Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (630)

Search Parameters:
Keywords = albumin complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3857 KiB  
Article
Temporal and Sex-Dependent N-Glycosylation Dynamics in Rat Serum
by Hirokazu Yagi, Sachiko Kondo, Reiko Murakami, Rina Yogo, Saeko Yanaka, Fumiko Umezawa, Maho Yagi-Utsumi, Akihiro Fujita, Masako Okina, Yutaka Hashimoto, Yuji Hotta, Yoichi Kato, Kazuki Nakajima, Jun-ichi Furukawa and Koichi Kato
Int. J. Mol. Sci. 2025, 26(15), 7266; https://doi.org/10.3390/ijms26157266 - 27 Jul 2025
Abstract
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation [...] Read more.
We conducted systematic glycomic and glycoproteomic profiling to characterize the dynamic N-glycosylation landscape of rat serum, with particular focus on sex- and time-dependent variations. MALDI-TOF-MS analysis revealed that rat serum N-glycans are predominantly biantennary, disialylated complex-type structures with extensive O-acetylation of Neu5Ac residues, especially in females. LC-MS/MS-based glycoproteomic analysis of albumin/IgG-depleted serum identified 87 glycoproteins enriched in protease inhibitors (e.g., serine protease inhibitor A3K) and immune-related proteins such as complement C3. Temporal analyses revealed stable sialylation in males but pronounced daily fluctuations in females, suggesting hormonal influence. Neu5Gc-containing glycans were rare and mainly derived from residual IgG, as confirmed by glycomic analysis. In contrast to liver-derived glycoproteins, purified IgG exhibited Neu5Gc-only sialylation without O-acetylation, underscoring distinct sialylation profiles characteristic of B cell-derived glycoproteins. Region-specific glycosylation patterns were observed in IgG, with the Fab region carrying more disialylated structures than Fc. These findings highlight cell-type and sex-specific differences in sialylation patterns between hepatic and immune tissues, with implications for hormonal regulation and biomarker research. This study provides a valuable dataset on rat serum glycoproteins and underscores the distinctive glycosylation features of rats, reinforcing their utility as model organisms in glycobiology and disease research. Full article
(This article belongs to the Special Issue Glycobiology of Health and Diseases)
Show Figures

Figure 1

14 pages, 595 KiB  
Review
The Mechanical Properties of Erythrocytes Are Influenced by the Conformational State of Albumin
by Ivana Pajic-Lijakovic, Milan Milivojevic, Gregory Barshtein and Alexander Gural
Cells 2025, 14(15), 1139; https://doi.org/10.3390/cells14151139 - 24 Jul 2025
Viewed by 213
Abstract
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, [...] Read more.
The mechanical stability and deformability of erythrocytes are vital for their function as they traverse capillaries, where shear stress can reach up to 10 Pa under physiological conditions. Human serum albumin (HSA) is known to help maintain erythrocyte stability by influencing cell shape, membrane integrity, and resistance to hemolysis. However, the precise mechanisms by which albumin exerts these effects remain debated, with some studies indicating a stabilizing role and others suggesting the opposite. This review highlights that under high shear rates, albumin molecules may undergo unfolding due to normal stress differences. Such structural changes can significantly alter albumin’s interactions with the erythrocyte membrane, thereby affecting cell mechanical stability. We discuss two potential scenarios explaining how albumin influences erythrocyte mechanics under shear stress, considering both the viscoelastic properties of blood and those of the erythrocyte membrane. Based on theoretical analyses and experimental evidence from the literature, we propose that albumin’s effect on erythrocyte mechanical stability depends on (i) the transition between unfolded and folded states of the protein and (ii) the impact of shear stress on the erythrocyte membrane’s ζ-potential. Understanding these factors is essential for elucidating the complex relationship between albumin and erythrocyte mechanics in physiological and pathological conditions. Full article
(This article belongs to the Special Issue Cell Behavior Under Blood Flow)
Show Figures

