Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment–Water Interface in a Subalpine Lake
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Physicochemical Properties
2.2. DNA Extraction and Sequencing
2.3. Statistical Analysis
3. Results and Discussion
3.1. The Composition of the Microbial Communities Across the Sediment–Water Interface
3.2. Drivers of the Diversity of the Bacterial Community Across the Sediment–Water Interface
3.3. The Assembly of the Bacterial Community Across the Sediment–Water Interface
3.4. Effects of Biological Factors on Bacterial Community Assembly Across the Sediment–Water Interface
3.5. Effects of Important Taxa on the Assembly Process of the Bacterial Community
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Sun, L.; Liu, S.; Lei, P.; Wang, R.; Li, S.; Gu, Y. Interkingdom network analyses reveal microalgae and protostomes as keystone taxa involved in nutrient cycling in large freshwater lake sediment. FEMS Microbiol. Ecol. 2023, 99, fiad111. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, Y.; Zhang, W. Homogeneous selection dominates the microbial community assembly in the sediment of the Three Gorges Reservoir. Sci. Total Environ. 2019, 690, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Liu, Y.; Wang, M.; Lian, C.; Cao, L.; Wang, W.; Sun, Y.; Wang, N.; Li, C. The diversification and potential function of microbiome in sediment-water interface of methane seeps in South China Sea. Front. Microbiol. 2024, 15, 1287147. [Google Scholar] [CrossRef] [PubMed]
- Mermillod-Blondin, F.; Gautreau, E.; Pinasseau, L.; Gouze, E.; Vallier, F.; Volatier, L.; Nogaro, G. Interactions between sediment characteristics and oxygen conditions at the sediment–water interface of reservoirs: Influences on nutrient dynamics and eutrophication. Hydrobiologia 2024, 851, 3433–3452. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Navidpour, A.H.; Ahmed, M.B.; Mojiri, A.; Huang, Y.; Zhou, J.L. Adsorption and desorption behavior of arsenite and arsenate at river sediment-water interface. J. Environ. Manag. 2022, 317, 115497. [Google Scholar] [CrossRef]
- Wang, H.; Gao, Y.; Han, Y. Determining the main controlling factors of nitrogen diffusion fluxes at sediment-water interface by grey correlation analysis. Water Resour. Manag. 2022, 36, 4951–4964. [Google Scholar] [CrossRef]
- Ning, D.; Yuan, M.; Wu, L.; Zhang, Y.; Guo, X.; Zhou, X.; Yang, Y.; Arkin, A.P.; Firestone, M.K.; Zhou, J. A quantitative framework reveals ecological drivers of grassland microbial community assembly in response to warming. Nat. Commun. 2020, 11, 4717. [Google Scholar] [CrossRef]
- Stegen, J.C.; Lin, X.; Fredrickson, J.K.; Chen, X.; Kennedy, D.W.; Murray, C.J.; Rockhold, M.L.; Konopka, A. Quantifying community assembly processes and identifying features that impose them. ISME J. 2013, 7, 2069–2079. [Google Scholar] [CrossRef]
- Xing, T.; Liu, K.; Ji, M.; Chen, Y.; Liu, Y. Bacterial diversity in a continuum from supraglacial habitats to a proglacial lake on the Tibetan Plateau. FEMS Microbiol. Lett. 2024, 371, fnae021. [Google Scholar] [CrossRef]
- Xian, W.-D.; Ding, J.; Chen, J.; Qu, W.; Cao, P.; Tang, C.; Liu, X.; Zhang, Y.; Li, J.-L.; Wang, P.; et al. Distinct assembly processes structure planktonic bacterial communities among near and offshore ecosystems in the Yangtze river estuary. Microb. Ecol. 2024, 87, 42. [Google Scholar] [CrossRef]
