Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Data Processing
3. Results
3.1. Water Quality and Trophic Status
3.2. Bacterial Diversity and Composition
3.3. Microbial–Environmental Correlations
3.4. Co-Occurrence Network Analysis
4. Discussion
4.1. Characteristics of Reservoir Bacterial Communities
4.2. Investigation of Microbial Interactions and Eutrophic Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Qin, B.; Gao, G.; Zhu, G.; Zhang, Y.; Song, Y.; Tang, X.; Xu, H.; Deng, J. Lake Eutrophication and Its Ecosystem Response. Chin. Sci. Bull. 2013, 58, 961–970. [Google Scholar] [CrossRef]
- Qin, B.; Yang, L.; Chen, F.; Zhu, G.; Zhang, L.; Chen, Y. Mechanism and Control of Lake Eutrophication. Chin. Chin. Chin. Sci. Bull. 2006, 51, 2401–2412. [Google Scholar] [CrossRef]
- Le, C.; Zha, Y.; Li, Y.; Sun, D.; Lu, H.; Yin, B. Eutrophication of Lake Waters in China: Cost, Causes, and Control. Environ. Manag. 2010, 45, 662–668. [Google Scholar] [CrossRef]
- Jin, X.; Xu, Q.; Huang, C. Current Status and Future Tendency of Lake Eutrophication in China. Sci. China Ser. C Life Sci. 2005, 48, 948–954. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of Eutrophication and Water Quality in the Estuarine Area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Qin, B.; Zhang, Y.; Zhu, G.; Gao, G. Eutrophication Control of Large Shallow Lakes in China. Sci. Total Environ. 2023, 881, 163494. [Google Scholar] [CrossRef]
- Jiang, C.; Zhu, L.; Hu, X.; Cheng, J.; Xie, M. Reasons and Control of Eutrophication in New Reservoirs. In Eutrophication: Causes, Consequences and Control; Ansari, A.A., Singh Gill, S., Lanza, G.R., Rast, W., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 325–340. ISBN 978-90-481-9625-8. [Google Scholar]
- da Rocha, C.A.N.; da Costa, M.R.A.; Menezes, R.F.; Attayde, J.L.; Becker, V. Water Volume Reduction Increases Eutrophication Risk in Tropical Semi-Arid Reservoirs. Acta Limnol. Bras. 2018, 30, e106. [Google Scholar]
- Moreira, C.; Azevedo, J.; Antunes, A.; Vasconcelos, V. Cylindrospermopsin: Occurrence, Methods of Detection and Toxicology. J. Appl. Microbiol. 2013, 114, 605–620. [Google Scholar] [CrossRef]
- De Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.; Pereira, M.J. Microcystin-Producing Blooms—A Serious Global Public Health Issue. Ecotoxicol. Environ. Saf. 2004, 59, 151–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, J.; Zhou, Y.; Zhang, Y.; Qin, B.; Song, C.; Shi, K.; Zhu, G.; Hou, X.; Zhang, Y. Drinking Water Safety Improvement and Future Challenge of Lakes and Reservoirs. Sci. Bull. 2024, 69, 3558–3570. [Google Scholar] [CrossRef]
- Igwaran, A.; Kayode, A.J.; Moloantoa, K.M.; Khetsha, Z.P.; Unuofin, J.O. Cyanobacteria Harmful Algae Blooms: Causes, Impacts, and Risk Management. Water Air Soil Pollut. 2024, 235, 71. [Google Scholar] [CrossRef]
- McGregor, G.B.; Fabbro, L.D. Dominance of Cylindrospermopsis Raciborskii (Nostocales, Cyanoprokaryota) in Queensland Tropical and Subtropical Reservoirs: Implications for Monitoring and Management. Lakes Reserv. Res. Manag. 2000, 5, 195–205. [Google Scholar] [CrossRef]
- Yatigammana, S.; Perera, M. Distribution of Cylindrospermopsis Raciborskii (Cyanobacteria) in Sri Lanka. Ceylon J. Sci. 2017, 46, 65–80. [Google Scholar] [CrossRef]
- Chislock, M.F.; Sharp, K.L.; Wilson, A.E. Cylindrospermopsis Raciborskii Dominates under Very Low and High Nitrogen-to-Phosphorus Ratios. Water Res. 2014, 49, 207–214. [Google Scholar] [CrossRef]
