Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = aircraft/propulsion integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 7771 KB  
Review
Advances in Folding-Wing Flying Underwater Drone (FUD) Technology
by Jianqiu Tu, Junjie Zhuang, Haixin Chen, Changjian Zhao, Hairui Zhang and Wenbiao Gan
Drones 2026, 10(1), 62; https://doi.org/10.3390/drones10010062 - 15 Jan 2026
Viewed by 318
Abstract
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth [...] Read more.
The evolution of modern warfare and civil exploration requires platforms that can operate seamlessly across the air–water interface. The folding-wing Hybrid Air and Underwater Vehicle (FUD) has emerged as a transformative solution, combining the high-speed cruising capabilities of fixed-wing aircraft with the stealth characteristics of underwater navigation. This review thoroughly analyzes the advancements and challenges in folding-wing FUD technology. The discussion is framed around four interconnected pillars: the overall design driven by morphing technology, adaptation of the propulsion system, multi-phase dynamic modeling and control, and experimental verification. The paper systematically compares existing technical pathways, including lateral and longitudinal folding mechanisms, as well as dual-use and hybrid propulsion strategies. The analysis indicates that, although significant progress has been made with prototypes demonstrating the ability to transition between air and water, core challenges persist. These challenges include underwater endurance, structural reliability under impact loads, and effective integration of the power system. Additionally, this paper explores promising application scenarios in both military and civilian domains, discussing future development trends that focus on intelligence, integration, and clustering. This review not only consolidates the current state of technology but also emphasizes the necessity for interdisciplinary approaches. By combining advanced materials, computational intelligence, and robust control systems, we can overcome existing barriers to progress. In conclusion, FUD technology is moving from conceptual validation to practical engineering applications, positioning itself to become a crucial asset in future cross-domain operations. Full article
(This article belongs to the Special Issue Advances in Autonomous Underwater Drones: 2nd Edition)
Show Figures

Figure 1

32 pages, 31698 KB  
Article
Sub-Scale Flight Testing of Drag Reduction Features for Amphibious Light Sport Aircraft
by Jackson Tenhave, Keith Joiner and Dominic Hill
Aerospace 2026, 13(1), 59; https://doi.org/10.3390/aerospace13010059 - 7 Jan 2026
Viewed by 196
Abstract
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The [...] Read more.
Amphibious light sport aircraft (LSA) combine the versatility of land and water operations but suffer aerodynamic penalties from their inherent design requirements, limiting cruise performance. This study investigates two drag reduction features for a proposed high-performance amphibious LSA developed by Altavia Aerospace. The concept targets a cruise speed of 140 KTAS, using retractable wingtip pontoons and a novel retractable hull step fairing. A 1/5-scale flying model was built and flight tested to assess the aerodynamic benefits of these features and evaluate sub-scale flight testing as a tool for drag measurement. Estimated propulsive power and GPS-based speed data corrected for wind were used to compute an estimated 17% reduction in drag coefficient by retracting the pontoons. The hull step fairing showed no measurable gains, likely due to inconsistent battery voltage, despite literature indicating potential 5% drag savings. Drag measurement precision of 7–9% was achieved using the power-based method, with potential precision better than 3% achievable if the designed thrust data system were fully validated and an autopilot integrated. A performance estimation for Altavia Aerospace’s concept predicts a cruise speed of 134 KTAS at 10,000 ft. Achieving the target of 140 KTAS may require further aerodynamic refinement, with investigation of a tandem seating configuration to reduce frontal area recommended. The study provides an initial drag assessment of retractable wingtip pontoons and demonstrates the potential of sub-scale flight testing for comparative drag analysis—two novel contributions to the field. Full article
(This article belongs to the Special Issue Recent Advances in Applied Aerodynamics (2nd Edition))
Show Figures