- Dai, T.; Wen, D.; Bates, C.T.; Wu, L.; Guo, X.; Liu, S.; Su, Y.; Lei, J.; Zhou, J.; Yang, Y. Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities. Nat. Commun. 2022, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Cubillos, C.F.; Aguilar, P.; Moreira, D.; Bertolino, P.; Iniesto, M.; Dorador, C.; López-García, P. Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland. Microbiol. Spectr. 2024, 12, e00072-24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Lennon, J.T.; Lu, X.; Ruan, A. Anthropogenic activities mediate stratification and stability of microbial communities in freshwater sediments. Microbiome 2023, 11, 191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Delgado-Baquerizo, M.; Shi, Y.; Liu, X.; Yang, Y.; Chu, H. Co-existing water and sediment bacteria are driven by contrasting environmental factors across glacier-fed aquatic systems. Water Res. 2021, 198, 117139. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Li, Z.; Lei, P.; Wang, R.; Xu, H.; Friman, V.-P. Phylogenetic distance-decay patterns are not explained by local community assembly processes in freshwater lake microbial communities. Environ. Microbiol. 2023, 25, 1940–1954. [Google Scholar] [CrossRef]
- Kexin, R.; Yuanyuan, M.; Peng, X.; Regin, R.; Zijie, X.; Yuanyuan, X.; Huihuang, C.; Windell, L.R.; Christopher, R.; Yang, J. Microeukaryotic plankton evolutionary constraints in a subtropical river explained by environment and bacteria along differing taxonomic resolutions. ISME Commun. 2024, 4, ycae026. [Google Scholar] [CrossRef]
- He, C.; Li, G.; Zou, S.; Zheng, P.; Song, Q.; Li, G.; Yu, Q.; Yu, Y.; Zhang, Q.; Zhang, X.; et al. Spatial and diel variations of bacterioplankton and pico-nanoeukaryote communities and potential biotic interactions during macroalgal blooms. Mar. Pollut. Bull. 2024, 202, 116409. [Google Scholar] [CrossRef]
- Liu, J.; Jiayi, W.; Meiting, Z.; Xue, W.; Ping, G.; Qianru, L.; Jiali, R.; Wei, Y.; Tiehang, W.; Baofeng, C. Protozoa play important roles in the assembly and stability of denitrifying bacterial communities in copper-tailings drainage. Sci. Total Environ. 2024, 917, 170386. [Google Scholar] [CrossRef]
- Chen, L.; Jie, X.; Huifeng, C.; Jiangdong, K.; Heng, N.; Jinyong, Z.; Zhongming, Z.; Lu, K.; Yang, W. Microalgae inoculation significantly shapes the structure, alters the assembly process, and enhances the stability of bacterial communities in shrimp-rearing water. Biology 2024, 13, 54. [Google Scholar] [CrossRef]
- Guo, P.; Li, C.; Liu, J.; Chai, B. Predation has a significant impact on the complexity and stability of microbial food webs in subalpine lakes. Microbiol. Spectr. 2023, 6, e02411-23. [Google Scholar] [CrossRef]
- Zhu, L.; Luan, L.; Chen, Y.; Wang, X.; Zhou, S.; Zou, W.; Han, X.; Duan, Y.; Zhu, B.; Li, Y.; et al. Community assembly of organisms regulates soil microbial functional potential through dual mechanisms. Glob. Change Biol. 2024, 30, e17160. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Lv, X.; Zhang, W.; Jiang, M.; Tian, L.; Qin, L.; Zou, Y. Biological interactions control bacterial but not fungal β diversity during vegetation degradation in saline–alkaline soil. Sci. Total Environ. 2024, 919, 170826. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Shengli, G.; Rui, W.; Yanqing, G.; Yaxian, H.; Lin, Y.; Weijia, L. Distinct variabilities of soil abundant and rare bacteria relate differently to carbon cycling functionality in eroded ecosystems. Catena 2024, 235, 107675. [Google Scholar] [CrossRef]
- Stewart, C.J.; Ajami, N.J.; O Brien, J.L.; Hutchinson, D.S.; Smith, D.P.; Wong, M.C.; Ross, M.C.; Lloyd, R.E.; Doddapaneni, H.; Metcalf, G.A.; et al. Temporal development of the gut microbiome in early childhood from the TEDDY study. Nature 2018, 562, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, C.; Jing, J.; Zhao, P.; Luo, Z.; Cao, M.; Ma, Z.; Jia, T.; Chai, B. Ecological patterns and adaptability of bacterial communities in alkaline copper mine drainage. Water Res. 2018, 133, 99–109. [Google Scholar] [CrossRef]
