Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,289)

Search Parameters:
Keywords = air-quality prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3033 KiB  
Article
Mathematical Modelling of Upper Room UVGI in UFAD Systems for Enhanced Energy Efficiency and Airborne Disease Control: Applications for COVID-19 and Tuberculosis
by Mohamad Kanaan, Eddie Gazo-Hanna and Semaan Amine
Math. Comput. Appl. 2025, 30(4), 85; https://doi.org/10.3390/mca30040085 (registering DOI) - 5 Aug 2025
Abstract
This study is the first to investigate the performance of ultraviolet germicidal irradiation (UVGI) in underfloor air distribution (UFAD) systems. A simplified mathematical model is developed to predict airborne pathogen transport and inactivation by upper room UVGI in UFAD spaces. The proposed model [...] Read more.
This study is the first to investigate the performance of ultraviolet germicidal irradiation (UVGI) in underfloor air distribution (UFAD) systems. A simplified mathematical model is developed to predict airborne pathogen transport and inactivation by upper room UVGI in UFAD spaces. The proposed model is substantiated for the SARS-CoV-2 virus as a simulated pathogen through a comprehensive computational fluid dynamics methodology validated against published experimental data of upper room UVGI and UFAD flows. Simulations show an 11% decrease in viral concentration within the upper irradiated zone when a 15 W louvered germicidal lamp is utilized. Finally, a case study on Mycobacterium tuberculosis (M. tuberculosis) bacteria is carried out using the validated simplified model to optimize the use of return air and UVGI implementation, ensuring acceptable indoor air quality and enhanced energy efficiency. Results reveal that the UFAD-UVGI system may consume up to 13.6% less energy while keeping the occupants at acceptable levels of M. tuberculosis concentration and UV irradiance when operated with 26% return air and a UVGI output of 72 W. Full article
Show Figures

Figure 1

22 pages, 5033 KiB  
Article
Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
by Shuo Zhang, Didong Chen and Xiangyu Li
Sustainability 2025, 17(15), 7093; https://doi.org/10.3390/su17157093 - 5 Aug 2025
Abstract
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February [...] Read more.
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February 2022. Of the approximately 40–50 nurseries contacted, only three agreed to participate. Results show that HEPA purifiers substantially reduced indoor particulate matter (PM2.5), with the greatest effect observed during the heating season when windows remained closed for longer periods. Seasonal and behavioral analysis indicated more frequent and longer window opening in the non-heating season (windows were open 41.5% of the time on average, compared to 34.2% during the heating season) driven by both ventilation needs and heightened COVID-19 concerns. Predictive modeling identified indoor temperature as the main driver of window opening, while carbon dioxide (CO2) had a limited effect. In addition, window opening often increased indoor PM2.5 under prevailing outdoor air quality conditions, with mean concentrations rising from 2.73 µg/m3 (closed) to 3.45 µg/m3 (open), thus reducing the apparent benefit of air purifiers. These findings underscore the complex interplay between mechanical purification and occupant-controlled ventilation, highlighting the need to adapt indoor air quality (IAQ) strategies to both seasonal and behavioral factors in educational settings. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

24 pages, 8993 KiB  
Article
A Lightweight Spatiotemporal Graph Framework Leveraging Clustered Monitoring Networks and Copula-Based Pollutant Dependency for PM2.5 Forecasting
by Mohammad Taghi Abbasi, Ali Asghar Alesheikh and Fatemeh Rezaie
Land 2025, 14(8), 1589; https://doi.org/10.3390/land14081589 - 4 Aug 2025
Abstract
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. [...] Read more.
Air pollution threatens human health and ecosystems, making timely forecasting essential. The spatiotemporal dynamics of pollutants, shaped by various factors, challenge traditional methods. Therefore, spatiotemporal graph-based deep learning has gained attention for its ability to capture spatial and temporal dependencies within monitoring networks. However, many existing models, despite their high predictive accuracy, face computational complexity and scalability challenges. This study introduces clustered and lightweight spatio-temporal graph convolutional network with gated recurrent unit (ClusLite-STGCN-GRU), a hybrid model that integrates spatial clustering based on pollutant time series for graph construction, Copula-based dependency analysis for selecting relevant pollutants to predict PM2.5, and graph convolution combined with gated recurrent units to extract spatiotemporal features. Unlike conventional approaches that require learning or dynamically updating adjacency matrices, ClusLite-STGCN-GRU employs a fixed, simple cluster-based structure. Experimental results on Tehran air quality data demonstrate that the proposed model not only achieves competitive predictive performance compared to more complex models, but also significantly reduces computational cost—by up to 66% in training time, 83% in memory usage, and 84% in number of floating-point operations—making it suitable for real-time applications and offering a practical balance between accuracy, interpretability, and efficiency. Full article
(This article belongs to the Section Land Innovations – Data and Machine Learning)
Show Figures

