Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (52)

Search Parameters:
Keywords = algae–bacteria interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2939 KiB  
Review
A Review of Maricultural Wastewater Treatment Using an MBR: Insights into the Mechanism of Membrane Fouling Mitigation Through a Microalgal–Bacterial Symbiotic and Microbial Ecological Network
by Yijun You, Shuyu Zhao, Binghan Xie, Zhipeng Li, Weijia Gong, Guoyu Zhang, Qinghao Li, Xiangqian Zhao, Zhaofeng Xin, Jinkang Wu, Yuanyuan Gao and Han Xiang
Membranes 2025, 15(8), 234; https://doi.org/10.3390/membranes15080234 (registering DOI) - 1 Aug 2025
Viewed by 31
Abstract
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and [...] Read more.
Membrane bioreactors (MBRs) have been utilized for maricultural wastewater treatment, where high-salinity stress results in dramatic membrane fouling in the actual process. A microalgal–bacterial symbiotic system (MBSS) offers advantages for photosynthetic oxygen production, dynamically regulating the structure of extracellular polymeric substances (EPSs) and improving the salinity tolerance of bacteria and algae. This study centered on the mechanisms of membrane fouling mitigation via the microalgal–bacterial interactions in the MBSS, including improving the pollutant removal, optimizing the system parameters, and controlling the gel layer formation. Moreover, the contribution of electrochemistry to decreasing the inhibitory effects of high-salinity stress was investigated in the MBSS. Furthermore, patterns of shifts in microbial communities and the impacts have been explored using metagenomic technology. Finally, this review aims to offer new insights for membrane fouling mitigation in actual maricultural wastewater treatment. Full article
(This article belongs to the Special Issue Emerging Superwetting Membranes: New Advances in Water Treatment)
Show Figures

Figure 1

14 pages, 9354 KiB  
Article
Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China
by Yingwen Mai, Changhong Hong, Da Liu, Fengjuan Yang, Gengfeng Xiao, Zhilin Zhang and Shuai Liu
Processes 2025, 13(7), 2129; https://doi.org/10.3390/pr13072129 - 4 Jul 2025
Viewed by 556
Abstract
Blue-green algae blooms present persistent environmental challenges in freshwater ecosystems, yet ecological interactions within the bacterial communities of Cylindrospermopsis-bloom reservoirs remain poorly understood. In this study, water samples were collected from February to May 2024 from 11 sampling sites in a Cylindrospermopsis [...] Read more.
Blue-green algae blooms present persistent environmental challenges in freshwater ecosystems, yet ecological interactions within the bacterial communities of Cylindrospermopsis-bloom reservoirs remain poorly understood. In this study, water samples were collected from February to May 2024 from 11 sampling sites in a Cylindrospermopsis-bloom reservoir in western Guangdong province, China. At each sampling point, a water sample was collected every month. High-throughput sequencing was applied to analyze the interaction between Cylindrospermopsis and other bacteria. As shown in our results, the phyla Actinobacteriota, Proteobacteria, Bacteroidota, Verrucomicrobiota, and Cyanobacteria were revealed as dominant phyla. Bacterial communities exhibited significant seasonal differences between flood and non-flood periods (ANOSIM: R = 0.472, p = 0.001). Cylindrospermopsis (dominance index Y = 0.53) acted as the keystone in the co-occurrence network (Zi < 2.5, Pi > 0.62) and closely interacted with other bacteria. For better management of the blue-green algae bloom reservoir, the phyla of Actinobacteriota, Dependentiae, Acidobacteriota, Armatimonadota, Gemmatimonadota, and Desulfobacterota were proposed as microbial indicators for the eutrophic process. This study provides a new insight into the interactions of Cyanobacteria with other bacteria and the management of blue-green algae outbreaks in reservoirs. Full article
(This article belongs to the Special Issue State-of-the-Art Wastewater Treatment Techniques)
Show Figures

