Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (19,874)

Search Parameters:
Keywords = alcohols

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3810 KiB  
Article
Solar-Driven Selective Benzyl Alcohol Oxidation in Pickering Emulsion Stabilized by CNTs/GCN Hybrids Photocatalyst
by Yunyi Han, Yuwei Hou, Xuezhong Gong, Yu Zhang, Meng Wang, Pekhyo Vasiliy Ivanovich, Meili Guan and Jianguo Tang
Catalysts 2025, 15(8), 753; https://doi.org/10.3390/catal15080753 (registering DOI) - 7 Aug 2025
Abstract
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl [...] Read more.
Herein, a bi-functional composite photocatalyst was synthesized by integrating carbon nanotubes (CNTs) and graphitic carbon nitride (GCN) via a facile electrostatic self-assembly strategy. The resulting CNTs/GCN composite served dual roles as both a solid emulsifier and a photocatalyst, enabling highly efficient photocatalytic benzyl alcohol oxidation within a Pickering emulsion system. The relationship between emulsion droplet size and solid emulsifier dosage was investigated and optimized. The enhanced photocatalytic function was supported by an improved photocurrent response and reduced charge-transfer resistance, attributed to superior charge separation efficiency. Consequently, the benzyl alcohol conversion efficiency achieved in the Pickering emulsion system (58.9%) was three-fold of that observed in a traditional oil–water non-emulsion system (19.0%). Key active species were identified as photoholes, and an interfacial reaction mechanism was proposed. This work provides a new approach for extending photocatalytic applications in aqueous environments to diverse organic conversion reactions through the construction of multifunctional photocatalysts. Full article
(This article belongs to the Collection Catalysis in Advanced Oxidation Processes for Pollution Control)
Show Figures

Figure 1

21 pages, 4701 KiB  
Review
Maternal Lifestyle During Pregnancy and Its Influence on Offspring’s Telomere Length
by Elena Vakonaki, Maria Theodora Vitiadou, Eleftherios Panteris, Manolis Tzatzarakis, Aristides Tsatsakis and Eleftheria Hatzidaki
Life 2025, 15(8), 1250; https://doi.org/10.3390/life15081250 - 6 Aug 2025
Abstract
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such [...] Read more.
Telomeres are protective DNA sequences located at chromosome ends, essential to maintaining genomic stability. This narrative review examines how maternal lifestyle factors during pregnancy influence fetal telomere length (TL). Positive associations have been identified between offspring’s TL and maternal consumption of nutrients such as vitamins C and D, folate, and magnesium. Additionally, adherence to a Mediterranean diet and regular physical activity during pregnancy are correlated with increased placental TL, supporting fetal genomic integrity. Conversely, maternal dietary patterns high in carbohydrates, fats, or alcohol, as well as exposure to triclosan and sleep-disordered breathing, negatively correlate with offspring’s TL. Maternal infections may also shorten TL through heightened inflammation and oxidative stress. However, evidence regarding the impact of other lifestyle factors—including maternal stress, smoking, caffeine intake, polyunsaturated fatty acid consumption, obesity, and sleep quality—remains inconsistent. Given that shorter telomere length has been associated with cardiovascular, pulmonary, and neurodegenerative diseases, as well as certain types of cancer, these findings highlight the vital importance of maternal health during pregnancy in order to prevent potential adverse effects on the fetus. Further studies are required to elucidate the precise timing, intensity, and interplay of these influences, enabling targeted prenatal interventions to enhance offspring health outcomes. Full article
Show Figures