Figure 1

25 pages, 2959 KiB  
Article
Synthesis, Characterization, HSA/DNA Binding, and Cytotoxic Activity of [RuCl26-p-cymene)(bph-κN)] Complex
by Stefan Perendija, Dušan Dimić, Thomas Eichhorn, Aleksandra Rakić, Luciano Saso, Đura Nakarada, Dragoslava Đikić, Teodora Dragojević, Jasmina Dimitrić Marković and Goran N. Kaluđerović
Molecules 2025, 30(15), 3088; https://doi.org/10.3390/molecules30153088 - 23 Jul 2025
Viewed by 157
Abstract
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and [...] Read more.
A novel ruthenium(II) complex, [RuCl26-p-cymene)(bph-κN)] (1), was synthesized and structurally characterized using FTIR and NMR spectroscopy. Density functional theory (DFT) calculations supported the proposed geometry and allowed for comparative analysis of experimental and theoretical spectroscopic data. The interaction of complex 1 with human serum albumin (HSA) and calf thymus DNA was investigated through fluorescence quenching experiments, revealing spontaneous binding driven primarily by hydrophobic interactions. The thermodynamic parameters indicated mixed quenching mechanisms in both protein and DNA systems. Ethidium bromide displacement assays and molecular docking simulations confirmed DNA intercalation as the dominant binding mode, with a Gibbs free binding energy of −34.1 kJ mol−1. Antioxidant activity, assessed by EPR spectroscopy, demonstrated effective scavenging of hydroxyl and ascorbyl radicals. In vitro cytotoxicity assays against A375, MDA-MB-231, MIA PaCa-2, and SW480 cancer cell lines revealed selective activity, with pancreatic and colorectal cells showing the highest sensitivity. QTAIM analysis provided insight into metal–ligand bonding characteristics and intramolecular stabilization. These findings highlight the potential of 1 as a promising candidate for further development as an anticancer agent, particularly against multidrug-resistant tumors. Full article
(This article belongs to the Special Issue Transition Metal Complexes with Bioactive Ligands)
Show Figures

Figure 1

21 pages, 1201 KiB  
Article
Seasonal and Dietary Effects on the Hematobiochemical Parameters of Creole Goats in the Peruvian Andes
by Aníbal Rodríguez-Vargas, Emmanuel Alexander Sessarego, Katherine Castañeda-Palomino, Huziel Ormachea, Fritz Trillo, Víctor Temoche-Socola, José Antonio Ruiz-Chamorro and Juancarlos Alejandro Cruz
Vet. Sci. 2025, 12(8), 687; https://doi.org/10.3390/vetsci12080687 - 23 Jul 2025
Viewed by 235
Abstract
Creole goats have adapted to the harsh Andean environment, yet the physiological impacts of high-altitude production systems remain underexplored. This study assessed seasonal and dietary influences on the hematological and biochemical profiles of 45 Creole goats in the Peruvian Andes. The animals were [...] Read more.
Creole goats have adapted to the harsh Andean environment, yet the physiological impacts of high-altitude production systems remain underexplored. This study assessed seasonal and dietary influences on the hematological and biochemical profiles of 45 Creole goats in the Peruvian Andes. The animals were assigned to three diets: D1 (grazing), D2 (grazing + 2000 g hay), and D3 (grazing + 400 g concentrate), across rainy and dry seasons. Biweekly blood sampling measured urea, cholesterol, total protein, albumin, ALP, ALT, WBCL, NeuP, LymP, HGB, and MCV. Season exerted the strongest influence (p < 0.001), with modest dietary effects and a consistent effect of sampling time. Urea, total protein, and albumin increased during the rainy season, though only urea responded significantly to diet. Leukocytosis rose in the dry season and with higher-protein diets, suggesting heightened immune activation under environmental stress. Hemoglobin peaked in the rainy season and early sampling, indicating better oxygenation. MCV and body weight were higher in the dry season, with weight unaffected by diet. These results underscore the complex interplay of environmental and nutritional factors in shaping goat physiology at high altitudes, emphasizing the importance of dynamic modeling in sustainable Andean livestock systems. Full article
Show Figures