Figure 1

14 pages, 4338 KiB  
Article
Microbial Corrosion Behavior of L245 Pipeline Steel in the Presence of Iron-Oxidizing Bacteria and Shewanella algae
by Fanghui Zhu, Yiyang Liu, Chunsheng Wu, Kai Li, Yingshuai Hu, Wei Liu, Shuzhen Yu, Mingxing Li, Xiaohuan Dong and Haobo Yu
Microorganisms 2025, 13(7), 1476; https://doi.org/10.3390/microorganisms13071476 - 25 Jun 2025
Viewed by 343
Abstract
Microbiologically influenced corrosion (MIC) poses significant challenges in oilfield water injection environments, leading to substantial socioeconomic losses. L245 steel, a low-alloy steel widely used in oil and gas pipelines due to its excellent mechanical properties and cost-effectiveness, remains highly vulnerable to MIC during [...] Read more.
Microbiologically influenced corrosion (MIC) poses significant challenges in oilfield water injection environments, leading to substantial socioeconomic losses. L245 steel, a low-alloy steel widely used in oil and gas pipelines due to its excellent mechanical properties and cost-effectiveness, remains highly vulnerable to MIC during long-term service. This study uses surface characterization and electrochemical techniques to investigate the corrosion behavior of L245 pipeline steel under short-cycle conditions in a symbiotic environment of iron-oxidizing bacteria (IOB) and Shewanella algae (S. algae). Key findings revealed that localized corrosion of L245 steel was markedly exacerbated under coexisting IOB and S. algae conditions compared to monoculture systems. However, the uniform corrosion rate under symbiosis fell between the rates observed in the individual IOB and S. algae systems. Mechanistically, the enhanced corrosion under symbiotic conditions was attributed to the synergistic electron transfer interaction: IOB exploited electron carriers secreted by S. algae during extracellular electron transfer (EET), which amplified the microbial consortium’s capacity to harvest electrons from the steel substrate. These results emphasize the critical role of interspecies electron exchange in accelerating localized degradation of carbon steel under complex microbial consortia, with implications for developing targeted mitigation strategies in industrial pipelines exposed to similar microbiological environments. Full article
Show Figures

Figure 1

15 pages, 2522 KiB  
Article
Phycobacteria Biodiversity, Selected Isolation, and Bioactivity Elucidation of New Bacterial Species of Highly Toxic Marine Dinoflagellate Alexandrium minutum amtk4
by Xiaoling Zhang, Zekang Pan, Jinkai Zhang, Bingqian Liu and Qiao Yang
Microorganisms 2025, 13(6), 1198; https://doi.org/10.3390/microorganisms13061198 - 24 May 2025
Viewed by 556
Abstract
Phycosphere niches host rich, unique microbial consortia that harbor complex algae–bacteria interactions with fundamental significance in underpinning most functions of aquatic ecological processes. Therefore, harvesting the uncultured phycobacteria is crucial for understanding the intricate mechanisms governing these dynamic interactions. Here, we characterized and [...] Read more.
Phycosphere niches host rich, unique microbial consortia that harbor complex algae–bacteria interactions with fundamental significance in underpinning most functions of aquatic ecological processes. Therefore, harvesting the uncultured phycobacteria is crucial for understanding the intricate mechanisms governing these dynamic interactions. Here, we characterized and compared microbial community composition of the phycosphere microbiota from six harmful algal bloom-forming marine dinoflagellates, Alexandrium spp., and their bacterial associations. Furthermore, based on a combinational enhanced cultivation strategy (CECS) procedure for the selected isolation for cultivable phycobacteria, a new yellow-pigmented bioactive bacterium designated ABI-6-9 was successfully recovered from cultivable phycobacteria of the highly toxic A. minutum strain amtk4. An additional phylogenomic analysis fully identified this new isolate as a potential novel species of the genus Mameliella within the family Roseobacteraceae. The bioactivity evaluation observed that strain ABI-6-9 can significantly promote the cell growth of its algal host and altered the gonyautoxin accumulation profiles in the co-culture circumstance. Additionally, the bacterial production of active bioflocculanting exopolysaccharides (EPSs) by strain ABI-6-9 was also measured after culture optimization. Thus, these findings revealed the potential environmental and biotechnological implications of this new microalgae growth- promoting phycobacterium. Full article
Show Figures