Figure 1

17 pages, 391 KiB  
Article
A Comparative Study of Paralympic Veterans with Either a Spinal Cord Injury or an Amputation: Implications for Personalized Nutritional Advice
by Ilaria Peluso, Anna Raguzzini, Elisabetta Toti, Gennaro Boccia, Roberto Ferrara, Diego Munzi, Paolo Riccardo Brustio, Alberto Rainoldi, Valentina Cavedon, Chiara Milanese, Tommaso Sciarra and Marco Bernardi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 305; https://doi.org/10.3390/jfmk10030305 - 6 Aug 2025
Abstract
Background: Dietary advice for Paralympic athletes (PAs) with a spinal cord injury (PAs-SCI) requires particular attention and has been widely studied. However, currently, no particular attention has been addressed to nutritional guidelines for athletes with an amputation (PAs-AMP). This study aimed at [...] Read more.
Background: Dietary advice for Paralympic athletes (PAs) with a spinal cord injury (PAs-SCI) requires particular attention and has been widely studied. However, currently, no particular attention has been addressed to nutritional guidelines for athletes with an amputation (PAs-AMP). This study aimed at filling up this gap, at least partially, and compared veteran PAs-SCI with PAs-AMP. Methods: A sample of 25 male PAs (12 with SCI and 13 with AMP), recruited during two training camps, was submitted to the following questionnaires: allergy questionnaire for athletes (AQUA), Nordic Musculoskeletal Questionnaire (NMQ), Starvation Symptom Inventory (SSI), neurogenic bowel dysfunction (NBD), orthorexia (ORTO-15/ORTO-7), alcohol use disorders identification test (AUDIT), and Mediterranean diet adherence (MDS). The PAs were also submitted to the following measurements: dietary Oxygen Radical Absorbance Capacity (ORAC) and intakes, body composition, handgrip strength (HGS), basal energy expenditure (BEE), peak oxygen uptake (VO2peak), peak power, peak heart rate (HR), post-exercise ketosis, and antioxidant response after a cardiopulmonary exercise test (CPET) to voluntary fatigue. Results: Compared to PAs-AMP, PAs-SCI had higher NBD and lower VO2peak (p < 0.05), peak power, peak HR, peak lactate, phase angle (PhA) of the dominant leg (p < 0.05), and ORTO15 (p < 0.05). The latter was related to NBD (r = −0.453), MDS (r = −0.638), and ORAC (r = −0.529), whereas ORTO7 correlated with PhA of the dominant leg (r = 0.485). Significant differences between PAs-AMP and PAs-SCI were not found in the antioxidant response, glucose, and ketone levels after CPET, nor in dietary intake, AUDIT, AQUA, NMQ, SSI, BEE, HGS, and FM%. Conclusions: The present study showed that PAs-SCI and PAs-AMP display similar characteristics in relation to lifestyle, energy intake, basal energy expenditure, and metabolic response to CPET. Based on both the similarities with PAs-SCI and the consequences of the limb deficiency impairment, PAs-AMP and PAs-SCI require personalized nutritional advice. Full article
(This article belongs to the Special Issue New Perspectives and Challenges in Adapted Sports)
Show Figures