- Jiao, S.; Yang, Y.; Xu, Y.; Zhang, J.; Lu, Y. Balance between community assembly processes mediates species coexistence in agricultural soil microbiomes across eastern China. ISME J. 2020, 14, 202–216. [Google Scholar] [CrossRef]
- Lv, B.; Shi, J.; Li, T.; Ren, L.; Tian, W.; Lu, X.; Han, Y.; Cui, Y.; Jiang, T. Deciphering the characterization, ecological function and assembly processes of bacterial communities in ship ballast water and sediments. Sci. Total Environ. 2022, 816, 152721. [Google Scholar] [CrossRef]
- Zeng, J.; Jiao, C.; Zhao, D.; Xu, H.; Huang, R.; Cao, X.; Yu, Z.; Wu, Q.L. Patterns and assembly processes of planktonic and sedimentary bacterial community differ along a trophic gradient in freshwater lakes. Ecol. Indic. 2019, 106, 105491. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, Y.; Zhang, Y.; Huang, T.; Zhou, Z.; Li, Y.; Li, Z. Pollutant removal performance and microbial enhancement mechanism by water-lifting and aeration technology in a drinking water reservoir ecosystem. Sci. Total Environ. 2020, 709, 135848. [Google Scholar] [CrossRef]
- Ghai, R.; Mizuno, C.M.; Picazo, A.; Camacho, A.; Rodriguez-Valera, F. Key roles for freshwater Actinobacteria revealed by deep metagenomic sequencing. Mol. Ecol. 2014, 23, 6073–6090. [Google Scholar] [CrossRef]
- Chen, B.; Liu, G.; Chen, Q.; Wang, H.; Liu, L.; Tang, K. Discovery of a novel marine Bacteroidetes with a rich repertoire of carbohydrate-active enzymes. Comput. Struct. Biotechnol. J. 2024, 23, 406–416. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Xing, Y.; Ding, A.; Sun, S.; Cheng, H.; Bian, Z.; Yang, K.; Wang, S.; Zhu, G. Brownification of freshwater promotes nitrogen-cycling microorganism growth following terrestrial material increase and ultraviolet radiation reduction. Sci. Total Environ. 2022, 853, 158556. [Google Scholar] [CrossRef] [PubMed]
- Hou, L.; Zhou, Q.; Wu, Q.; Gu, Q.; Sun, M.; Zhang, J. Spatiotemporal changes in bacterial community and microbial activity in a full-scale drinking water treatment plant. Sci. Total Environ. 2018, 625, 449–459. [Google Scholar] [CrossRef] [PubMed]
- Islam, T.; Fatema; Hoque, M.N.; Gupta, D.R.; Mahmud, N.U.; Sakif, T.I.; Sharpe, A.G. Improvement of growth, yield and associated bacteriome of rice by the application of probiotic Paraburkholderia and Delftia. Front. Microbiol. 2023, 14, 1212505. [Google Scholar] [CrossRef]
- Wu, J.; Li, W.; Du, J.; Liu, Y.; Hu, L.; Wei, H.; Fang, J.; Liu, R. Biogeographic distribution, ecotype partitioning and controlling factors of Chloroflexi in the sediments of six hadal trenches of the Pacific Ocean. Sci. Total Environ. 2023, 7, 163323. [Google Scholar] [CrossRef]
- Booker, A.E.; D’Angelo, T.; Adams-Beyea, A.; Brown, J.M.; Nigro, O.; Rappé, M.S.; Stepanauskas, R.; Orcutt, B.N. Life strategies for Aminicenantia in subseafloor oceanic crust. ISME J. 2023, 17, 1406–1415. [Google Scholar] [CrossRef]
- Wang, Y.-F.; Xu, J.-Y.; Liu, Z.-L.; Cui, H.-L.; Chen, P.; Cai, T.-G.; Li, G.; Ding, L.-J.; Qiao, M.; Zhu, Y.-G.; et al. Biological interactions mediate soil functions by altering rare microbial communities. Environ. Sci. Technol. 2024, 58, 5866–5877. [Google Scholar] [CrossRef]
- Crump, B.C.; Amaral-Zettler, L.A.; Kling, G.W. Microbial diversity in arctic freshwaters is structured by inoculation of microbes from soils. ISME J. 2012, 6, 1629–1639. [Google Scholar] [CrossRef]