Figure 1

16 pages, 2314 KiB  
Article
Indole Acetic Acid: A Key Metabolite That Protects Marine Sulfitobacter mediterraneus Against Oxidative Stress
by Yongliang Gan, Runlin Cai, Guanjing Cai, Jude Juventus Aweya, Jianmin Xie, Ziming Chen and Hui Wang
Microorganisms 2025, 13(5), 1014; https://doi.org/10.3390/microorganisms13051014 - 28 Apr 2025
Viewed by 610
Abstract
For marine bacteria, the phycosphere is attractive as a major source of labile nutrients, but it also presents challenges due to the accumulation of stressors, such as reactive oxygen species (ROS) from algal metabolisms. Therefore, successful colonization of bacteria in the phycosphere requires [...] Read more.
For marine bacteria, the phycosphere is attractive as a major source of labile nutrients, but it also presents challenges due to the accumulation of stressors, such as reactive oxygen species (ROS) from algal metabolisms. Therefore, successful colonization of bacteria in the phycosphere requires an efficient mechanism to fight against oxidative stress, which is still a missing piece in studying bacteria–algae interactions. Here, we demonstrate that a common metabolite, indole acetic acid (IAA), enables the Roseobacter clade Sulfitobacter mediterraneus SC1-11, an IAA-producer, to resist hydrogen peroxide (H2O2) stress and that IAA biosynthesis can be activated by low concentrations of H2O2. Proteomics and metabolomics analyses revealed that bacteria consume high amino acid levels when exposed to H2O2 stress, while exogenous supplementation with IAA effectively protects bacteria from ROS damage and alleviates amino acid starvation by upregulating several proteins responsible for replication, recombination, and repair, as well as two proteins involved in amino acid transport and metabolism. Furthermore, the supplementation of some amino acids, such as arginine, also showed a significant protective effect on bacteria under H2O2 stress. This study highlights an unprecedented role of IAA in regulating amino acid metabolisms for resisting oxidative stress, which may be a specific strategy for adapting to the phycosphere. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

14 pages, 3631 KiB  
Article
Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment–Water Interface in a Subalpine Lake
by Xue Wang, Jinxian Liu, Jiali Ren and Baofeng Chai
Microorganisms 2024, 12(12), 2418; https://doi.org/10.3390/microorganisms12122418 - 25 Nov 2024
Viewed by 880
Abstract
The sediment–water interface is the most active region for biogeochemical processes and biological communities in aquatic ecosystems. As the main drivers of biogeochemical cycles, the assembly mechanisms and the distribution characteristics of microbial communities at this boundary remain unclear. This study investigated the [...] Read more.
The sediment–water interface is the most active region for biogeochemical processes and biological communities in aquatic ecosystems. As the main drivers of biogeochemical cycles, the assembly mechanisms and the distribution characteristics of microbial communities at this boundary remain unclear. This study investigated the microbial communities across the sediment–water interface in a natural subalpine lake in China. The results indicated that the diversity of bacterial communities in middle sediment was significantly higher than that in overlying water and other sediments (p < 0.001). Pearson’s correlation analysis indicated that the diversity was significantly influenced by biotic factors (e.g., diversity of fungus, protozoan and alga) and physicochemical parameters (e.g., total carbon, total organic carbon, nitrate, ammonium and pH) (p < 0.01). Null model analysis revealed that the homogeneous selection dominated the assembly of the bacteria community in sediment, whereas the heterogeneous selection dominated that in overlying water. The least squares path analysis showed that interactions between protozoa and bacteria had a greater impact on bacterial community assembly (p < 0.001). Important taxa influence the assembly by regulating biotic interactions. These findings provided a basis for understanding the importance of biotic interactions in maintaining subalpine lakes’ ecosystems across the sediment–water interface. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