Figure 1

11 pages, 3192 KiB  
Data Descriptor
Carbon Monoxide (CO) and Ozone (O3) Concentrations in an Industrial Area: A Dataset at the Neighborhood Level
by Jailene Marlen Jaramillo-Perez, Bárbara A. Macías-Hernández, Edgar Tello-Leal and René Ventura-Houle
Data 2025, 10(8), 125; https://doi.org/10.3390/data10080125 - 1 Aug 2025
Viewed by 151
Abstract
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research [...] Read more.
The growth of urban and industrial areas is accompanied by an increase in vehicle traffic, resulting in rising concentrations of various air pollutants. This is a global issue that causes environmental damage and risks to human health. The dataset presented in this research contains records with measurements of the air pollutants ozone (O3) and carbon monoxide (CO), as well as meteorological parameters such as temperature (T), relative humidity (RH), and barometric pressure (BP). This dataset was collected using a set of low-cost sensors over a four-month study period (March to June) in 2024. The monitoring of air pollutants and meteorological parameters was conducted in a city with high industrial activity, heavy traffic, and close proximity to a petrochemical refinery plant. The data were subjected to a series of statistical analyses for visualization using plots that allow for the identification of their behavior. Finally, the dataset can be utilized for air quality studies, public health research, and the development of prediction models based on mathematical approaches or artificial intelligence algorithms. Full article
Show Figures

Figure 1

25 pages, 4184 KiB  
Article
Effects of Partial Freezing and Superchilling Storage on the Quality of Beef: A Kinetic Modelling Approach
by Anjelina William Mwakosya, Graciela Alvarez and Fatou Toutie Ndoye
Foods 2025, 14(15), 2687; https://doi.org/10.3390/foods14152687 - 30 Jul 2025
Viewed by 182
Abstract
The current study explores the changes in beef quality following partial freezing and during superchilled storage, alongside chilled storage comparisons. Kinetic models were developed to predict changes in colour difference (∆E), thiobarbituric acid−reactive substances (TBARS), total volatile basic nitrogen (TVB−N), drip loss and [...] Read more.
The current study explores the changes in beef quality following partial freezing and during superchilled storage, alongside chilled storage comparisons. Kinetic models were developed to predict changes in colour difference (∆E), thiobarbituric acid−reactive substances (TBARS), total volatile basic nitrogen (TVB−N), drip loss and firmness. Beef samples were partially frozen in an air blast freezer at −30 °C for 9 min prior to storage at −5 °C, −4 °C, −2.8 °C, −1.8 °C. Chilled beef samples were directly stored at 2 °C and 6 °C without partial freezing. All samples were stored for 21 days. The lightness (L*), redness (a*), yellowness (b*) and colour difference (∆E) were significantly lower in superchilled storage samples compared to chilled storage samples. The pH of beef samples increased gradually over time (p < 0.05). TBARS, TVB−N and drip loss increased while firmness decreased with the increase in storage time in both storage conditions (p < 0.05). Overall, beef quality was affected by both storage duration and temperature. Firmness followed the first order kinetic model; drip loss, TVB−N, TBARS and colour difference (∆E) fitted the zero−order kinetic model. Temperature dependence was adequately modelled using Arrhenius−type equation with the activation energy values of 110.111, 52.870, 68.553, 119.480, 47.301 kJ/mol for drip loss, firmness, TBARS, TVB−N and colour difference (∆E), respectively. The models demonstrated strong predictive performance, with RMSE and MAPE values within ±10%. The developed kinetic models successfully predicted quality changes within the −5 °C to 6 °C temperature range. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