- Bonilla, S.; González-Piana, M.; Soares, M.; Huszar, V.L.; Becker, V.; Somma, A.; Marinho, M.M.; Kokociński, M.; Dokulil, M.; Antoniades, D. The Success of the Cyanobacterium Cylindrospermopsis Raciborskii in Freshwaters Is Enhanced by the Combined Effects of Light Intensity and Temperature. J. Limnol. 2016, 75, 606–617. [Google Scholar] [CrossRef]
- Bhagowati, B.; Ahamad, K.U. A Review on Lake Eutrophication Dynamics and Recent Developments in Lake Modeling. Ecohydrol. Hydrobiol. 2019, 19, 155–166. [Google Scholar] [CrossRef]
- Lan, J.; Liu, P.; Hu, X.; Zhu, S. Harmful Algal Blooms in Eutrophic Marine Environments: Causes, Monitoring, and Treatment. Water 2024, 16, 2525. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, M.; Li, X.; Liu, G.; Hua, Y.; Zhao, J.; Huguet, A.; Li, S. Shifts in Microbial Communities in Shallow Lakes Depending on Trophic States: Feasibility as an Evaluation Index for Eutrophication. Ecol. Indic. 2022, 136, 108691. [Google Scholar] [CrossRef]
- Shao, K.; Yao, X.; Wu, Z.; Jiang, X.; Hu, Y.; Tang, X.; Xu, Q.; Gao, G. The Bacterial Community Composition and Its Environmental Drivers in the Rivers around Eutrophic Chaohu Lake, China. BMC Microbiol. 2021, 21, 179. [Google Scholar] [CrossRef]
- Palacios, O.A.; López, B.R.; de-Bashan, L.E. Microalga Growth-Promoting Bacteria (MGPB): A Formal Term Proposed for Beneficial Bacteria Involved in Microalgal–Bacterial Interactions. Algal Res. 2022, 61, 102585. [Google Scholar] [CrossRef]
- Xiong, X.; Li, Y.; Zhang, C. Cable Bacteria: Living Electrical Conduits for Biogeochemical Cycling and Water Environment Restoration. Water Res. 2024, 253, 121345. [Google Scholar] [CrossRef]
- Jin, Y.; Ren, S.; Wu, Y.; Zhang, X.; Chen, Z.; Xie, B. Microbial Community Structures and Bacteria-Cylindrospermopsis Raciborskii Interactions in Yilong Lake. FEMS Microbiol. Ecol. 2024, 100, fiae048. [Google Scholar] [CrossRef]
- Meyer, N.; Bigalke, A.; Kaulfuß, A.; Pohnert, G. Strategies and Ecological Roles of Algicidal Bacteria. FEMS Microbiol. Rev. 2017, 41, 880–899. [Google Scholar] [CrossRef]
- Coyne, K.J.; Wang, Y.; Johnson, G. Algicidal Bacteria: A Review of Current Knowledge and Applications to Control Harmful Algal Blooms. Front. Microbiol. 2022, 13, 871177. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Y.; Zhang, M.; Lin, K.; Wang, Z.; Liu, L. Seasonal Responses of Microbial Communities to Water Quality Variations and Interaction of Eutrophication Risk in Gehu Lake. Sci. Total Environ. 2024, 955, 177199. [Google Scholar] [CrossRef]
- Ji, B.; Liang, J.; Ma, Y.; Zhu, L.; Liu, Y. Bacterial Community and Eutrophic Index Analysis of the East Lake. Environ. Pollut. 2019, 252, 682–688. [Google Scholar] [CrossRef]
- Han, B.-P.; Liu, Z.; Dumont, H.J. Water Supply and Eutrophication of Reservoirs in Guangdong Province, South China. In Tropical and Sub-Tropical Reservoir Limnology in China: Theory and Practice; Han, B.-P., Liu, Z., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 279–292. ISBN 978-94-007-2007-7. [Google Scholar]
- Lei, L.; Peng, L.; Huang, X.; Han, B.-P. Occurrence and Dominance of Cylindrospermopsis Raciborskii and Dissolved Cylindrospermopsin in Urban Reservoirs Used for Drinking Water Supply, South China. Environ. Monit. Assess. 2014, 186, 3079–3090. [Google Scholar] [CrossRef]