12 pages, 11774 KiB  
Article
Coupling Iron Coagulation and Microalgal–Bacterial Granular Sludge for Efficient Treatment of Municipal Wastewater: A Proof–of–Concept Study
by Bingheng Chen, Chenyu Wang, Changqing Chen, Anjie Li, Xiaoyuan Zhang, Shulian Wang and Bin Ji
Water 2024, 16(21), 3035; https://doi.org/10.3390/w16213035 - 23 Oct 2024
Cited by 2 | Viewed by 1313
Abstract
The rapid expansion of global urbanization and industrialization has significantly increased the discharge of municipal wastewater, leading to issues of carbon emissions and energy consumption when using traditional biological treatment processes. This study proposes an innovative process that couples iron coagulation with microalgal–bacterial [...] Read more.
The rapid expansion of global urbanization and industrialization has significantly increased the discharge of municipal wastewater, leading to issues of carbon emissions and energy consumption when using traditional biological treatment processes. This study proposes an innovative process that couples iron coagulation with microalgal–bacterial granular sludge (MBGS), with optimization and regulation based on operational conditions. The study found that the coagulation performance achieved optimal levels at an iron concentration of 25 mg/L and an anionic polyacrylamide concentration of 1 mg/L, which could remove approximately 61% of the organics and over 90% of phosphorus from raw wastewater. By relying on heterotrophic microorganisms, such as Proteobacteria, Bacteroidota, and Chloroflexi, along with the synergistic interaction between algae and bacteria, the subsequent MBGS process could further effectively remove organics over the day-night cycles. Moreover, the addition of inorganic carbon sources of NaHCO3 increased the abundance of denitrification-related genes, reduced the accumulation of nitrite within MBGS, and led to effective total nitrogen removal. These results indicate that the iron coagulation–MBGS coupling process can efficiently treat municipal wastewater, offering potential for environment-sustainable pollutant removal with reduced energy consumption. These findings provide valuable insights for the practical engineering application of MBGS in wastewater treatment systems aiming for carbon-neutral wastewater treatment. Full article
Show Figures

Figure 1

17 pages, 5038 KiB  
Article
Potentially Pathogenic Vibrio spp. in Algal Wrack Accumulations on Baltic Sea Sandy Beaches
by Marija Kataržytė, Greta Gyraitė, Greta Kalvaitienė, Diana Vaičiūtė, Otilija Budrytė and Martynas Bučas
Microorganisms 2024, 12(10), 2101; https://doi.org/10.3390/microorganisms12102101 - 21 Oct 2024
Cited by 1 | Viewed by 1589
Abstract
The Vibrio bacteria known to cause infections to humans and wildlife have been largely overlooked in coastal environments affected by beach wrack accumulations from seaweed or seagrasses. This study presents findings on the presence and distribution of potentially pathogenic Vibrio species on coastal [...] Read more.
The Vibrio bacteria known to cause infections to humans and wildlife have been largely overlooked in coastal environments affected by beach wrack accumulations from seaweed or seagrasses. This study presents findings on the presence and distribution of potentially pathogenic Vibrio species on coastal beaches that are used for recreation and are affected by red-algae-dominated wrack. Using species-specific primers and 16S rRNA gene amplicon sequencing, we identified V. vulnificus, V. cholerae (non-toxigenic), and V. alginolyticus, along with 14 operational taxonomic units (OTUs) belonging to the Vibrio genus in such an environment. V. vulnificus and V. cholerae were most frequently found in water at wrack accumulation sites and within the wrack itself compared to sites without wrack. Several OTUs were exclusive to wrack accumulation sites. For the abundance and presence of V. vulnificus and the presence of V. cholerae, the most important factors in the water were the proportion of V. fucoides in the wrack, chl-a, and CDOM. Specific Vibrio OTUs correlated with salinity, water temperature, cryptophyte, and blue-green algae concentrations. To better understand the role of wrack accumulations in Vibrio abundance and community composition, future research should include different degradation stages of wrack, evaluate the link with nutrient release, and investigate microbial food-web interactions within such ecosystems, focusing on potentially pathogenic Vibrio species that could be harmful both for humans and wildlife. Full article
(This article belongs to the Special Issue Research on Diseases of Aquatic Organisms)
Show Figures