22 pages, 5830 KiB  
Article
Design of and Experimental Study on Drying Equipment for Fritillaria ussuriensis
by Liguo Wu, Jiamei Qi, Liping Sun, Sanping Li, Qiyu Wang and Haogang Feng
Appl. Sci. 2025, 15(15), 8427; https://doi.org/10.3390/app15158427 - 29 Jul 2025
Viewed by 124
Abstract
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and [...] Read more.
To address the problems of the time consumption, labor intensiveness, easy contamination, uneven drying, and impact on the medicinal efficacy of Fritillaria ussuriensis in the traditional drying method, the hot-air-drying characteristics of Fritillaria ussuriensis were studied. The changes in the moisture ratio and drying rate of Fritillaria ussuriensis under different hot-air-drying conditions (45 °C, 55 °C, 65 °C) were compared and analyzed. Six common mathematical models were used to fit the moisture change law, and it was found that the cubic model was the most suitable for describing the drying characteristics of Fritillaria ussuriensis. The R2 values after fitting under the three temperature conditions were all greater than 0.99, and the maximum was achieved at 45 °C. Based on the principle of hot-air drying, a drying device for Fritillaria ussuriensis with a processing capacity of 15 kg/h was designed. It adopted a thermal circulation structure of inner and outer drying ovens, with the heating chamber separated from the drying chamber. The structural parameters were optimized based on Fluent simulation analysis. After optimization, the temperature of each layer was stable at 338 K ± 2 K, and the pressure field and velocity field were evenly distributed. The drying process parameters of Fritillaria ussuriensis were optimized based on response surface analysis, and the optimal process parameters were obtained as follows: inlet temperature: 338 K (65 °C), inlet air velocity: 3 m/s, and drying time: 10 h. The simulation results showed that the predicted moisture content of Fritillaria ussuriensis under the optimal working conditions was 12.58%, the temperature difference of Fritillaria ussuriensis at different positions was within 0.8 °C, and the humidity deviation was about 1%. A prototype of the drying device was built, and the drying test of Fritillaria ussuriensis was carried out. It was found that the temperature and moisture content of Fritillaria ussuriensis were consistent with the simulation results and met the design requirements, verifying the rationality of the device structure and the reliability of the simulation model. This design can significantly improve the distribution of the internal flow field and temperature field of the drying device, improve the drying quality and production efficiency of Fritillaria ussuriensis, and provide a technical reference for the Chinese herbal medicine-drying industry. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

28 pages, 10432 KiB  
Review
Rapid CFD Prediction Based on Machine Learning Surrogate Model in Built Environment: A Review
by Rui Mao, Yuer Lan, Linfeng Liang, Tao Yu, Minhao Mu, Wenjun Leng and Zhengwei Long
Fluids 2025, 10(8), 193; https://doi.org/10.3390/fluids10080193 - 28 Jul 2025
Viewed by 577
Abstract
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. [...] Read more.
Computational Fluid Dynamics (CFD) is regarded as an important tool for analyzing the flow field, thermal environment, and air quality around the built environment. However, for built environment applications, the high computational cost of CFD hinders large-scale scenario simulation and efficient design optimization. In the field of built environment research, surrogate modeling has become a key technology to connect the needs of high-fidelity CFD simulation and rapid prediction, whereas the low-dimensional nature of traditional surrogate models is unable to match the physical complexity and prediction needs of built flow fields. Therefore, combining machine learning (ML) with CFD to predict flow fields in built environments offers a promising way to increase simulation speed while maintaining reasonable accuracy. This review briefly reviews traditional surrogate models and focuses on ML-based surrogate models, especially the specific application of neural network architectures in rapidly predicting flow fields in the built environment. The review indicates that ML accelerates the three core aspects of CFD, namely mesh preprocessing, numerical solving, and post-processing visualization, in order to achieve efficient coupled CFD simulation. Although ML surrogate models still face challenges such as data availability, multi-physics field coupling, and generalization capability, the emergence of physical information-driven data enhancement techniques effectively alleviates the above problems. Meanwhile, the integration of traditional methods with ML can further enhance the comprehensive performance of surrogate models. Notably, the online ministry of trained ML models using transfer learning strategies deserves further research. These advances will provide an important basis for advancing efficient and accurate operational solutions in sustainable building design and operation. Full article
(This article belongs to the Special Issue Feature Reviews for Fluids 2025–2026)
Show Figures