Figure 1

35 pages, 12068 KB  
Article
Parametric Geometry Modeling for Conceptual Design of Supersonic Tailless Combat Aircraft
by Jian Xu and Xiongqing Yu
Aerospace 2026, 13(1), 17; https://doi.org/10.3390/aerospace13010017 - 25 Dec 2025
Viewed by 339
Abstract
The fully tailless configuration has lower observability, less structural weight and less drag, and it is considered one of the preferred designs for the next generation of efficient supersonic combat aircraft. In the conceptual design of such novel aircraft, a parametric geometry model [...] Read more.
The fully tailless configuration has lower observability, less structural weight and less drag, and it is considered one of the preferred designs for the next generation of efficient supersonic combat aircraft. In the conceptual design of such novel aircraft, a parametric geometry model is essential for multidisciplinary design analysis and optimization (MDAO). This paper presents a parametric three-dimensional (3D) geometry modeling methodology and tool for MDAO in the conceptual design of a notional supersonic tailless combat aircraft (STCA). The geometries of the STCA components (wing, fuselage and propulsion) are defined specifically by a set of parameters. In particular, the inlet and nozzle geometries are defined with the required details. Based on the geometric relationships among the STCA components, an approach involving master-dependent parameters is proposed. The geometry model generated by the approach has features such as the fuselage being blended smoothly with the wing and the propulsion being well integrated with the fuselage. Moreover, the geometry model can be generated by simply specifying the values of the master parameters, and the number of parameters required to generate the geometry model is reduced substantially. Based on the methodology, a parametric geometry modeling tool for the STCA conceptual design is developed using a Visual Basic (VB) script in the CATIA V5 platform. The applicability of the tool is validated with several case studies. Full article
(This article belongs to the Special Issue Aircraft Conceptual Design: Tools, Processes and Examples)
Show Figures

Figure 1

31 pages, 6651 KB  
Article
Integrated Approach to Design and Additive Manufacturing of Solar Unmanned Aerial Vehicles
by Ioana Nistor and Sebastian-Marian Zaharia
Appl. Sci. 2025, 15(24), 12964; https://doi.org/10.3390/app152412964 - 9 Dec 2025
Viewed by 478
Abstract
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps [...] Read more.
The development of solar-powered UAVs offers major advantages, such as extended mission autonomy, marking a significant technological advance in the aerospace industry. In this context, the study demonstrated the feasibility of additive manufacturing of a solar-powered UAV by successfully completing all the steps necessary for the development of an aeronautical product. The conceptual design was the initial phase in which the needs were defined, and the basic vision of the UAV model was outlined, exploring multiple possible solutions to identify the concept capable of meeting the mission requirements (search and rescue and surveillance). The preliminary design stage included aerodynamic analysis of the aircraft and preliminary sizing of the propulsion system and solar cells. The preliminary design stage included aerodynamic analysis of the UAV model, resulting in a lift coefficient of 1.05 and a drag coefficient of 0.08 at an angle of attack of 15°. A major advantage of the design is the integration of the electrical circuit, where solar input reduced battery consumption from 92.5 W to just 40.4 W in standard operational conditions, thereby more than doubling the UAV’s autonomy (from 48 min to approximately 110 min). The detailed design stage consisted of the final design of the solar UAV model for additive manufacturing, after which the final electrical architecture of the energy system was established. The model was subsequently validated by a finite element analysis, which confirmed the strength of the wing structure by achieving a safety factor of 6.6. The use of additive manufacturing allowed the rapid and accurate production of the structural components of the UAV model, ensuring that their subsequent physical assembly would be straightforward. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