Figure 1

18 pages, 990 KiB  
Article
Non-Conventional Yeasts for Beer Production—Primary Screening of Strains
by Polina Zapryanova, Yordanka Gaytanska, Vesela Shopska, Rositsa Denkova-Kostova and Georgi Kostov
Beverages 2025, 11(4), 114; https://doi.org/10.3390/beverages11040114 - 6 Aug 2025
Abstract
Although beer fermentation has traditionally been carried out with Saccharomyces, the boom in craft brewing has led to the use of non-conventional yeast species for beer production. This group also includes non-Saccharomyces starters, which are commonly used in winemaking and which [...] Read more.
Although beer fermentation has traditionally been carried out with Saccharomyces, the boom in craft brewing has led to the use of non-conventional yeast species for beer production. This group also includes non-Saccharomyces starters, which are commonly used in winemaking and which have different technological characteristics compared to standard representatives of the Saccharomyces genus. One of the important characteristics of the non-Saccharomyces group is the richer enzyme profile, which leads to the production of beverages with different taste and aroma profiles. The aim of this study was to investigate sweet and hopped wort fermentation with seven strains of active dry non-conventional yeasts of Lachancea spp., Metschnikowia spp., Torulaspora spp. and a mixed culture of Saccharomyces cerevisiae and Torulaspora delbrueckii. One ale and one lager active dry yeast strain were used as control strains. The extract consumption, ethanol production, degree of fermentation, pH drop, as well as the yeast secondary metabolites formed by the yeast (higher alcohols, esters and aldehydes) in sweet and hopped wort were investigated. The results indicated that all of the studied types of non-conventional yeasts have serious potential for use in beer production in order to obtain new beer styles. For the purposes of this study, statistical methods, principle component analysis (PCA) and correlation analysis were used, thus establishing the difference in the fermentation kinetics of the growth in the studied species in sweet and hopped wort. It was found that hopping had a significant influence on the fermentation kinetics of some of the species, which was probably due to the inhibitory effect of the iso-alpha-acids of hops. Directions for future research with the studied yeast species in beer production are presented. Full article
(This article belongs to the Section Beverage Technology Fermentation and Microbiology)
Show Figures

Figure 1

15 pages, 284 KiB  
Article
Co-Use of Alcohol and Cannabis During COVID-19: Associations Between Sociodemographic Factors and Self-Reported Mental Health Symptoms and Heavy Episodic Drinking in Canadian Adults
by Nibene H. Somé, Sameer Imtiaz, Yeshambel T. Nigatu, Samantha Wells, Claire de Oliveira, Shehzad Ali, Tara Elton-Marshall, Jürgen Rehm, Kevin D. Shield and Hayley A. Hamilton
Psychoactives 2025, 4(3), 27; https://doi.org/10.3390/psychoactives4030027 - 6 Aug 2025
Abstract
This study estimates the prevalence of co-use of alcohol and cannabis, assesses the sociodemographic risk factors of co-use, and examines the associations between mental health and heavy episodic drinking (HED) and alcohol–cannabis co-use in Canada during the early years of the COVID-19 pandemic. [...] Read more.
This study estimates the prevalence of co-use of alcohol and cannabis, assesses the sociodemographic risk factors of co-use, and examines the associations between mental health and heavy episodic drinking (HED) and alcohol–cannabis co-use in Canada during the early years of the COVID-19 pandemic. Nine successive cross-sectional surveys, held from May 2020 to January 2022, of adults (aged ≥18 years) living in Canada were pooled for 9011 participants. The prevalence of co-use was calculated across sociodemographic groups. Logistic regressions were used to assess associations. Alcohol–cannabis co-use was associated with a greater likelihood of engaging in HED and experiencing symptoms of anxiety, depression, and loneliness. The prevalence of co-use of alcohol was different across sociodemographic groups. The highest prevalence was among TGD people (35.5%), followed by individuals aged 18–39 years (14.5%). Additionally, being TGD (aOR = 3.61, 95% CI 2.09–6.25), separated/divorced/widowed (aOR = 1.60, 95% CI 1.23–2.07), living in an urban area (aOR = 1.26, 95% CI 1.07–1.56), and having a high household income (aOR = 1.41, 95% CI 1.09–1.82) increased the likelihood of reporting alcohol–cannabis co-use. These findings underscore the fact that developing public health and clinical interventions for preventing and treating excessive alcohol or cannabis use must consider both alcohol and cannabis use patterns and should be tailored to the highest-risk TGD and young adults. Full article
18 pages, 3014 KiB  
Article
Biocide Tolerance, Biofilm Formation, and Efflux Pump Activity in Clinical Isolates of Trichosporon asahii
by Yasmim Passos Lima, Jamile de Paiva Macedo, Alessandra Barbosa Ferreira Machado, Cláudio Galuppo Diniz, Vania Lucia da Silva and Vanessa Cordeiro Dias
Infect. Dis. Rep. 2025, 17(4), 97; https://doi.org/10.3390/idr17040097 (registering DOI) - 6 Aug 2025
Abstract
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well [...] Read more.
Background: Trichosporon spp. are opportunistic fungi, capable of causing infection, especially in critically ill individuals who often use broad-spectrum antibiotics, invasive devices, and have comorbidities. Objectives The aim of this study was to analyze individuals’ clinical characteristics, evaluate tolerance to biocides, as well as biofilm formation and efflux pump activity in isolates of Trichosporon asahii. Methods: Clinical isolates of T. asahii collected between 2020 and 2023 from both hospitalized and non-hospitalized individuals, of both sexes, regardless of age, were tested for tolerance to sodium hypochlorite, hydrogen peroxide, benzalkonium chloride, and ethyl alcohol. Efflux pump activity was also assessed using ethidium bromide, and biofilm formation was measured with the Safranin test. Clinical parameters such as outcomes, source, and length of hospitalization were analyzed through electronic medical records. Results: A total of 37 clinical isolates of T. asahii were identified. Thirty-three (83.8%) isolates were from hospitalized individuals, with 81.82% collected in ICUs, an average hospital stay of 35 days, and a mortality rate of 51.6%. The tested strains displayed the largest mean inhibition zone for 2% sodium hypochlorite, indicating lower tolerance. A high level of efflux pump expression was detected among clinical isolates. Biofilm formation was detected in 25/67.5% of the isolates. Conclusions: These findings highlight the clinical relevance of T. asahii, particularly in critically ill individuals, and underscore the pathogen’s ability to tolerate biocides, express efflux pumps, and form biofilms, all of which may contribute to its persistence and pathogenicity in hospital environments. Enhanced surveillance and effective microbial control measures are essential to mitigate the risks associated with T. asahii infections. Full article
(This article belongs to the Section Fungal Infections)
Show Figures