Figure 1

13 pages, 2374 KiB  
Article
Interaction Between Bovine Serum Albumin and Trans-Resveratrol: Multispectroscopic Approaches and Molecular Dynamics Simulation
by Xiujuan Li, Mimi Guo, Chenxia Xie, Yalin Xue, Junhui Zhang, Dong Zhang and Zhangqun Duan
Foods 2025, 14(14), 2536; https://doi.org/10.3390/foods14142536 - 20 Jul 2025
Viewed by 232
Abstract
Recent studies have increasingly focused on molecular interactions between small molecules and proteins, especially binding mechanisms and thermodynamics, using multispectroscopic and molecular dynamics approaches. This study elucidated the molecular interaction mechanism between bovine serum albumin (BSA) and trans-resveratrol (Res) through an integrated [...] Read more.
Recent studies have increasingly focused on molecular interactions between small molecules and proteins, especially binding mechanisms and thermodynamics, using multispectroscopic and molecular dynamics approaches. This study elucidated the molecular interaction mechanism between bovine serum albumin (BSA) and trans-resveratrol (Res) through an integrated approach combining multispectroscopic analyses and molecular dynamics simulations. The fluorescence quenching study revealed a static quenching mechanism between BSA and Res, which was further confirmed via ultraviolet–visible (UV-Vis) absorption spectroscopy. In particular, KSV decreased from 5.01 × 104 M−1 at 298 K to 3.99 × 104 M−1 at 318 K. Furthermore, the calculated Kq values significantly exceeded 1 × 1012 M−1 s−1. With increasing Res concentration, the peak fluorescence intensities of Tyr and Trp residues both exhibited a blue shift. The α-helix content of the BSA–Res complex was 59.8%, slightly lower than that of BSA (61.3%). Res was found to bind to site I in subdomain IIA of BSA. The molecular dynamics simulation also identified the specific binding of Res to site I of BSA, while thermodynamic studies revealed that the binding process occurs spontaneously and is primarily mediated by hydrogen bonding interactions. These findings not only enrich the theoretical framework of small-molecule–protein interactions but also provide a crucial scientific foundation for the development and utilization of natural products. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Figure 1

12 pages, 280 KiB  
Article
Clinical Predictors of Polyautoimmunity in Autoimmune Liver Diseases: Insights into Disease Complexity
by Özge Güçbey Türker, Çağdaş Kalkan, Gülden Bilican, Emra Asfuroğlu Kalkan, Ali Atay, İhsan Ateş and İrfan Soykan
J. Clin. Med. 2025, 14(14), 5143; https://doi.org/10.3390/jcm14145143 - 20 Jul 2025
Viewed by 363
Abstract
Background: Autoimmune liver diseases (ALDs) are a diverse group of chronic inflammatory disorders. Individuals with a history of one autoimmune disease (AD) are at a substantially increased risk of developing additional autoimmune conditions. Polyautoimmunity has increasingly been recognized as a factor associated [...] Read more.
Background: Autoimmune liver diseases (ALDs) are a diverse group of chronic inflammatory disorders. Individuals with a history of one autoimmune disease (AD) are at a substantially increased risk of developing additional autoimmune conditions. Polyautoimmunity has increasingly been recognized as a factor associated with a more complex disease course and poorer long-term outcomes. Methods: This retrospective, cross-sectional observational study reviewed medical records of patients diagnosed with ALDs who had been admitted to the gastroenterology clinic. Results: A total of 457 patients with ALDs were included. Polyautoimmunity was present in 194 patients (42.5%), and multiple autoimmune syndrome (MAS) was diagnosed in 26 of these patients (5.7%). Serological comparisons revealed that antinuclear antibody (ANA) positivity was significantly more common in the polyautoimmunity group. Only 22.2% of the patients with polyautoimmunity were ANA-negative, compared with 52.9% in those without. An ROC curve analysis was conducted to assess the predictive value of clinical and laboratory variables for polyautoimmunity. Among all the tested parameters, ANA positivity (>+2) had the strongest predictive value (AUC: 0.724). A disease duration longer than 6.5 years followed, with a moderate discriminative capacity (AUC: 0.677). Additionally, lower albumin levels (<3.0 g/dL) and elevated erythrocyte sedimentation rates (ESRs) (>29.5 mm/h) were significantly associated with polyautoimmunity. Conclusions: In our cohort, 42.5% of patients had at least one additional autoimmune disorder, highlighting the need for a systemic and comprehensive approach to patient care. Simple and accessible markers—such as ANA titers, disease duration, albumin levels, and ESRs—may help to identify patients at greater risk. Full article
(This article belongs to the Section Immunology)
Show Figures