45 pages, 15707 KB  
Article
Lightweight, High-Efficiency, High-Dynamic-Response and Low-Ripple DC-DC Converters Based on Interleaved Magnetic Integrated Switched-Coupled Inductor for Electric Propulsion Aircraft
by Rui Guo, Hongkai Gao, Li Chen, Yiyi Zhang and Lei Wang
Aerospace 2025, 12(12), 1067; https://doi.org/10.3390/aerospace12121067 - 30 Nov 2025
Viewed by 350
Abstract
With the development of distributed electric propulsion aircraft, researching airborne high-efficiency, high-power-density, high-gain, high-dynamic and low-ripple, low-stress DC-DC that meets aviation standards is an urgent and profoundly challenging task (Research Background). We propose a new topology to implement related applications. The new topology [...] Read more.
With the development of distributed electric propulsion aircraft, researching airborne high-efficiency, high-power-density, high-gain, high-dynamic and low-ripple, low-stress DC-DC that meets aviation standards is an urgent and profoundly challenging task (Research Background). We propose a new topology to implement related applications. The new topology consists of an interleaved switched-inductor unit for a high-gain, low-ripple, and high-dynamic response, and a switched-capacitor unit for secondary boosting and low voltage stress. This study first analyzes in depth the operating principle and electrical characteristics of the proposed topology in different modes, showing that the proposed topology can achieve an extremely high voltage gain while maintaining low voltage stress. Moreover, the proposed topology employs interleaved inverse coupled inductors to eliminate right-half-plane zero (RHPZ). We establish a universal design guideline for coupled inductors by deriving the equivalent inductance equations, and we implement an ultra-lightweight switched-coupled inductor using planar thin-film integrated magnetic technology. We conduct small-signal modeling to verify the loop characteristics and stability of the proposed converter. Finally, the correctness of the theoretical analysis and the advantages of the proposed converter were verified through a 5000 W experimental prototype and comprehensive comparative experiments. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology (2nd Edition))
Show Figures

Figure 1

26 pages, 4587 KB  
Article
Configuration Trade-Off and Co-Design Optimization of Hybrid-Electric VTOL Propulsion Systems
by Yanan Li, Haiwang Li, Gang Xie and Zhi Tao
Drones 2025, 9(11), 800; https://doi.org/10.3390/drones9110800 - 17 Nov 2025
Viewed by 1073
Abstract
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) [...] Read more.
Unmanned vertical takeoff and landing (VTOL) aircraft are increasingly deployed for logistics, surveillance, and urban air mobility (UAM) applications. However, the limitations of full-electric (FE) and internal combustion engine (ICE) systems in meeting diverse mission requirements have motivated the development of hybrid-electric (HE) propulsion systems. The design of HE powertrains remains challenging due to configuration flexibility and the lack of unified criteria for performance trade-offs among FE, ICE-powered, and HE configurations. This study proposes an integrated propulsion co-design framework coupling power allocation, energy management, and component capacity constraints through parametric system modeling. These interdependencies are represented by three key matching parameters: the power ratio (Φ), energy ratio (Ω), and maximum continuous discharge rate (rc). Through Pareto-optimal design space exploration, trade-off analysis results and optimization principles are derived for diverse mission scenarios such as UAM, remote sensing, and military surveillance. Different technological conditions are considered to guide component-level technological advancements. The method was applied to the power system retrofit of the Great White eVTOL. Subsystem steady-state tests provided accurate design inputs, and a simulation model was developed to reproduce the full flight mission. By comparing the simulation with flight-test measurements, mean absolute percentage errors of 8.91% for instantaneous fuel consumption and 0.26% for battery voltage were obtained. Based on these error magnitudes, a dynamic design margin was defined and then incorporated into a subsequent re-optimization, which achieved the 1.5 h endurance target with a 10.49% increase in cost per ton-kilometer relative to the initial design. These results demonstrate that the proposed co-design methodology offers a scalable, data-driven foundation for early-stage hybrid-electric VTOL powertrain design, enabling iterative performance correction and supporting system optimization in subsequent design stages. Full article
Show Figures