Figure 1

16 pages, 10295 KiB  
Article
Taxonomic Diversity, Predicted Metabolic Pathway, and Interaction Pattern of Bacterial Community in Sea Urchin Anthocidaris crassispina
by Xinye Chen, Li Mo, Lin Zhang, Liyu Huang, Ziqing Gao, Jingjing Peng, Zonghe Yu and Xiaoyong Zhang
Microorganisms 2024, 12(10), 2094; https://doi.org/10.3390/microorganisms12102094 - 20 Oct 2024
Viewed by 1548
Abstract
Bacterial assemblages associated with sea urchin are critical to their physiology and ecology within marine ecosystems. In this study, we characterized the bacterial communities in wild sea urchin Anthocidaris crassispina captured in Daya Bay, South China Sea. A total of 363 amplicon sequence [...] Read more.
Bacterial assemblages associated with sea urchin are critical to their physiology and ecology within marine ecosystems. In this study, we characterized the bacterial communities in wild sea urchin Anthocidaris crassispina captured in Daya Bay, South China Sea. A total of 363 amplicon sequence variants belonging to nine phyla and 141 genera were classified from intestine, body surface, and surrounding seawater samples. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacteria phyla found in this study. A network analysis of bacterial interspecies interactions revealed varying complexity, stability, connectivity, and relationship patterns across the samples, with the most intricate network observed in the surrounding seawater. Metagenomic predictions highlighted the distinct bacterial metabolic pathways, with significant differences between intestine and seawater samples. Notably, pathways associated with polysaccharide degradation, including chitin derivatives, starch, and CoM biosynthesis, were markedly abundant, underscoring the gut microbiota’s key role in digesting algae. In addition, other metabolic pathways in intestine samples were linked to immune response regulation of sea urchins. Overall, this study provides a comprehensive overview of the bacterial community structure and potential functional roles in A. crassispina. Full article
Show Figures

Figure 1

18 pages, 2580 KiB  
Article
Epibiotic Bacteria Isolated from the Non-Indigenous Species Codium fragile ssp. fragile: Identification, Characterization, and Biotechnological Potential
by Wafa Cherif, Leila Ktari, Bilel Hassen, Amel Ismail and Monia El Bour
Microorganisms 2024, 12(9), 1803; https://doi.org/10.3390/microorganisms12091803 - 30 Aug 2024
Viewed by 1875
Abstract
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological [...] Read more.
Due to their richness in organic substances and nutrients, seaweed (macroalgae) harbor a large number of epiphytic bacteria on their surfaces. These bacteria interact with their host in multiple complex ways, in particular, by producing chemical compounds. The released metabolites may have biological properties beneficial for applications in both industry and medicine. In this study, we assess the diversity of culturable bacterial community of the invasive alga Codium fragile ssp. fragile with the aim to identify key groups within this epiphytic community. Seaweed samples were collected from the Northern Tunisian coast. A total of fifty bacteria were isolated in pure culture. These bacterial strains were identified by amplification of the ribosomal intergenic transcribed spacer between the 16S and the 23S rRNA genes (ITS-PCR) and by 16S rRNA sequencing. Antimicrobial activity, biochemical, and antibiotic resistance profile characterization were determined for the isolates. Isolated strains were tested for their antimicrobial potential against human and fish bacterial pathogens and the yeast Candida albicans, using the in vitro drop method. About 37% of isolated strains possess antibacterial activity with a variable antimicrobial spectrum. Ba1 (closely related to Pseudoalteromonas spiralis), Ba12 (closely related to Enterococcus faecium), and Bw4 (closely related to Pseudoalteromonas sp.) exhibited strong antimicrobial activity against E. coli. The isolated strain Ba4, closely related to Serratia marcescens, demonstrated the most potent activity against pathogens. The susceptibility of these strains to 12 commonly used antibiotics was investigated. Majority of the isolates were resistant to oxacillin, cefoxitin, tobramycin, and nitrofurantoin. Ba7 and Ba10, closely related to the Vibrio anguillarum strains, had the highest multidrug resistance profiles. The enzymes most commonly produced by the isolated strains were amylase, lecithinase, and agarase. Moreover, nine isolates produced disintegration zones around their colonies on agar plates with agarolitic index, ranging from 0.60 to 2.38. This investigation highlighted that Codium fragile ssp. fragile possesses an important diversity of epiphytic bacteria on its surface that could be cultivated in high biomass and may be considered for biotechnological application and as sources of antimicrobial drugs. Full article
(This article belongs to the Special Issue Holobionts in Aquaculture)
Show Figures