Figure 1

22 pages, 4829 KiB  
Article
Development of a Flexible and Conductive Heating Membrane via BSA-Assisted Electroless Plating on Electrospun PVDF-HFP Nanofibers
by Mun Jeong Choi, Dae Hyeob Yoon, Yoo Sei Park, Hyoryung Nam and Geon Hwee Kim
Appl. Sci. 2025, 15(14), 8023; https://doi.org/10.3390/app15148023 - 18 Jul 2025
Viewed by 213
Abstract
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved [...] Read more.
Planar heaters are designed to deliver uniform heat across broad surfaces and serve as critical components in applications requiring energy efficiency, safety, and mechanical flexibility, such as wearable electronics and smart textiles. However, conventional metal-based heaters are limited by poor adaptability to curved or complex surfaces, low mechanical compliance, and susceptibility to oxidation-induced degradation. To overcome these challenges, we applied a protein-assisted electroless copper (Cu) plating strategy to electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) nanofiber substrates to fabricate flexible, conductive planar heating membranes. For interfacial functionalization, a protein-based engineering approach using bovine serum albumin (BSA) was employed to facilitate palladium ion coordination and seed formation. The resulting membrane exhibited a dense, continuous Cu coating, low sheet resistance, excellent durability under mechanical deformation, and stable heating performance at low voltages. These results demonstrate that the BSA-assisted strategy can be effectively extended to complex three-dimensional fibrous membranes, supporting its scalability and practical potential for next-generation conformal and wearable planar heaters. Full article
(This article belongs to the Section Applied Thermal Engineering)
Show Figures

Figure 1

22 pages, 5041 KiB  
Article
Molecular Insights into the Temperature-Dependent Binding and Conformational Dynamics of Noraucuparin with Bovine Serum Albumin: A Microsecond-Scale MD Simulation Study
by Erick Bahena-Culhuac and Martiniano Bello
Pharmaceuticals 2025, 18(7), 1048; https://doi.org/10.3390/ph18071048 - 17 Jul 2025
Viewed by 278
Abstract
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for [...] Read more.
Background/Objectives: Understanding the molecular interactions between small bioactive compounds and serum albumins is essential for drug development and pharmacokinetics. Noraucuparin, a biphenyl-type phytoalexin with promising pharmacological properties, has shown a strong binding affinity to bovine serum albumin (BSA), a model protein for drug transport. This study aims to elucidate the structural and energetic characteristics of the noraucuparin–BSA complex under physiological and slightly elevated temperatures. Methods: Microsecond-scale molecular dynamics (MD) simulations and Molecular Mechanics Generalized Born Surface Area (MMGBSA)-binding-free energy calculations were performed to investigate the interaction between noraucuparin and BSA at 298 K and 310 K. Conformational flexibility and per-residue energy decomposition analyses were conducted, along with interaction network mapping to assess ligand-induced rearrangements. Results: Noraucuparin preferentially binds to site II of BSA, near the ibuprofen-binding pocket, with stabilization driven by hydrogen bonding and hydrophobic interactions. Binding at 298 K notably increased the structural mobility of BSA, affecting its global conformational dynamics. Key residues, such as Trp213, Arg217, and Leu237, contributed significantly to complex stability, and the ligand induced localized rearrangements in the protein’s intramolecular interaction network. Conclusions: These findings offer insights into the dynamic behavior of the noraucuparin–BSA complex and enhance the understanding of serum albumin–ligand interactions, with potential implications for drug delivery systems. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