Figure 1

30 pages, 3738 KB  
Review
Hydrogen Propulsion Technologies for Aviation: A Review of Fuel Cell and Direct Combustion Systems Towards Decarbonising Medium-Haul Aircraft
by Daisan Gopalasingam, Bassam Rakhshani and Cristina Rodriguez
Hydrogen 2025, 6(4), 92; https://doi.org/10.3390/hydrogen6040092 - 20 Oct 2025
Viewed by 5585
Abstract
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. [...] Read more.
Hydrogen propulsion technologies are emerging as a key enabler for decarbonizing the aviation sector, especially for regional commercial aircraft. The evolution of aircraft propulsion technologies in recent years raises the question of the feasibility of a hydrogen propulsion system for beyond regional aircraft. This paper presents a comprehensive review of hydrogen propulsion technologies, highlighting key advancements in component-level performance metrics. It further explores the technological transitions necessary to enable hydrogen-powered aircraft beyond the regional category. The feasibility assessment is based on key performance parameters, including power density, efficiency, emissions, and integration challenges, aligned with the targets set for 2035 and 2050. The adoption of hydrogen-electric powertrains for the efficient transition from KW to MW powertrains depends on transitions in fuel cell type, thermal management systems (TMS), lightweight electric machines and power electronics, and integrated cryogenic cooling architectures. While hydrogen combustion can leverage existing gas turbine architectures with relatively fewer integration challenges, it presents its technical hurdles, especially related to combustion dynamics, NOx emissions, and contrail formation. Advanced combustor designs, such as micromix, staged, and lean premixed systems, are being explored to mitigate these challenges. Finally, the integration of waste heat recovery technologies in the hydrogen propulsion system is discussed, demonstrating the potential to improve specific fuel consumption by up to 13%. Full article
Show Figures

Figure 1

45 pages, 5989 KB  
Review
A Review of Hybrid-Electric Propulsion in Aviation: Modeling Methods, Energy Management Strategies, and Future Prospects
by Feifan Yu, Jiajie Chen, Panao Gao, Yu Kong, Xiaokang Sun, Jiqiang Wang and Xinmin Chen
Aerospace 2025, 12(10), 895; https://doi.org/10.3390/aerospace12100895 - 3 Oct 2025
Cited by 4 | Viewed by 6746
Abstract
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency [...] Read more.
Aviation is under increasing pressure to reduce carbon emissions in conventional transports and support the growth of low-altitude operations such as long-endurance eVTOLs. Hybrid-electric propulsion addresses these challenges by integrating the high specific energy of fuels or hydrogen with the controllability and efficiency of electrified powertrains. At present, the field of hybrid-electric aircraft is developing rapidly. To systematically study hybrid-electric propulsion control in aviation, this review focuses on practical aspects of system development, including propulsion architectures, system- and component-level modeling approaches, and energy management strategies. Key technologies in the future are examined, with emphasis on aircraft power-demand prediction, multi-timescale control, and thermal integrated energy management. This review aims to serve as a reference for configuration design, modeling and control simulation, as well as energy management strategy design of hybrid-electric propulsion systems. Building on this reference role, the review presents a coherent guidance scheme from architectures through modeling to energy-management control, with a practical roadmap toward flight-ready deployment. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

35 pages, 8465 KB  
Article
Momentum- and Energy-Based Analyses of the Aerodynamic Effects of Boundary Layer Ingestion and Propulsion–Airframe Integration on a Blended Wing Body–Turbofan Configuration
by Gang Wang, Dong Li, Peifeng Li and Binqian Zhang
Aerospace 2025, 12(9), 846; https://doi.org/10.3390/aerospace12090846 - 18 Sep 2025
Viewed by 941
Abstract
Boundary layer ingestion (BLI) propulsion offers notable benefits for blended wing body (BWB) aircraft, and understanding the interrelated effects of BLI and propulsion–airframe integration (PAI) is critical for early-stage design decisions. This study numerically applies combined momentum- and energy-based analyses to a closely [...] Read more.
Boundary layer ingestion (BLI) propulsion offers notable benefits for blended wing body (BWB) aircraft, and understanding the interrelated effects of BLI and propulsion–airframe integration (PAI) is critical for early-stage design decisions. This study numerically applies combined momentum- and energy-based analyses to a closely coupled but non-integrated BWB–turbofan configuration enabling a continuous transition from non-BLI to BLI conditions. By introducing an idealized capture streamtube–airframe interaction force, the drag of BLI layout is decomposed into additional and external components, enabling quantification of a lift-to-drag ratio improvement of 1.7–2.6, corresponding to a 7.14–8.27% gain in power saving coefficient (PSC). Additional drag reduction, the primary contributor to total drag savings, is analytically attributed to inlet total pressure loss. The resulting decrease in required thrust under BLI shows strong mathematical correlation with jet dissipation reduction, revealing an intrinsic link between drag reduction and power saving. PAI exerts a significant influence on the BLI benefits, including nacelle cowl drag penalties, significant variations in shock wave location and strength, and notable suppression of both boundary layer and wake dissipation for the portion of cowl immersed in the airframe wake. These findings inform the transition from podded to BLI engine layouts. Full article
(This article belongs to the Special Issue Advanced Aircraft Technology (2nd Edition))
Show Figures