- Dandan, Z.; Huang, Y.; Xiaoli, Y.; Yuchun, Y.; Cheng, W.; Kun, W.; Mingyang, N.; Jianguo, H.; Zhili, H.; Yan, Q. Mechanisms underlying the interactions and adaptability of nitrogen removal microorganisms in freshwater sediments. Adv. Biotechnol. 2024, 2, 21. [Google Scholar] [CrossRef]
- Burgunter-Delamare, B.; Shetty, P.; Vuong, T.; Mittag, M. Exchange or eliminate: The secrets of algal-bacterial relationships. Plants 2024, 13, 829. [Google Scholar] [CrossRef]
- Zhou, J.; Xue, K.; Xie, J.; Deng, Y.; Wu, L.; Cheng, X.; Fei, S.; Deng, S.; He, Z.; Van Nostrand, J.D.; et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nat. Clim. Change 2012, 2, 106–110. [Google Scholar] [CrossRef]
- Feng, C.; Jia, J.; Wang, C.; Han, M.; Dong, C.; Huo, B.; Li, D.; Liu, X. Phytoplankton and bacterial community structure in two chinese lakes of different trophic status. Microorganisms 2019, 7, 621. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Pan, Z.; Yu, J.; Zhang, Z.; Li, Y.-z.; Shade, A. Global assembly of microbial communities. mSystems 2023, 8, e0128922. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Xu, K.; Naoum, J.; Lian, Y.; Wu, B.; He, Z.; Yan, Q. Deciphering microeukaryotic–bacterial co-occurrence networks in coastal aquaculture ponds. Mar. Life Sci. Technol. 2023, 5, 44–55. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Ding, J.; Zeng, J.; Wang, C.; Wu, B.; Yan, Q.; He, Z.; Shu, L. Mangrove sediments are environmental hotspots for pathogenic protists. J. Hazard Mater. 2024, 467, 133643. [Google Scholar] [CrossRef]
- Álvaro, M.; Alaa, E.T.; Iván, B.; Juan, M.V.; Patricia De, F.; Ana, M.-G.; Amaro, F. Protozoan predation enhances stress resistance and antibiotic tolerance in Burkholderia cenocepacia by triggering the SOS response. ISME J. 2024, 18, wrae014. [Google Scholar] [CrossRef]
- Fiore-Donno, A.M.; Freudenthal, J.; Dahl, M.B.; Rixen, C.; Urich, T.; Bonkowski, M. Biotic interactions explain seasonal dynamics of the alpine soil microbiome. ISME Commun. 2024, 1, ycae028. [Google Scholar] [CrossRef]
- Jiao, S.; Peng, Z.; Qi, J.; Gao, J.; Wei, G. Linking bacterial-fungal relationships to microbial diversity and soil nutrient cycling. mSystems 2021, 6, e16561. [Google Scholar] [CrossRef]
- Tord Ranheim, S.; Maria, V.; Jan, B.; Bahram, M. Core taxa underpin soil microbial community turnover during secondary succession. Environ. Microbiol. 2023, 26, e16561. [Google Scholar] [CrossRef]
- Herren, C.; McMahon, K. Keystone taxa predict compositional change in microbial communities. Environ. Microbiol. 2018, 20, 2207–2217. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Liu, J.; Ren, J.; Chai, B. Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment–Water Interface in a Subalpine Lake. Microorganisms 2024, 12, 2418. https://doi.org/10.3390/microorganisms12122418
Wang X, Liu J, Ren J, Chai B. Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment–Water Interface in a Subalpine Lake. Microorganisms. 2024; 12(12):2418. https://doi.org/10.3390/microorganisms12122418
Chicago/Turabian StyleWang, Xue, Jinxian Liu, Jiali Ren, and Baofeng Chai. 2024. "Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment–Water Interface in a Subalpine Lake" Microorganisms 12, no. 12: 2418. https://doi.org/10.3390/microorganisms12122418
APA StyleWang, X., Liu, J., Ren, J., & Chai, B. (2024). Biotic Interaction Underpins the Assembly Processes of the Bacterial Community Across the Sediment–Water Interface in a Subalpine Lake. Microorganisms, 12(12), 2418. https://doi.org/10.3390/microorganisms12122418