16 pages, 3376 KiB  
Article
Evidence of the Differences Between Human and Bovine Serum Albumin Through the Interaction with Coumarin-343: Experimental (ICD) and Theoretical Studies (DFT and Molecular Docking)
by Carmen Regina de Souza, Maurício Ikeda Yoguim, Nathalia Mariana Pavan, Nelson Henrique Morgon, Valdecir Farias Ximenes and Aguinaldo Robinson de Souza
Biophysica 2025, 5(3), 27; https://doi.org/10.3390/biophysica5030027 - 15 Jul 2025
Viewed by 197
Abstract
Coumarins are known for interacting with proteins and exhibiting diverse biological activities. This study investigates the interaction between coumarin-343 (C343) and human (HSA) and bovine (BSA) serum albumins. Fluorescence spectroscopy and theoretical simulations, including density functional theory (DFT) and molecular docking, were used [...] Read more.
Coumarins are known for interacting with proteins and exhibiting diverse biological activities. This study investigates the interaction between coumarin-343 (C343) and human (HSA) and bovine (BSA) serum albumins. Fluorescence spectroscopy and theoretical simulations, including density functional theory (DFT) and molecular docking, were used to analyze the ligand–protein complex formation. The fluorescence quenching data revealed that C343 binds to both proteins, with binding constants of 2.1 × 105 mol·L−1 (HSA) and 6.5 × 105 mol·L−1 (BSA), following a 1:1 stoichiometry. Binding site markers identified drug site I (DS1), located in subdomain IIA, as the preferential binding region for both proteins. Computational results supported these findings, showing high affinity for DS1, with binding energies of −69.02 kcal·mol−1 (HSA) and −67.22 kcal·mol−1 (BSA). While complex formation was confirmed for both proteins, differences emerged in the induced circular dichroism (ICD) signals. HSA displayed a distinct ICD profile compared to BSA in both intensity and absorption maximum. Molecular Docking revealed that the C343 conformation differed between HSA and BSA, explaining the variation in ICD signals. These results highlight the importance of protein structure in modulating ligand interactions and spectral responses. Full article
Show Figures

Figure 1

17 pages, 2307 KiB  
Article
Albumin Enhances Microvascular Reactivity in Sepsis: Insights from Near-Infrared Spectroscopy and Vascular Occlusion Testing
by Rachael Cusack, Alejandro Rodríguez, Ben Cantan, Orsolya Miskolci, Elizabeth Connolly, Gabor Zilahi, John Davis Coakley and Ignacio Martin-Loeches
J. Clin. Med. 2025, 14(14), 4982; https://doi.org/10.3390/jcm14144982 - 14 Jul 2025
Viewed by 275
Abstract
Background/Objectives: In septic shock, microcirculatory dysfunction contributes to organ failure and mortality. While sidestream dark-field (SDF) imaging is the reference method for assessing microvascular perfusion, its complexity limits routine use. This study evaluates near-infrared spectroscopy (NIRS) with vascular occlusion testing (VOT) as [...] Read more.
Background/Objectives: In septic shock, microcirculatory dysfunction contributes to organ failure and mortality. While sidestream dark-field (SDF) imaging is the reference method for assessing microvascular perfusion, its complexity limits routine use. This study evaluates near-infrared spectroscopy (NIRS) with vascular occlusion testing (VOT) as a potential bedside tool for monitoring microcirculatory changes following fluid resuscitation. Methods: Sixty-three fluid-responsive patients with sepsis were randomized to receive either 20% albumin or crystalloid. NIRS-VOT and sublingual SDF measurements were obtained at baseline and 60 min post-resuscitation. The reoxygenation slope (ReOx) derived from NIRS was calculated and compared with clinical severity scores and SDF-derived microcirculatory parameters. Results: ReOx significantly increased from baseline to 60 min in the albumin group (p = 0.025), but not in the crystalloid group. However, between-group differences at 60 min were not statistically significant. ReOx at 60 min was inversely correlated with APACHE II score (ρ = −0.325) and lactate (ρ = −0.277) and showed a weak inverse trend with norepinephrine dose. AUROC for ICU survival based on ReOx was 0.616. NIRS ReOx showed weak correlations with SDF parameters, including the number of crossings (p = 0.03) and the consensus proportion of perfused vessels (CPPV; p = 0.004). Conclusions: NIRS-VOT detected microcirculatory trends after albumin administration but showed limited agreement with SDF imaging. These findings suggest that NIRS and SDF assess different physiological domains. Further studies are warranted to define the clinical utility of NIRS as a microcirculation monitoring tool (Clinicaltrials.gov: NCT05357339). Full article
(This article belongs to the Special Issue Current Trends and Prospects of Critical Emergency Medicine)
Show Figures