Figure 1

15 pages, 3299 KB  
Article
Towards Sustainable Airport Operations: Emission Analysis of Taxiing Solutions
by Marta Maciejewska and Paula Kurzawska-Pietrowicz
Sustainability 2025, 17(18), 8242; https://doi.org/10.3390/su17188242 - 13 Sep 2025
Cited by 2 | Viewed by 1291
Abstract
Airport operations significantly contribute to air pollution in their vicinity through various sources, including aircraft activities—particularly taxiing and take-off—as well as ground support equipment, service vehicles, and maintenance work. Since emissions from aircraft engines represent the primary pollution source at airports, it is [...] Read more.
Airport operations significantly contribute to air pollution in their vicinity through various sources, including aircraft activities—particularly taxiing and take-off—as well as ground support equipment, service vehicles, and maintenance work. Since emissions from aircraft engines represent the primary pollution source at airports, it is essential to reduce emissions at every phase of the LTO (landing and take-off) cycle to improve local air quality and promote environmental sustainability. Given the research gap in emission analysis, a comprehensive LCA framework for airport pushback and taxi operations is proposed, integrating tow truck propulsion, a taxiing strategy, and fleet management. Given the complexity of the issue, the authors first decided to investigate emissions from taxiing operations using tow trucks with different powertrains. The analyses performed were considered preliminary and a starting point for exploring emissions during taxiing operations at airports. Typically, aircraft are pushed back from the apron and then taxi under their own power using both engines at approximately 7% of maximum thrust. To substantially reduce exhaust emissions, external towing vehicles can be employed to move aircrafts from the apron to the runway. This study evaluates the potential for emission reductions in CO2 and other harmful compounds such as CO, HC, NOx, and PM by using electric towing vehicles (ETVs). It also compares emissions from different taxiing methods: full-engine taxiing, single-engine taxiing, ETV-assisted taxiing, and taxiing using diesel and petrol-powered tow vehicles. The analysis was conducted for Warsaw and Poznań airports. Three aircraft types—the most commonly operating at these airports—were selected to assess emissions under various taxiing scenarios. The results show that using electric towing vehicles can reduce CO and NOx emissions to nearly zero compared to other methods. Interestingly, CO emissions from full-engine taxiing were lower than those from petrol-powered towing, although the Embraer 195 showed the highest CO emissions among the selected aircrafts. HC emissions were lowest for the A321neo and also relatively low for the diesel towing vehicle. The use of electric tow trucks significantly reduces CO2 emissions: only 2.8–4.4 kg compared to 380–450 kg when taxiing with engines. This research highlights the critical role of sustainable ground operations in reducing harmful emissions and underscores the importance of integrating sustainability into airport taxiing practices. Full article
(This article belongs to the Special Issue Control of Traffic-Related Emissions to Improve Air Quality)
Show Figures

Figure 1

25 pages, 5055 KB  
Article
A Hybrid Model Based on a Dual-Attention Mechanism for the Prediction of Remaining Useful Life of Aircraft Engines
by Chenwen He, Zixiang Li, Chenyu Zheng, Zikai Zhang and Liping Zhang
Sensors 2025, 25(18), 5682; https://doi.org/10.3390/s25185682 - 11 Sep 2025
Cited by 1 | Viewed by 1151
Abstract
Estimating the Remaining Useful Life (RUL) of aircraft engines plays a vital role in the field of prognostics and health management. In multi-dimensional time series regression tasks, accurately capturing both time series features and sensor features, as well as integrating these two types [...] Read more.
Estimating the Remaining Useful Life (RUL) of aircraft engines plays a vital role in the field of prognostics and health management. In multi-dimensional time series regression tasks, accurately capturing both time series features and sensor features, as well as integrating these two types of features, poses a significant challenge for RUL prediction. The sensor features represent the weights of each sensor on the RUL prediction results. To overcome this challenge, we introduce a hybrid model based on a dual-attention mechanism. Initially, a temporal feature extraction block is applied to map the time-step dimension into a hidden representation space, facilitating the capture of complex temporal dynamics. These patterns are then refined using a multi-head self-attention mechanism. Subsequently, a sensor feature extraction block is applied to capture sensor-specific characteristics. Each sensor sequence is treated as a separate channel, compressed to derive sensor weights, and integrated to form global features that fuse temporal and sensor-level representations. Finally, RUL is estimated via a regression layer. The proposed method is demonstrated to be effective on the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset. Compared with the state-of-the-art CTNet model, the proposed method achieves 7% and 9% gains in RMSE and Score, respectively, on the FD001 dataset. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

