.745 ** | 0.536 ** | 0.414 * | 0.589 ** | 0.298 | 0.245 | 1.000 | ||||
DO | 0.098 | −0.603 ** | −0.463 * | −0.492 * | −0.656 ** | −0.622 ** | −0.028 | −0.529 ** | 1.000 | |||
Chl-a | −0.366 | 0.124 | 0.266 | 0.052 | 0.290 | 0.124 | 0.227 | 0.040 | −0.392 * | 1.000 | ||
ACD | −0.215 | 0.378 * | 0.454 * | 0.190 | 0.186 | 0.355 | −0.273 | 0.342 | −0.267 | −0.094 | 1.000 | |
AB | −0.310 | 0.301 | 0.460 * | 0.037 | −0.004 | 0.076 | −0.213 | 0.340 | −0.033 | −0.159 | 0.902 ** | 1.000 |
Jinluo Lotus Pond | River Outside the Pond | |
---|---|---|
1 | Cyclotella meneghiniana, 3,986,800, 36.30% | Pseudanabaena sp., 6,576,000, 43.13% |
2 | Pseudanabaena sp., 3,336,000, 30.37% | Cyclotella meneghiniana, 3,718,000, 24.39% |
3 | Scenedesmus quadricauda, 1,155,200, 10.52% | Scenedesmus quadricauda, 1,476,800, 9.69% |
4 | Aphanocapsa delicatissima, 560,000, 5.10% | Trachelomonas superba, 592,000, 3.88% |
5 | Crucigenia tetrapedia, 497,600, 4.53% | Oscillatoria chlorine, 560,000, 3.67% |
6 | Coelastrum microporum, 320,000, 2.91% | Crucigenia tetrapedia, 544,000, 3.57% |
7 | Oscillatoria chlorine, 280,000, 2.55% | Coelastrum microporum, 358,400, 2.35% |
8 | Acanthosphaera sp., 204,000, 1.34% | |
9 | Dictyosphaerium pulchellum, 192,000, 1.26% | |
total | 10,135,600/10,984,400, 92.27% | 14,221,200/15,246,400, 93.28% |
Jinluo Lotus Pond | River Outside the Pond | |
---|---|---|
1 | Tetrastrum staurogeniaforme, 1,492,800, 17.04% | Tetrastrum staurogeniaforme, 2,964,000, 25.27% |
2 | Anabaena sp., 567,300, 6.47% | Coelastrum microporum 1,900,200, 16.20% |
3 | Scenedesmus quadricauda, 499,500, 5.70% | Scenedesmus quadricauda, 1,694,400, 14.45% |
4 | Coelastrum microporum, 377,700, 4.30% | Scenedesmus bicaudatus, 1,689,000, 14.40% |
5 | Scenedesmus bicaudatus, 176,100, 2.01% | Scenedesmus dimorphus, 641,100, 5.47% |
6 | Scenedesmus denticulatus, 175,800, 1.50% | |
7 | Actinastrum hantzschii,168,600, 1.44% | |
8 | Pediastrum tetras, 163,800, 1.40% | |
9 | Pediastrum biradiatum, 157,300, 1.34% | |
10 | Scenedesmus acuminatus, 150,300, 1.28% | |
11 | Microcystis sp., 146,700, 1.25% | |
total | 3,113,400/8,762,100, 35.53% | 9,851,200/11,729,100, 83.99% |
N:P | Restrictive | Sample Time | |
---|---|---|---|
Jinluo lotus pond | 39.67 | P restrictive | 2022 |
12.00 | 2025 | ||
River outside the pond | 98.97 | P restrictive | 2022 |
14.71 | 2025 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Gao, Y.; Zhou, J.; Wang, Y.; He, J. Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy. Water 2025, 17, 1985. https://doi.org/10.3390/w17131985
Liu B, Gao Y, Zhou J, Wang Y, He J. Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy. Water. 2025; 17(13):1985. https://doi.org/10.3390/w17131985
Chicago/Turabian StyleLiu, Bo, Yuan Gao, Jing Zhou, Yun Wang, and Junxia He. 2025. "Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy" Water 17, no. 13: 1985. https://doi.org/10.3390/w17131985
APA StyleLiu, B., Gao, Y., Zhou, J., Wang, Y., & He, J. (2025). Jinluo Low-Density Lotus Pond Wetland Water Purification Practice Experiment—A Case of Limited Efficacy. Water, 17(13), 1985. https://doi.org/10.3390/w17131985