Figure 1

18 pages, 389 KiB  
Article
Global DNA Methylation in Poorly Controlled Type 2 Diabetes Mellitus: Association with Redox and Inflammatory Biomarkers
by Sanja Vujcic, Jelena Kotur-Stevuljevic, Zoran Vujcic, Sanja Stojanovic, Teodora Beljic Zivkovic, Miljanka Vuksanovic, Milica Marjanovic Petkovic, Iva Perovic Blagojevic, Branka Koprivica-Uzelac, Sanja Ilic-Mijailovic, Manfredi Rizzo, Aleksandra Zeljkovic, Tatjana Stefanovic, Srecko Bosic and Jelena Vekic
Int. J. Mol. Sci. 2025, 26(14), 6716; https://doi.org/10.3390/ijms26146716 - 13 Jul 2025
Viewed by 342
Abstract
Although emerging evidence suggests that epigenetic mechanisms contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM), data remain limited for patients with suboptimal metabolic control. The aim of this study was to assess global DNA methylation in patients with poorly [...] Read more.
Although emerging evidence suggests that epigenetic mechanisms contribute to the pathogenesis and progression of type 2 diabetes mellitus (T2DM), data remain limited for patients with suboptimal metabolic control. The aim of this study was to assess global DNA methylation in patients with poorly controlled T2DM and to identify diabetes-related factors associated with DNA methylation levels. The study included 107 patients and 50 healthy controls. Global DNA methylation (5mC) was measured by UHPLC-DAD method. Pro-oxidant and antioxidant biomarkers, advanced glycation end-products, high-sensitivity C-reactive protein (hsCRP) and complete blood count were determined and leukocyte indices calculated. Patients had a significantly lower 5mC than controls (3.56 ± 0.31% vs. 4.00 ± 0.68%; p < 0.001), with further reductions observed in those with longer disease duration and diabetic foot ulcers. Oxidative stress and inflammatory biomarkers were higher in the patient group. DNA hypomethylation was associated with a higher monocyte-to-lymphocyte ratio and hsCRP, pro-oxidant–antioxidant balance, ischemia-modified albumin, and advanced oxidation protein products levels. Conversely, 5mC levels showed positive correlations with total antioxidant status and total sulfhydryl groups. Principal component analysis identified five key factors: proinflammatory, pro-oxidant, aging, hyperglycemic, and antioxidant. The pro-oxidant factor emerged as the sole independent predictor of global DNA hypomethylation in T2DM (OR = 2.294; p = 0.027). Our results indicate that global DNA hypomethylation could be a biomarker of T2DM progression, reflecting the complex interactions between oxidative stress, inflammation, and epigenetic modifications in T2DM. Full article
Show Figures