33 pages, 941 KB  
Review
Noise Prediction and Mitigation for UAS and eVTOL Aircraft: A Survey
by Waleed Raza and Richard S. Stansbury
Drones 2025, 9(8), 577; https://doi.org/10.3390/drones9080577 - 14 Aug 2025
Cited by 2 | Viewed by 6190
Abstract
The integration of small unmanned aircraft systems (sUASs) and electric vertical takeoff and landing (eVTOL) aircraft into urban airspace presents a new challenge in managing environmental noise, which is a critical factor for the public acceptance of urban air mobility (UAM). This survey [...] Read more.
The integration of small unmanned aircraft systems (sUASs) and electric vertical takeoff and landing (eVTOL) aircraft into urban airspace presents a new challenge in managing environmental noise, which is a critical factor for the public acceptance of urban air mobility (UAM). This survey investigates the noise characteristics of UAS and eVTOL platforms, particularly multi-rotor and distributed propulsion configurations, and examines whether the operational benefits of these vehicles outweigh their acoustic footprint in dense urban environments. While eVTOLs are often perceived as quieter than conventional helicopters due to the absence of combustion engines and mechanically simpler drivetrains, their dominant noise sources are aerodynamic in nature. These include blade vortex interactions, rotor loading noise, and broadband noise, which persist regardless of whether propulsion is electric or combustion-based. Recent studies suggest that community perception of drone noise is influenced more by tonal content, frequency, and modulation patterns than by absolute sound pressure levels. This paper presents a comprehensive review of state-of-the-art noise prediction tools, empirical measurement techniques, and mitigation strategies for sUAS operating in UAM scenarios. The discussion provided in this paper assists in vehicle design, certification standards, airspace planning, and regulatory frameworks focused on minimizing noise impact in urban settings. Full article
Show Figures

Figure 1

29 pages, 3661 KB  
Article
Segmented Analysis for the Performance Optimization of a Tilt-Rotor RPAS: ProVANT-EMERGENTIa Project
by Álvaro Martínez-Blanco, Antonio Franco and Sergio Esteban
Aerospace 2025, 12(8), 666; https://doi.org/10.3390/aerospace12080666 - 26 Jul 2025
Viewed by 775
Abstract
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power [...] Read more.
This paper aims to analyze the performance of a tilt-rotor fixed-wing RPAS (Remotely Piloted Aircraft System) using a segmented approach, focusing on a nominal mission for SAR (Search and Rescue) applications. The study employs optimization techniques tailored to each segment to meet power consumption requirements, and the results highlight the accuracy of the physical characterization, which incorporates nonlinear propulsive and aerodynamic models derived from wind tunnel test campaigns. Critical segments for this nominal mission, such as the vertical take off or the transition from vertical to horizontal flight regimes, are addressed to fully understand the performance response of the aircraft. The proposed framework integrates experimental models into trajectory optimization procedures for each segment, enabling a realistic and modular analysis of energy use and aerodynamic performance. This approach provides valuable insights for both flight control design and future sizing iterations of convertible UAVs (Uncrewed Aerial Vehicles). Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