- Lei, M.-T.; Peng, L.; Han, B.-P.; Lei, L.-M. Distribution and Factors Affecting Cylindrospermopsis Raciborskii in Guangdong Reservoirs. Huan Jing Ke Xue 2018, 39, 5523–5531. [Google Scholar]
- Yang, Y.; Zheng, X.; Tang, Q.; Gu, J.; Lei, L.; Han, B.-P. Species Diversity and Seasonal Dynamics of Filamentous Cyanobacteria in Urban Reservoirs for Drinking Water Supply in Tropical China. Ecotoxicology 2020, 29, 780–789. [Google Scholar] [CrossRef]
- Knebelsberger, T.; Stöger, I. DNA Extraction, Preservation, and Amplification. In DNA Barcodes: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 311–338. [Google Scholar]
- Harper, D.A.; Owen, A.W. Quantitative and Morphometric Methods in Taxonomy; Wiley: Hoboken, NJ, USA, 1999. [Google Scholar]
- Csardi, G.; Nepusz, T. The Igraph Software. Complex. Syst. 2006, 1695, 1–9. [Google Scholar]
- Paver, S.F.; Hayek, K.R.; Gano, K.A.; Fagen, J.R.; Brown, C.T.; Davis-Richardson, A.G.; Crabb, D.B.; Rosario-Passapera, R.; Giongo, A.; Triplett, E.W. Interactions between Specific Phytoplankton and Bacteria Affect Lake Bacterial Community Succession. Environ. Microbiol. 2013, 15, 2489–2504. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, L.; Li, Y.; Wang, C.; Zhang, W.; Wang, L.; Niu, L. Pollution Gradients Shape the Co-Occurrence Networks and Interactions of Sedimentary Bacterial Communities in Taihu Lake, a Shallow Eutrophic Lake. J. Environ. Manag. 2022, 305, 114380. [Google Scholar] [CrossRef]
- Hou, P.; Chang, F.; Duan, L.; Zhang, Y.; Zhang, H. Seasonal Variation and Spatial Heterogeneity of Water Quality Parameters in Lake Chenghai in Southwestern China. Water 2022, 14, 1640. [Google Scholar] [CrossRef]
- Feng, C.; Jia, J.; Wang, C.; Han, M.; Dong, C.; Huo, B.; Li, D.; Liu, X. Phytoplankton and Bacterial Community Structure in Two Chinese Lakes of Different Trophic Status. Microorganisms 2019, 7, 621. [Google Scholar] [CrossRef]
- Liao, J.; Cao, X.; Zhao, L.; Wang, J.; Gao, Z.; Wang, M.C.; Huang, Y. The Importance of Neutral and Niche Processes for Bacterial Community Assembly Differs between Habitat Generalists and Specialists. FEMS Microbiol. Ecol. 2016, 92, fiw174. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, H.; Chang, F.; Xie, P.; Zhang, Y.; Wu, H.; Zhang, X.; Peng, W.; Liu, F. eDNA Revealed in Situ Microbial Community Changes in Response to Trapa Japonica in Lake Qionghai and Lake Erhai, Southwestern China. Chemosphere 2022, 288, 132605. [Google Scholar] [CrossRef]
- Long, Q.; Feng, X.; Liu, J.; Zhang, X.; Shen, G.; Zhu, D. Microbial Diversity of Keluke-Tuosu Lake Wetland Reserve in Qinghai-Tibet Plateau. Earth Environ. 2017, 4, 399–407. [Google Scholar]
- Liu, S.; Yu, H.; Yu, Y.; Huang, J.; Zhou, Z.; Zeng, J.; Chen, P.; Xiao, F.; He, Z.; Yan, Q. Ecological Stability of Microbial Communities in Lake Donghu Regulated by Keystone Taxa. Ecol. Indic. 2022, 136, 108695. [Google Scholar] [CrossRef]
- Dong, X.; Greening, C.; Rattray, J.; Chakraborty, A.; Chuvochina, M.; Mayumi, D.; Dolfing, J.; Li, C.; Brooks, J.; Bernard, B. Metabolic Potential of Uncultured Bacteria and Archaea Associated with Petroleum Seepage in Deep-Sea Sediments. Nat. Commun. 2019, 10, 1816. [Google Scholar] [CrossRef]
- Zhou, Z.; Tran, P.Q.; Kieft, K.; Anantharaman, K. Genome Diversification in Globally Distributed Novel Marine Proteobacteria Is Linked to Environmental Adaptation. ISME J. 2020, 14, 2060–2077. [Google Scholar] [CrossRef]