Figure 1

21 pages, 3323 KiB  
Article
Impact of Nutrient Enrichment on Community Structure and Co-Occurrence Networks of Coral Symbiotic Microbiota in Duncanopsammia peltata: Zooxanthellae, Bacteria, and Archaea
by Chuanzhu Bai, Qifang Wang, Jinyan Xu, Han Zhang, Yuxin Huang, Ling Cai, Xinqing Zheng and Ming Yang
Microorganisms 2024, 12(8), 1540; https://doi.org/10.3390/microorganisms12081540 - 27 Jul 2024
Cited by 1 | Viewed by 2623
Abstract
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated [...] Read more.
Symbiotic microorganisms in reef-building corals, including algae, bacteria, archaea, fungi, and viruses, play critical roles in the adaptation of coral hosts to adverse environmental conditions. However, their adaptation and functional relationships in nutrient-rich environments have yet to be fully explored. This study investigated Duncanopsammia peltata and the surrounding seawater and sediments from protected and non-protected areas in the summer and winter in Dongshan Bay. High-throughput sequencing was used to characterize community changes, co-occurrence patterns, and factors influencing symbiotic coral microorganisms (zooxanthellae, bacteria, and archaea) in different environments. The results showed that nutrient enrichment in the protected and non-protected areas was the greatest in December, followed by the non-protected area in August. In contrast, the August protected area had the lowest nutrient enrichment. Significant differences were found in the composition of the bacterial and archaeal communities in seawater and sediments from different regions. Among the coral symbiotic microorganisms, the main dominant species of zooxanthellae is the C1 subspecies (42.22–56.35%). The dominant phyla of bacteria were Proteobacteria, Cyanobacteria, Firmicutes, and Bacteroidota. Only in the August protected area did a large number (41.98%) of SAR324_cladeMarine_group_B exist. The August protected and non-protected areas and December protected and non-protected areas contained beneficial bacteria as biomarkers. They were Nisaea, Spiroplasma, Endozoicomonas, and Bacillus. No pathogenic bacteria appeared in the protected area in August. The dominant phylum in Archaea was Crenarchaeota. These symbiotic coral microorganisms’ relative abundances and compositions vary with environmental changes. The enrichment of dissolved inorganic nitrogen in environmental media is a key factor affecting the composition of coral microbial communities. Co-occurrence analysis showed that nutrient enrichment under anthropogenic disturbances enhanced the interactions between coral symbiotic microorganisms. These findings improve our understanding of the adaptations of coral holobionts to various nutritional environments. Full article
(This article belongs to the Special Issue Marine Microbial Diversity: Focus on Corals)
Show Figures

