Research on Airborne Microbial Communities

A special issue of Microorganisms (ISSN 2076-2607). This special issue belongs to the section "Environmental Microbiology".

Deadline for manuscript submissions: 30 June 2026 | Viewed by 1624

Special Issue Editor


E-Mail Website
Guest Editor
School of Environment and Geography, Qingdao University, Qingdao 266071, China
Interests: bioaerosols; microalgae; environmental health; renewable energy
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Atmospheric microorganisms refer to the microbial communities present in the atmosphere, encompassing bacteria, fungi, viruses, and archaea. These microorganisms are introduced into the atmosphere via diverse pathways, such as soil erosion, ocean spray, and anthropogenic activities. Atmospheric microorganisms play crucial roles in climate regulation, biogeochemical cycling, and public health, thereby influencing various aspects of human well-being. With increasing attention being paid to atmospheric microorganisms and their multifaceted impacts on the atmospheric environment, it is essential that we investigate the interactions between airborne microorganisms and the atmospheric environment. This research can provide critical insights into the complex interplay between atmospheric pollutants and bioaerosols.

As the Guest Editor of this Special Issue, I warmly invite you to submit opinion articles, original research articles, review articles, and short communications. These submissions should focus on providing insights into the interactions between atmospheric microorganisms and human health, methodological and technological innovations for exploring these interactions, and recent advancements in atmospheric microbial communities.

Dr. Changliang Nie
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Microorganisms is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • atmospheric microorganisms
  • bioaerosol
  • microbial community
  • air pollutant
  • climate change

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

13 pages, 1593 KB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 1400
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

Back to TopTop