- McMahon, K.D.; Read, E.K. Microbial Contributions to Phosphorus Cycling in Eutrophic Lakes and Wastewater. Annu. Rev. Microbiol. 2013, 67, 199–219. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, J.; Li, R.; Tian, F.; Shen, Y.; Xie, X.; Ge, Q.; Lu, Z. Metatranscriptomics Analysis of Cyanobacterial Aggregates during Cyanobacterial Bloom Period in Lake Taihu, China. Environ. Sci. Pollut. Res. 2018, 25, 4811–4825. [Google Scholar] [CrossRef]
- Cao, X.; Wang, J.; Liao, J.; Gao, Z.; Jiang, D.; Sun, J.; Zhao, L.; Huang, Y.; Luan, S. Bacterioplankton Community Responses to Key Environmental Variables in Plateau Freshwater Lake Ecosystems: A Structural Equation Modeling and Change Point Analysis. Sci. Total Environ. 2017, 580, 457–467. [Google Scholar] [CrossRef]
- Haukka, K.; Kolmonen, E.; Hyder, R.; Hietala, J.; Vakkilainen, K.; Kairesalo, T.; Haario, H.; Sivonen, K. Effect of Nutrient Loading on Bacterioplankton Community Composition in Lake Mesocosms. Microb. Ecol. 2006, 51, 137–146. [Google Scholar] [CrossRef]
- Lan, C.; Sun, L.; Hu, Y.; Zhang, Y.; Xu, J.; Ding, H.; Tang, R.; Hou, J.; Li, Y.; Wu, X. Diversity and Their Response to Environmental Factors of Prokaryotic Ultraplankton in Spring and Summer of Cihu Lake and Xiandao Lake in China. Sustainability 2023, 15, 11532. [Google Scholar] [CrossRef]
- Shen, M.; Li, Q.; Ren, M.; Lin, Y.; Wang, J.; Chen, L.; Li, T.; Zhao, J. Trophic Status Is Associated with Community Structure and Metabolic Potential of Planktonic Microbiota in Plateau Lakes. Front. Microbiol. 2019, 10, 2560. [Google Scholar] [CrossRef]
- Chen, J.; Robb, C.S.; Unfried, F.; Kappelmann, L.; Markert, S.; Song, T.; Harder, J.; Avcı, B.; Becher, D.; Xie, P. Alpha-and Beta-mannan Utilization by Marine Bacteroidetes. Environ. Microbiol. 2018, 20, 4127–4140. [Google Scholar] [CrossRef]
- Orellana, L.H.; Francis, T.B.; Ferraro, M.; Hehemann, J.-H.; Fuchs, B.M.; Amann, R.I. Verrucomicrobiota Are Specialist Consumers of Sulfated Methyl Pentoses during Diatom Blooms. ISME J. 2022, 16, 630–641. [Google Scholar] [CrossRef]
- Hu, A.; Ju, F.; Hou, L.; Li, J.; Yang, X.; Wang, H.; Mulla, S.I.; Sun, Q.; Bürgmann, H.; Yu, C. Strong Impact of Anthropogenic Contamination on the Co-occurrence Patterns of a Riverine Microbial Community. Environ. Microbiol. 2017, 19, 4993–5009. [Google Scholar] [CrossRef]
- Faust, K.; Raes, J. Microbial Interactions: From Networks to Models. Nat. Rev. Microbiol. 2012, 10, 538–550. [Google Scholar] [CrossRef]
- Zhao, D.; Shen, F.; Zeng, J.; Huang, R.; Yu, Z.; Wu, Q.L. Network Analysis Reveals Seasonal Variation of Co-Occurrence Correlations between Cyanobacteria and Other Bacterioplankton. Sci. Total Environ. 2016, 573, 817–825. [Google Scholar] [CrossRef]
- Li, S.-N.; Zhang, C.; Li, F.; Ren, N.-Q.; Ho, S.-H. Recent Advances of Algae-Bacteria Consortia in Aquatic Remediation. Crit. Rev. Environ. Sci. Technol. 2023, 53, 315–339. [Google Scholar] [CrossRef]
- Yue, Y.; Yang, Z.; Wang, F.; Chen, X.; Huang, Y.; Ma, J.; Cai, L.; Yang, M. Effects of Cascade Reservoirs on Spatiotemporal Dynamics of the Sedimentary Bacterial Community: Co-Occurrence Patterns, Assembly Mechanisms, and Potential Functions. Microb. Ecol. 2024, 87, 18. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Yu, J.; Ma, C.; Liu, L.; Xu, D.; Zhang, J. The Function and Keystone Microbiota in Typical Habitats under the Influence of Anthropogenic Activities in Baiyangdian Lake. Environ. Res. 2024, 247, 118196. [Google Scholar] [CrossRef]