Figure 1

11 pages, 327 KiB  
Article
Metabolic Mediation of the Association Between Hyperandrogenism and Paratubal Cysts in Polycystic Ovary Syndrome: A Structural Equation Modeling Approach
by Jin Kyung Baek, Chae Eun Hong, Hee Yon Kim and Bo Hyon Yun
J. Clin. Med. 2025, 14(15), 5545; https://doi.org/10.3390/jcm14155545 - 6 Aug 2025
Abstract
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and [...] Read more.
Objectives: Paratubal cysts (PTCs) are embryological remnants and are potentially hormonally responsive. Since hyperandrogenism (HA) is representative of polycystic ovary syndrome (PCOS), we examined whether biochemical hyperandrogenism is associated with PTCs in women with PCOS and if body mass index (BMI) and insulin resistance (IR) mediate this association. Methods: This retrospective study included 577 women diagnosed with PCOS at a tertiary academic center from 2010 to 2018. Clinical data included age at diagnosis, BMI, and diagnoses of hypertension, non-alcoholic fatty liver disease, and metabolic syndrome. Laboratory measures included total testosterone, sex hormone-binding globulin, anti-Müllerian hormone, luteinizing hormone, fasting glucose, insulin, and triglycerides (TG). Derived indices included a free androgen index (FAI), homeostasis model assessment of insulin resistance (HOMA-IR), and fasting glucose-to-insulin ratio. PTCs were identified through imaging or surgical findings. Structural equation modeling (SEM) assessed direct and indirect relationships between FAI, BMI, HOMA-IR, and PTCs, while adjusting for diagnostic age. Results: PTCs were identified in 2.77% of participants. BMI, FAI, TG, and IR indices were significantly higher for women with PTCs than those without PTCs. SEM revealed significant indirect effects of FAI on PTCs via BMI and HOMA-IR. The direct effect was negative, resulting in a non-significant total effect. A sensitivity model using HOMA-IR as the predictor showed a significant direct effect on PTCs without mediation via FAI. Conclusions: Biochemical HA may influence PTC development in PCOS through metabolic pathways, establishing the need to consider metabolic context when evaluating adnexal cysts in hyperandrogenic women. Full article
Show Figures