Figure 1

15 pages, 6184 KiB  
Article
Thyroid Hormone Receptor Agonistic and Antagonistic Activity of Newly Synthesized Dihydroxylated Polybrominated Diphenyl Ethers: An In Vitro and In Silico Coactivator Recruitment Study
by Mengtao Zhang, Jianghong Shi, Bing Li, Hui Ge, Huanyu Tao, Jiawei Zhang, Xiaoyan Li and Zongwei Cai
Toxics 2024, 12(4), 281; https://doi.org/10.3390/toxics12040281 - 11 Apr 2024
Viewed by 1916
Abstract
Dihydroxylated polybrominated diphenyl ethers (DiOH-PBDEs) could be the metabolites of PBDEs of some organisms or the natural products of certain marine bacteria and algae. OH-PBDEs may demonstrate binding affinity to thyroid hormone receptors (TRs) and can disrupt the functioning of the systems modulated [...] Read more.
Dihydroxylated polybrominated diphenyl ethers (DiOH-PBDEs) could be the metabolites of PBDEs of some organisms or the natural products of certain marine bacteria and algae. OH-PBDEs may demonstrate binding affinity to thyroid hormone receptors (TRs) and can disrupt the functioning of the systems modulated by TRs. However, the thyroid hormone disruption mechanism of diOH-PBDEs remains elusive due to the absence of diOH-PBDEs standards. This investigation explores the potential disruptive effects of OH/diOH-PBDEs on thyroid hormones via competitive binding and coactivator recruitment with TRα and TRβ. At levels of 5000 nM and 25,000 nM, 6-OH-BDE-47 demonstrated significant recruitment of steroid receptor coactivator (SRC), whereas none of the diOH-PBDEs exhibited SRC recruitment within the range of 0.32–25,000 nM. AutoDock CrankPep (ADCP) simulations suggest that the conformation of SRC and TR–ligand complexes, particularly their interaction with Helix 12, rather than binding affinity, plays a pivotal role in ligand agonistic activity. 6,6′-diOH-BDE-47 displayed antagonistic activity towards both TRα and TRβ, while the antagonism of 3,5-diOH-BDE-100 for TRα and TRβ was concentration-dependent. 3,5-diOH-BDE-17 and 3,5-diOH-BDE-51 exhibited no discernible agonistic or antagonistic activities. Molecular docking analysis revealed that the binding energy of 3,3′,5-triiodo-L-thyronine (T3) surpassed that of OH/diOH-PBDEs. 3,5-diOH-BDE-100 exhibited the highest binding energy, whereas 6,6′-diOH-BDE-47 displayed the lowest. These findings suggest that the structural determinants influencing the agonistic and antagonistic activities of halogen phenols may be more intricate than previously proposed, involving factors beyond high-brominated PBDEs or hydroxyl group and bromine substitutions. It is likely that the agonistic or antagonistic propensities of OH/diOH-PBDEs are instigated by protein conformational changes rather than considerations of binding energy. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Figure 1

19 pages, 5037 KiB  
Article
Impacts of Differentially Shaped Silver Nanoparticles with Increasingly Complex Hydrophobic Thiol Surface Coatings in Small-Scale Laboratory Microcosms
by Bryan J. Harper, Arek M. Engstrom, Stacey L. Harper and Marilyn R. Mackiewicz
Nanomaterials 2024, 14(8), 654; https://doi.org/10.3390/nano14080654 - 9 Apr 2024
Cited by 1 | Viewed by 3305
Abstract
We investigated the impacts of spherical and triangular-plate-shaped lipid-coated silver nanoparticles (AgNPs) designed to prevent surface oxidation and silver ion (Ag+) dissolution in a small-scale microcosm to examine the role of shape and surface functionalization on biological interactions. Exposures were conducted [...] Read more.
We investigated the impacts of spherical and triangular-plate-shaped lipid-coated silver nanoparticles (AgNPs) designed to prevent surface oxidation and silver ion (Ag+) dissolution in a small-scale microcosm to examine the role of shape and surface functionalization on biological interactions. Exposures were conducted in microcosms consisting of algae, bacteria, crustaceans, and fish embryos. Each microcosm was exposed to one of five surface chemistries within each shape profile (at 0, 0.1, or 0.5 mg Ag/L) to investigate the role of shape and surface composition on organismal uptake and toxicity. The hybrid lipid-coated AgNPs did not result in any significant release of Ag+ and had the most significant toxicity to D. magna, the most sensitive species, although the bacterial population growth rate was reduced in all exposures. Despite AgNPs resulting in increasing algal growth over the experiment, we found no correlation between algal growth and the survival of D. magna, suggesting that the impacts of the AgNPs on bacterial survival influenced algal growth rates. No significant impacts on zebrafish embryos were noted in any exposure. Our results demonstrate that the size, shape, and surface chemistry of AgNPs can be engineered to achieve specific goals while mitigating nanoparticle risks. Full article
Show Figures