Figure 1

17 pages, 1864 KiB  
Article
The Neurological Metabolic Phenotype in Prolonged/Chronic Critical Illness: Propensity Score Matched Analysis of Nutrition and Outcomes
by Levan B. Berikashvili, Alexander E. Shestopalov, Petr A. Polyakov, Alexandra V. Yakovleva, Mikhail Ya. Yadgarov, Ivan V. Kuznetsov, Mohammad Tarek S. M. Said, Ivan V. Sergeev, Andrey B. Lisitsyn, Alexey A. Yakovlev and Valery V. Likhvantsev
Nutrients 2025, 17(14), 2302; https://doi.org/10.3390/nu17142302 - 12 Jul 2025
Viewed by 308
Abstract
Background: Brain injuries, including stroke and traumatic brain injury (TBI), pose a major healthcare challenge due to their severe consequences and complex recovery. While ischemic strokes are more common, hemorrhagic strokes have a worse prognosis. TBI often affects young adults and leads [...] Read more.
Background: Brain injuries, including stroke and traumatic brain injury (TBI), pose a major healthcare challenge due to their severe consequences and complex recovery. While ischemic strokes are more common, hemorrhagic strokes have a worse prognosis. TBI often affects young adults and leads to long-term disability. A critical concern in these patients is the frequent development of chronic critical illness, compounded by metabolic disturbances and malnutrition that hinder recovery. Objective: This study aimed to compare changes in nutritional status parameters under standard enteral nutrition protocols and clinical outcomes in prolonged/chronic critically ill patients with TBI or stroke versus such a population of patients without TBI or stroke. Methods: This matched prospective–retrospective cohort study included intensive care unit (ICU) patients with TBI or stroke from the Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology and patients without these conditions from the eICU-CRD database. Inclusion criteria comprised age 18–74 years, ICU stay >5 days, and enteral nutrition. Patients with re-hospitalization, diabetes, acute organ failure, or incomplete data were excluded. Laboratory values and clinical outcomes were compared between the two groups. Propensity score matching (PSM) was used to balance baseline characteristics (age, sex, and body mass index). Results: After PSM, 29 patients with TBI or stroke and 121 without were included. Univariate analysis showed significant differences in 21 laboratory parameters and three hospitalization outcomes. On day 1, the TBI/stroke group had higher hemoglobin, hematocrit, lymphocytes, total protein, and albumin, but lower blood urea nitrogen (BUN), creatinine, and glucose. By day 20, they had statistically significantly lower calcium, BUN, creatinine, and glucose. This group also showed less change in lymphocytes, calcium, and direct bilirubin. Hospitalization outcomes showed longer mechanical ventilation duration (p = 0.030) and fewer cases of acute kidney injury (p = 0.0220) in the TBI/stroke group. Conclusions: TBI and stroke patients exhibit unique metabolic patterns during prolonged/chronic critical illness, differing significantly from other ICU populations in protein/glucose metabolism and complication rates. These findings underscore the necessity for specialized nutritional strategies in neurocritical care and warrant further investigation into targeted metabolic interventions. Full article
(This article belongs to the Section Nutrition and Metabolism)
Show Figures

Figure 1

22 pages, 5743 KiB  
Article
The Synthesis, Characterization, and Biological Evaluation of a Fluorenyl-Methoxycarbonyl-Containing Thioxo-Triazole-Bearing Dipeptide: Antioxidant, Antimicrobial, and BSA/DNA Binding Studies for Potential Therapeutic Applications in ROS Scavenging and Drug Transport
by Lala Stepanyan, Tatevik Sargsyan, Valentina Mittova, Zurab R. Tsetskhladze, Nino Motsonelidze, Ekaterine Gorgoshidze, Niccolò Nova, Monika Israyelyan, Hayarpi Simonyan, Franco Bisceglie, Lusine Sahakyan, Karapet Ghazaryan and Giovanni N. Roviello
Biomolecules 2025, 15(7), 933; https://doi.org/10.3390/biom15070933 - 26 Jun 2025
Viewed by 1186
Abstract
We report on the synthesis and characterization of a novel fluorenyl-methoxycarbonyl (Fmoc)-containing thioxo-triazole-bearing dipeptide 5, evaluated for potential therapeutic applications. The compound was tested for its antioxidant and antimicrobial properties, demonstrating significant effects in scavenging reactive oxygen species (ROS) and inhibiting microbial [...] Read more.
We report on the synthesis and characterization of a novel fluorenyl-methoxycarbonyl (Fmoc)-containing thioxo-triazole-bearing dipeptide 5, evaluated for potential therapeutic applications. The compound was tested for its antioxidant and antimicrobial properties, demonstrating significant effects in scavenging reactive oxygen species (ROS) and inhibiting microbial growth, particularly when combined with plant extracts from an endemic Peonia species from the Caucasus. Circular dichroism (CD) binding studies with bovine serum albumin (BSA) and calf thymus DNA revealed important interactions, suggesting the dipeptide’s potential in biomedically relevant conditions that involve DNA modulation. Molecular docking and CD spectra deconvolution provided additional insights into the binding mechanisms and structural characteristics of the formed complexes with the biomolecular targets. The Fmoc group enhances the dipeptide’s lipophilicity, which may facilitate its interaction with cellular membranes, supporting efficient drug delivery. A computational evaluation at the ωB97XD/aug-cc-pVDZ level of theory was carried out, confirming the experimental results and revealing a powerful potential of the peptide as an antioxidant, through FMOs, MEP analysis, and antioxidant mechanism assessments. Together, these findings suggest that this dipeptide could be valuable as an antimicrobial and antioxidant agent, with potential applications in pathologies involving oxidative stress, DNA modulation, and microbial infections. Full article
(This article belongs to the Special Issue State of the Art and Perspectives in Antimicrobial Peptides)
Show Figures