Figure 1

12 pages, 560 KiB  
Article
Determination of Antioxidant Activity and Proximate Composition of a Variety of Red Pigmented Zea mays L. from Puebla, Mexico
by Jesabel Pineda-Quiroz, Juan Alex Hernández-Rivera, Ivonne Pérez-Xochipa, Pedro Antonio-López and Alan Carrasco-Carballo
AppliedChem 2025, 5(3), 18; https://doi.org/10.3390/appliedchem5030018 - 6 Aug 2025
Abstract
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little [...] Read more.
Corn is one of the most consumed cereals in the Mexican diet. In this country, there are multiple varieties that exhibit nutraceutical potential due to their content of different metabolites with biological activity, such as blue corn. Another variety that has received little study is the red pigmented corn variety Chilac from Puebla, Mexico, which is being studied for its nutraceutical potential. A differential extraction using the Soxhlet method was carried out to evaluate the phenolic content, total flavonoid content, and monomeric anthocyanins, and free radical scavenging test was performed using the DPPH reagent. A proximate analysis was also conducted to identify the main macronutrients. The results of the proximate analysis were comparable to those of other traditional corn varieties, with carbohydrates being the macronutrient present in the highest amount at 77.9%. Regarding phenolic content and the presence of anthocyanins, the best extractions were obtained using alcoholic solvents; for example, ethanol for phenols, yielding 1368.420 ± 104.094 mg of gallic acid equivalents (GAE)/kg plant. In contrast, the flavonoid content was higher in the aqueous extract, with 833.984 ± 65.218 mg QE/Kg. In the case of the DPPH assay, the best result was obtained with ethyl acetate (73.81 ± 5.31%). These findings provide a foundation for expanding the use of corn varieties with nutraceutical potential, opening the possibility of studies focused on deeper characterization. Full article
Show Figures

Graphical abstract

17 pages, 7335 KiB  
Article
Osage Orange (Maclura pomifera) and Spearmint (Mentha spicata) Leaf Extracts Exhibit Antibacterial Activity and Inhibit Human Respiratory Syncytial Virus (hRSV)
by Milica Nenadovich, Molly Kubal, Maci R. Hopp, Abigail D. Crawford, Megan E. Hardewig, Madison G. Sedlock, Rida Jawad, Zarrar A. Khan, Adrianna M. Smith, Mia A. Mroueh, Matthew DuBrava, Ellie C. Jones, Cael Rahe, Sean T. Berthrong, Anne M. Wilson, Michael P. Trombley, Ashlee H. Tietje and Christopher C. Stobart
Pathogens 2025, 14(8), 776; https://doi.org/10.3390/pathogens14080776 - 5 Aug 2025
Abstract
The increasing prevalence of antibiotic resistance and the limited availability of antiviral therapeutics for pathogens such as human respiratory syncytial virus (hRSV) underscore the need for novel, plant-derived antimicrobial substances. In this study, we evaluated the antiproliferative, antibacterial, and antiviral activities of aqueous [...] Read more.
The increasing prevalence of antibiotic resistance and the limited availability of antiviral therapeutics for pathogens such as human respiratory syncytial virus (hRSV) underscore the need for novel, plant-derived antimicrobial substances. In this study, we evaluated the antiproliferative, antibacterial, and antiviral activities of aqueous leaf extracts from two plants commonly found in North America, Osage orange (M. pomifera) and spearmint (M. spicata). Both extracts exhibited no significant cytotoxic or morphologic impact on HEp-2 human cancer cells up to 25 mg/mL. However, both extracts demonstrated strong dose-dependent antibacterial activity, significantly inhibiting replication of E. coli and S. aureus at concentrations ≥ 1 mg/mL. Antiviral assays revealed that both extracts inhibited hRSV infectivity, with spearmint extract showing higher potency (EC50 = 1.01 mg/mL) compared to Osage orange (EC50 = 3.85 mg/mL). Gas chromatography–mass spectrometry (GC-MS) identified three major extract constituents: 3-hydroxybenzyl alcohol, 4-hydroxybenzyl alcohol (Osage orange), and R-(-)-carvone (spearmint). Among these, only carvone significantly inhibited hRSV in vitro, suggesting its key role in spearmint’s antiviral activity. These findings highlight the therapeutic potential of Osage orange and spearmint leaf extracts, particularly as sources of water-soluble compounds with antimicrobial properties, and support further investigation into their mechanisms of action and broader clinical relevance. Full article
Show Figures