Graphical abstract

14 pages, 637 KiB  
Review
Soil Ecosystem Functioning through Interactions of Nematodes and Fungi Trichoderma sp.
by Ana Gašparović Pinto, Tomislav Kos, Josipa Puškarić, Karolina Vrandečić, Teuta Benković-Lačić and Mirjana Brmež
Sustainability 2024, 16(7), 2885; https://doi.org/10.3390/su16072885 - 29 Mar 2024
Cited by 6 | Viewed by 3068
Abstract
In this review, an overview was given of the mutual interactions between nematodes and fungi of the genus Trichoderma sp. due to the potential of these fungi to protect plant roots from plant-parasitic nematodes on the one hand and the influence of nematodes [...] Read more.
In this review, an overview was given of the mutual interactions between nematodes and fungi of the genus Trichoderma sp. due to the potential of these fungi to protect plant roots from plant-parasitic nematodes on the one hand and the influence of nematodes (fungivores) on the efficacy of the fungus on the other. In addition, an overview of the advantages of Trichoderma sp. for agricultural production was given. The basis of sustainable agricultural production is the healthy functioning of the soil ecosystem. The diversity of organisms—bacteria, protozoa, algae, metazoans (nematodes) and fungi—improves the quality and performance of the soil by maintaining biological productivity. Root exudates in the rhizosphere support microbial communities that play a key role in regulating the dynamics of organic matter decomposition and the availability of plant nutrients. The microbial activity of organisms in the soil is interconnected and interacts to form a soil food web that reflects the condition, function and health of the soil. The energy in food webs flows through trophic chains of consumers, which are divided into energy channels. Root, bacterial and fungal channels increase soil biomass, carbon (C) and energy flow through the soil food web. The structure of the nematode community is an effective tool for the biological assessment of soil quality. This is due to a number of characteristics that nematodes have, including the following: a great diversity of species, the possibility of subdivision according to different criteria such as trophic groups and c-p groups, the duration of reproduction, the ease of sampling, the identification of genera and preservation, etc. Nematodes are involved in various ecological functions in the soil, of which the interaction between them and fungi is based on antagonism or mutualism, which is the basis for a better understanding of their impact on the ecosystem. Fungi of the genus Trichoderma sp. are successful colonizers of all habitats, secondary opportunists and fast growing. Full article
Show Figures

Figure 1

23 pages, 1712 KiB  
Review
Exchange or Eliminate: The Secrets of Algal-Bacterial Relationships
by Bertille Burgunter-Delamare, Prateek Shetty, Trang Vuong and Maria Mittag
Plants 2024, 13(6), 829; https://doi.org/10.3390/plants13060829 - 13 Mar 2024
Cited by 10 | Viewed by 4656
Abstract
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. [...] Read more.
Algae and bacteria have co-occurred and coevolved in common habitats for hundreds of millions of years, fostering specific associations and interactions such as mutualism or antagonism. These interactions are shaped through exchanges of primary and secondary metabolites provided by one of the partners. Metabolites, such as N-sources or vitamins, can be beneficial to the partner and they may be assimilated through chemotaxis towards the partner producing these metabolites. Other metabolites, especially many natural products synthesized by bacteria, can act as toxins and damage or kill the partner. For instance, the green microalga Chlamydomonas reinhardtii establishes a mutualistic partnership with a Methylobacterium, in stark contrast to its antagonistic relationship with the toxin producing Pseudomonas protegens. In other cases, as with a coccolithophore haptophyte alga and a Phaeobacter bacterium, the same alga and bacterium can even be subject to both processes, depending on the secreted bacterial and algal metabolites. Some bacteria also influence algal morphology by producing specific metabolites and micronutrients, as is observed in some macroalgae. This review focuses on algal-bacterial interactions with micro- and macroalgal models from marine, freshwater, and terrestrial environments and summarizes the advances in the field. It also highlights the effects of temperature on these interactions as it is presently known. Full article
Show Figures

Figure 1

Back to TopTop