Figure 1

20 pages, 9373 KiB  
Article
In Vitro Antibacterial Activities and Calf Thymus DNA–Bovine Serum Albumin Interactions of Tridentate NNO Hydrazone Schiff Base–Metal Complexes
by Maida Katherine Triviño-Rojas, Santiago José Jiménez-Lopez, Richard D’Vries, Alberto Aragón-Muriel and Dorian Polo-Cerón
Inorganics 2025, 13(7), 213; https://doi.org/10.3390/inorganics13070213 - 25 Jun 2025
Viewed by 849
Abstract
Their demonstrable bioactive characteristics, coupled with their wide structural diversity and coordination versatility, render Schiff bases and their coordination complexes biologically active compounds demonstrating outstanding properties. This research describes the synthesis and characterization of new Cu(II) and Ni(II) complexes with an NNO-donor hydrazone [...] Read more.
Their demonstrable bioactive characteristics, coupled with their wide structural diversity and coordination versatility, render Schiff bases and their coordination complexes biologically active compounds demonstrating outstanding properties. This research describes the synthesis and characterization of new Cu(II) and Ni(II) complexes with an NNO-donor hydrazone ligand (HL). The crystal structure of the HL ligand was determined through single-crystal X-ray diffraction studies. The in vitro antibacterial activities of the HL ligand and its metal(II) complexes against Gram-positive and Gram-negative bacteria demonstrated that the metal(II) complexes displayed greater antimicrobial activities compared to the free Schiff base ligand. Furthermore, the interaction of the ligand and the complexes with calf thymus DNA (CT-DNA) was explored through electronic absorption and viscosity measurements, suggesting intercalation as the most likely mode of binding. The compounds promoted oxidative DNA cleavage, as demonstrated by the strand breaks of the pmChery plasmid under oxidative stress conditions. Finally, fluorescence spectroscopy also revealed the strong binding affinity of these compounds for bovine serum albumin (BSA). Full article
Show Figures

Figure 1

17 pages, 1443 KiB  
Article
Morin Flavonoid Interaction with Albumin and Its Nanoparticle Conjugation: An Efficient Antioxidant Vehicle for Nutraceuticals
by Guillermo Montero, Víctor Guarnizo-Herrero, Catalina Sandoval-Altamirano, Germán Günther, Soledad Bollo, Francisco Arriagada and Javier Morales
Antioxidants 2025, 14(7), 764; https://doi.org/10.3390/antiox14070764 - 21 Jun 2025
Viewed by 503
Abstract
Morin is a natural flavonoid with potent antioxidant activity, yet its clinical and nutraceutical applications remain limited due to poor aqueous solubility and low bioavailability. This study explores the interaction of morin with bovine serum albumin (BSA) and the development of BSA-based nanoparticles [...] Read more.
Morin is a natural flavonoid with potent antioxidant activity, yet its clinical and nutraceutical applications remain limited due to poor aqueous solubility and low bioavailability. This study explores the interaction of morin with bovine serum albumin (BSA) and the development of BSA-based nanoparticles as a delivery platform. Fluorescence spectroscopy confirmed the formation of a stable 1:1 morin–BSA complex, governed by hydrophobic interactions, with a binding constant (Ka) of 1.87 × 105 L·mol−1. Binding conferred enhanced photostability, as BSA attenuated morin degradation under oxidative stress conditions. BSA nanoparticles prepared by desolvation encapsulated morin with high monodispersity and encapsulation efficiencies up to 26%. Co-encapsulation with ellagic acid or tocopherol succinate improved loading capacity but reduced morin release, suggesting intermolecular stabilization. Release studies in simulated intestinal fluid showed controlled diffusion, while compatibility assays in milk-based food matrices confirmed colloidal stability in whole and reduced-fat milk. These findings support BSA–morin nanoparticles as a promising system for the oral delivery and functional food incorporation of polyphenolic antioxidants. Full article
Show Figures

Figure 1

Back to TopTop