Figure 1

19 pages, 847 KiB  
Article
Characterization and Selection of Lycium barbarum Cultivars Based on Physicochemical, Bioactive, and Aromatic Properties
by Juan Carlos Solomando González, María José Rodríguez Gómez, María Ramos García, Noelia Nicolás Barroso and Patricia Calvo Magro
Horticulturae 2025, 11(8), 924; https://doi.org/10.3390/horticulturae11080924 (registering DOI) - 5 Aug 2025
Abstract
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties [...] Read more.
Goji berries (Lycium barbarum L.) are considered a functional food due to their high content of bioactive compounds with demonstrated health benefits. This study evaluated four cultivars (G3, G4, G5, and G7) grown under Mediterranean climate conditions, focusing on their physicochemical properties (total soluble solids, titratable acidity, and pH), bioactive compound (sugars and organic acids, total and individual phenolic and carotenoid compounds, and antioxidant activities (DPPH and CUPRAC assay)), and aromatic profiles (by GC-MS) to assess their suitability for fresh consumption or incorporation into food products. G4 exhibited the most favorable physicochemical characteristics, with the highest total soluble solids (20.2 °Brix) and sugar content (92.8 g 100 g−1 dw). G5 stood out for its lower titratable acidity (0.34%) and highest ripening index (54.8), indicating desirable flavor attributes. Concerning bioactive compounds, G3 and G4 showed the highest total phenolic content (17.9 and 19.1 mg GAE g−1 dw, respectively), with neochlorogenic acid being predominant. G4 was notable for its high carotenoid content, particularly zeaxanthin (1722.6 μg g−1 dw). These compounds significantly contributed to antioxidant activity. Volatile organic compound (VOC) profiles revealed alcohols and aldehydes as the dominant chemical families, with hexanal being the most abundant. G5 and G7 exhibited the highest total VOC concentrations. Principal component analysis grouped G3 and G4 based on their high sugar and phenolic content, while G5 and G7 were characterized by their complex aromatic profiles. Therefore, G3 and G4 are promising candidates for fresh consumption and potential functional applications, while G5 and G7 are particularly suitable for new product development due to their nutraceutical and aromatic value. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Figure 1

14 pages, 1310 KiB  
Article
Enhancing Energy Efficiency of Electric Grade Isopropyl Alcohol Production Process by Using Noble Thermally Coupled Distillation Technology
by Neha Agarwal, Nguyen Nhu Nga, Le Cao Nhien, Raisa Aulia Hanifah, Minkyu Kim and Moonyong Lee
Energies 2025, 18(15), 4159; https://doi.org/10.3390/en18154159 - 5 Aug 2025
Abstract
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent [...] Read more.
This study presents a comprehensive design, optimization, and intensification approach for enhancing the energy efficiency of electric grade isopropyl alcohol (IPA) production, a typical energy-intensive chemical process. The process entails preconcentration and dehydration steps, with the intensity of separation formulated from a multicomponent feed that consists of IPA and water, along with other impurities. Modeling and energy optimization were performed for a conventional distillation train as a base case by using the rigorous process simulator Aspen Plus V12.1. To improve energy efficiency, various options for intensifying distillation were examined. The side-stream preconcentration column was subsequently replaced by a dividing wall column (DWC) with two side streams, i.e., a Kaibel column, reducing the total energy consumption of corresponding distillation columns by 9.1% compared to the base case. Further strengthening was achieved by combining two columns in the preconcentration process into a single Kaibel column, resulting in a 22.8% reduction in reboiler duty compared to the base case. Optimization using the response surface methodology identified key operating parameters, such as side-draw positions and stage design, which significantly influence both energy efficiency and separation quality. The intensified Kaibel setup offers significant energy efficiencies and simplified column design, suggesting enormous potential for process intensification in energy-intensive distillation processes at the industrial level, including the IPA purification process. Full article
Show Figures