51 pages, 9150 KB  
Review
A Comprehensive Review of Propeller Design and Propulsion Systems for High-Altitude Pseudo-Satellites
by Eleonora Riccio, Filippo Alifano, Vincenzo Rosario Baraniello and Domenico Coiro
Appl. Sci. 2025, 15(14), 8013; https://doi.org/10.3390/app15148013 - 18 Jul 2025
Cited by 2 | Viewed by 4329
Abstract
In both scientific and industrial fields, there has been a notable increase in attention toward High-Altitude Pseudo-Satellites (HAPSs) in recent years. This surge is driven by their distinct advantages over traditional satellites and Remotely Piloted Aircraft Systems (RPASs). These benefits are particularly evident [...] Read more.
In both scientific and industrial fields, there has been a notable increase in attention toward High-Altitude Pseudo-Satellites (HAPSs) in recent years. This surge is driven by their distinct advantages over traditional satellites and Remotely Piloted Aircraft Systems (RPASs). These benefits are particularly evident in critical areas such as intelligent transportation systems, surveillance, remote sensing, traffic and environmental monitoring, emergency communications, disaster relief efforts, and the facilitation of large-scale temporary events. This review provides an overview of key aspects related to the propellers and propulsion systems of HAPSs. To date, propellers remain the most efficient means of propulsion for high-altitude applications. However, due to the unique operational conditions at stratospheric altitudes, propeller design necessitates specific approaches that differ from those applied in conventional applications. After a brief overview of the propulsion systems proposed in the literature or employed by HAPSs, focusing on both the technical challenges and advancements in this emerging field, this review integrates theoretical foundations, historical design approaches, and the latest multi-fidelity optimization techniques to provide a comprehensive comparison of propeller design methods for HAPSs. It identifies key trends, including the growing use of CFD-based simulations methodologies, which contribute to notable performance improvements. Additionally, the review includes a critical assessment of experimental methods for performance evaluation. These developments have enabled the design of propellers with efficiencies exceeding 85%, offering valuable insights for the next generation of high-endurance, high-altitude platforms. Full article
Show Figures

Figure 1

17 pages, 5158 KB  
Article
Centrifugal Pumping Force in Oil Injection-Based TMS to Cool High-Power Aircraft Electric Motors
by Giuseppe Di Lorenzo, Diego Giuseppe Romano, Antonio Carozza and Antonio Pagano
Energies 2025, 18(13), 3390; https://doi.org/10.3390/en18133390 - 27 Jun 2025
Cited by 1 | Viewed by 712
Abstract
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas [...] Read more.
One of the challenges of our age is climate change and the ways in which it affects the Earth’s global ecosystem. To face the problems linked to such an issue, the international community has defined actions aimed at the reduction in greenhouse gas emissions in several sectors, including the aviation industry, which has been requested to mitigate its environmental impact. Conventional aircraft propulsion systems depend on fossil fuels, significantly contributing to global carbon emissions. For this reason, innovative propulsion technologies are needed to reduce aviation’s impact on the environment. Electric propulsion has emerged as a promising solution among the several innovative technologies introduced to face climate change challenges. It offers, in fact, a pathway to more sustainable air travel by eliminating direct greenhouse gas emissions, enhancing energy efficiency. Unfortunately, integrating electric motors into aircraft is currently a big challenge, primarily due to thermal management-related issues. Efficient heat dissipation is crucial to maintain optimal performance, reliability, and safety of the electric motor, but aeronautic applications are highly demanding in terms of power, so ad hoc Thermal Management Systems (TMSs) must be developed. The present paper explores the design and optimization of a TMS tailored for a megawatt electric motor in aviation, suitable for regional aircraft (~80 pax). The proposed system relies on coolant oil injected through a hollow shaft and radial tubes to directly reach hot spots and ensure effective heat distribution inside the permanent magnet cavity. The goal of this paper is to demonstrate how advanced TMS strategies can enhance operational efficiency and extend the lifespan of electric motors for aeronautic applications. The effectiveness of the radial tube configuration is assessed by means of advanced Computational Fluid Dynamics (CFD) analysis with the aim of verifying that the proposed design is able to maintain system thermal stability and prevent its overheating. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
Show Figures

Figure 1

Back to TopTop