- Zhang, Z.; Lu, J.; Zhang, S.; Tian, Z.; Feng, C.; Liu, Y. Analysis of Bacterial Community Structure, Functional Variation, and Assembly Mechanisms in Multi-Media Habitats of Lakes during the Frozen Period. Ecotoxicol. Environ. Saf. 2024, 284, 116903. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, Y.; Gong, Y.; Luo, W.; Tang, X. Extreme Trophic Tales: Deciphering Bacterial Diversity and Potential Functions in Oligotrophic and Hypereutrophic Lakes. BMC Microbiol. 2024, 24, 348. [Google Scholar] [CrossRef]
- Mikhailov, I.S.; Zakharova, Y.R.; Bukin, Y.S.; Galachyants, Y.P.; Petrova, D.P.; Sakirko, M.V.; Likhoshway, Y.V. Co-Occurrence Networks among Bacteria and Microbial Eukaryotes of Lake Baikal during a Spring Phytoplankton Bloom. Microb. Ecol. 2019, 77, 96–109. [Google Scholar] [CrossRef]
- Zhou, J.; Lao, Y.; Song, J.; Jin, H.; Zhu, J.; Cai, Z. Temporal Heterogeneity of Microbial Communities and Metabolic Activities during a Natural Algal Bloom. Water Res. 2020, 183, 116020. [Google Scholar] [CrossRef]
- Ghai, R.; Mizuno, C.M.; Picazo, A.; Camacho, A.; Rodriguez-Valera, F. Key Roles for Freshwater A Ctinobacteria Revealed by Deep Metagenomic Sequencing. Mol. Ecol. 2014, 23, 6073–6090. [Google Scholar] [CrossRef]
- Carlson, R.E. A Trophic State Index for Lakes 1. Limnol. Oceanogr. 1977, 22, 361–369. [Google Scholar] [CrossRef]
- Liang, D.; Wang, Q.; Wei, N.; Tang, C.; Sun, X.; Yang, Y. Biological Indicators of Ecological Quality in Typical Urban River-Lake Ecosystems: The Planktonic Rotifer Community and Its Response to Environmental Factors. Ecol. Indic. 2020, 112, 106127. [Google Scholar] [CrossRef]
- Adamovich, B.; Medvinsky, A.; Nikitina, L.; Radchikova, N.; Mikheyeva, T.; Kovalevskaya, R.; Veres, Y.K.; Chakraborty, A.; Rusakov, A.; Nurieva, N. Relations between Variations in the Lake Bacterioplankton Abundance and the Lake Trophic State: Evidence from the 20-Year Monitoring. Ecol. Indic. 2019, 97, 120–129. [Google Scholar] [CrossRef]
Sampling Time | DO (mg/L) | T (°C) | SD (cm) | pH | Chla (μg/L) | NH4+-N (mg/L) | TP (mg/L) | TN (mg/L) | CODMn (mg/L) | TLI |
---|---|---|---|---|---|---|---|---|---|---|
Non-flood season | 7.85 | 17.15 | 81.41 | 8.02 | 17.64 | 0.03 | 0.14 | 2.00 | 2.14 | 35.32 |
Flood season | 9.17 | 29.09 | 47.91 | 9.19 | 25.88 | 0.06 | 0.17 | 1.58 | 3.37 | 40.74 |
Index | Chao1 | Shannon |
---|---|---|
Flood season | 29.09 | 2.68 |
Non-flood season | 30.85 | 2.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mai, Y.; Hong, C.; Liu, D.; Yang, F.; Xiao, G.; Zhang, Z.; Liu, S. Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China. Processes 2025, 13, 2129. https://doi.org/10.3390/pr13072129
Mai Y, Hong C, Liu D, Yang F, Xiao G, Zhang Z, Liu S. Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China. Processes. 2025; 13(7):2129. https://doi.org/10.3390/pr13072129
Chicago/Turabian StyleMai, Yingwen, Changhong Hong, Da Liu, Fengjuan Yang, Gengfeng Xiao, Zhilin Zhang, and Shuai Liu. 2025. "Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China" Processes 13, no. 7: 2129. https://doi.org/10.3390/pr13072129
APA StyleMai, Y., Hong, C., Liu, D., Yang, F., Xiao, G., Zhang, Z., & Liu, S. (2025). Dynamics of Bacterial Communities and Identification of Microbial Indicators in a Cylindrospermopsis-Bloom Reservoir in Western Guangdong Province, China. Processes, 13(7), 2129. https://doi.org/10.3390/pr13072129