Figure 1

20 pages, 4870 KiB  
Article
Histological and Immunohistochemical Evidence in Hypothermia-Related Death: An Experimental Study
by Emina Dervišević, Nina Čamdžić, Edina Lazović, Adis Salihbegović, Francesco Sessa, Hajrudin Spahović and Stefano D’Errico
Int. J. Mol. Sci. 2025, 26(15), 7578; https://doi.org/10.3390/ijms26157578 - 5 Aug 2025
Abstract
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. [...] Read more.
Hypothermia-related deaths present significant diagnostic challenges due to non-specific and often inconsistent autopsy findings. This study investigated the histological and immunohistochemical alterations associated with primary and secondary hypothermia in an experimental Rattus norvegicus model, focusing on the effects of benzodiazepine and alcohol ingestion. Twenty-one male rats were divided into three groups: control (K), benzodiazepine-treated (B), and alcohol-treated (A). After two weeks of substance administration, hypothermia was induced and multiple organ samples were analyzed. Histologically, renal tissue showed hydropic and vacuolar degeneration, congestion, and acute tubular injury across all groups, with no significant differences in E-cadherin expression. Lung samples revealed congestion, emphysema, and hemorrhage, with more pronounced vascular congestion in the alcohol and benzodiazepine groups. Cardiac tissue exhibited vacuolar degeneration and protein denaturation, particularly in substance-exposed animals. The spleen showed preserved architecture but increased erythrocyte infiltration and significantly elevated myeloperoxidase (MPO)-positive granulocytes in the intoxicated groups. Liver samples demonstrated congestion, focal necrosis, and subcapsular hemorrhage, especially in the alcohol group. Immunohistochemical analysis revealed statistically significant differences in MPO expression in both lung and spleen tissues, with the highest levels observed in the benzodiazepine group. Similarly, CK7 and CK20 expression in the gastroesophageal junction was significantly elevated in both alcohol- and benzodiazepine-treated animals compared to the controls. In contrast, E-cadherin expression in the kidney did not differ significantly among the groups. These findings suggest that specific histological and immunohistochemical patterns, particularly involving pulmonary, cardiac, hepatic, and splenic tissues, may help differentiate primary hypothermia from substance-related secondary hypothermia. The study underscores the value of integrating toxicological, histological, and molecular analyses to enhance the forensic assessment of hypothermia-related fatalities. Future research should aim to validate these markers in human autopsy series and explore additional molecular indicators to refine diagnostic accuracy in forensic pathology. Full article
Show Figures

Figure 1

23 pages, 4501 KiB  
Article
The Effect of SO2 Fumigation, Acid Dipping, and SO2 Combined with Acid Dipping on Metabolite Profile of ‘Heiye’ Litchi (Litchi chinensis Sonn.) Pericarp
by Feilong Yin, Zhuoran Li, Tingting Lai, Libing Long, Yunfen Liu, Dongmei Han, Zhenxian Wu, Liang Shuai and Tao Luo
Horticulturae 2025, 11(8), 923; https://doi.org/10.3390/horticulturae11080923 (registering DOI) - 5 Aug 2025
Abstract
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green [...] Read more.
Sulfur fumigation (SF), acid dipping (HCl treatment, HAT), and their combination (SF+HAT) are common methods for long-term preservation and color protection of litchi. However, their effects on the metabolic profile of the litchi pericarp have not been investigated. SF resulted in a yellowish-green pericarp by up-regulating lightness (L*), b*, C*, and but down-regulating total anthocyanin content (TAC) and a*, while HAT resulted in a reddish coloration by up-regulating a*, b*, and C* but down-regulating L*, h°, and TAC. SF+HAT recovered reddish color with similar L*, C* to SF but a*, b*, h°, and TAC between SF and HAT. Differential accumulated metabolites (DAMs) detected in HAT (vs. control) were more than those in SF (vs. control), but similar to those in SF+HAT (vs. control). SF specifically down-regulated the content of cyanidin-3-O-rutinoside, sinapinaldehyde, salicylic acid, and tyrosol, but up-regulated 6 flavonoids (luteolin, kaempferol-3-O-(6″-malonyl)galactoside, hesperetin-7-O-glucoside, etc.). Five pathways (biosynthesis of phenylpropanoids, flavonoid biosynthesis, biosynthesis of secondary metabolites, glutathione metabolism, and cysteine and methionine metabolism) were commonly enriched among the three treatments, which significantly up-regulated sulfur-containing metabolites (mainly glutathione, methionine, and homocystine) and down-regulated substrates for browning (mainly procyanidin B2, C1, and coniferyl alcohol). These results provide metabolic evidence for the effect of three treatments on coloration and storability of litchi. Full article
Show Figures

Figure 1

13 pages, 988 KiB  
Article
Assessing the Applicability of a Partial Alcohol Reduction Method to the Fine Wine Analytical Composition of Pinot Gris
by Diána Ágnes Nyitrainé Sárdy, Péter Bodor-Pesti and Szabina Steckl
Foods 2025, 14(15), 2738; https://doi.org/10.3390/foods14152738 - 5 Aug 2025
Abstract
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster [...] Read more.
Climate change has a significant negative impact on agriculture and food production. This trend requires technological development and the adaptation of new technologies in both the grapevine production and winemaking sectors. High temperatures and heat accumulation during the growing season result in faster ripening and a higher sugar content, leading to a higher alcohol content during fermentation. The negative consequences are an imbalanced wine character and consumer reluctance, as lower alcoholic beverages are now in high demand. Over the last decade, several methods have been developed to handle this impact and reduce the alcohol content of wines. In this study, we used the MASTERMIND® REMOVE membrane-based dealcoholization system to reduce the alcohol concentration in of Pinot gris wines from 12.02% v/v to 10.69% v/v and to investigate the effect on analytical parameters in three steps (0.5%, 1%, and 1.5% reductions) along the treatment. To evaluate the impact of the partial alcohol reduction and identify correlations between the wine chemical parameters, data were analyzed with ANOVA, PCA, multivariate linear regression and cluster analysis. The results showed that except for the extract, sugar content and proline content, the treatment had a significant effect on the chemical parameters. Both free and total SO2 levels were significantly reduced as well as volatile acid, glycerol and succinic acid levels. It must be highlighted that some parameters were not differing significantly between the untreated and the final wine, while the change was statistically verified in the intermediate steps of the partial alcohol reduction. This was the case for example for n-Propanol, i-Amylalcohol, Acetaldehyde, and Ethyl acetate. The multivariate linear regression model explained 18.84% of the total variance, indicating a modest but meaningful relationship between the alcohol content and the investigated analytical parameters. Our results showed that even if the applied instrument significantly modified some of the wine chemical parameters, those changes would not influence significantly the wine sensory attributes. Full article
(This article belongs to the Special Issue Winemaking: Innovative Technology and Sensory Analysis)
Show Figures

Figure 1

26 pages, 449 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Back to TopTop