Figure 1

11 pages, 1161 KiB  
Proceeding Paper
Spatio-Temporal PM2.5 Forecasting Using Machine Learning and Low-Cost Sensors: An Urban Perspective
by Mateusz Zareba, Szymon Cogiel and Tomasz Danek
Eng. Proc. 2025, 101(1), 6; https://doi.org/10.3390/engproc2025101006 - 25 Jul 2025
Viewed by 209
Abstract
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and [...] Read more.
This study analyzes air pollution time-series big data to assess stationarity, seasonal patterns, and the performance of machine learning models in forecasting PM2.5 concentrations. Fifty-two low-cost sensors (LCS) were deployed across Krakow city and its surroundings (Poland), collecting hourly air quality data and generating nearly 20,000 observations per month. The network captured both spatial and temporal variability. The Kwiatkowski–Phillips–Schmidt–Shin (KPSS) test confirmed trend-based non-stationarity, which was addressed through differencing, revealing distinct daily and 12 h cycles linked to traffic and temperature variations. Additive seasonal decomposition exhibited time-inconsistent residuals, leading to the adoption of multiplicative decomposition, which better captured pollution outliers associated with agricultural burning. Machine learning models—Ridge Regression, XGBoost, and LSTM (Long Short-Term Memory) neural networks—were evaluated under high spatial and temporal variability (winter) and low variability (summer) conditions. Ridge Regression showed the best performance, achieving the highest R2 (0.97 in winter, 0.93 in summer) and the lowest mean squared errors. XGBoost showed strong predictive capabilities but tended to overestimate moderate pollution events, while LSTM systematically underestimated PM2.5 levels in December. The residual analysis confirmed that Ridge Regression provided the most stable predictions, capturing extreme pollution episodes effectively, whereas XGBoost exhibited larger outliers. The study proved the potential of low-cost sensor networks and machine learning in urban air quality forecasting focused on rare smog episodes (RSEs). Full article
Show Figures

Figure 1

32 pages, 12493 KiB  
Article
On the Prediction and Forecasting of PMs and Air Pollution: An Application of Deep Hybrid AI-Based Models
by Youness El Mghouchi and Mihaela Tinca Udristioiu
Appl. Sci. 2025, 15(15), 8254; https://doi.org/10.3390/app15158254 - 24 Jul 2025
Viewed by 267
Abstract
Air pollution, particularly fine (PM2.5) and coarse (PM10) particulate matter, poses significant risks to public health and environmental sustainability. This study aims to develop robust predictive and forecasting models for hourly PM concentrations in Craiova, Romania, using advanced hybrid [...] Read more.
Air pollution, particularly fine (PM2.5) and coarse (PM10) particulate matter, poses significant risks to public health and environmental sustainability. This study aims to develop robust predictive and forecasting models for hourly PM concentrations in Craiova, Romania, using advanced hybrid Artificial Intelligence (AI) approaches. A five-year dataset (2020–2024), comprising 20 meteorological and pollution-related variables recorded by four air quality monitoring stations, was analyzed. The methodology consists of three main phases: (i) data preprocessing, including anomaly detection and missing value handling; (ii) exploratory analysis to identify trends and correlations between PM concentrations (PMs) and predictor variables; and (iii) model development using 23 machine learning and deep learning algorithms, enhanced by 50 feature selection techniques. A deep Nonlinear AutoRegressive Moving Average with eXogenous inputs (Deep-NARMAX) model was employed for multi-step-ahead forecasting. The best-performing models achieved R2 values of 0.85 for PM2.5 and 0.89 for PM10, with low RMSE and MAPE scores, demonstrating high accuracy and generalizability. The GEO-based feature selection method effectively identified the most relevant predictors, while the Deep-NARMAX model captured temporal dynamics for accurate forecasting. These results highlight the potential of hybrid AI models for air quality management and provide a scalable framework for urban pollution monitoring, predicting, and forecasting. Full article
(This article belongs to the Special Issue Advances in Air Pollution Detection and Air Quality Research)
Show Figures

Figure 1

24 pages, 6601 KiB  
Article
Micromechanical Finite Element Model Investigation of Cracking Behavior and Construction-Related Deficiencies in Asphalt Mixtures
by Liu Yang, Suwei Hou and Haibo Yu
Materials 2025, 18(15), 3426; https://doi.org/10.3390/ma18153426 - 22 Jul 2025
Viewed by 206
Abstract
This study investigated the fracture behavior of asphalt mixtures under indirect tensile loading by comparing the performance of homogenized and micromechanical finite element (FEMs) models based on the cohesive zone model (CZM). Five asphalt mixture types were tested experimentally, and both models were [...] Read more.
This study investigated the fracture behavior of asphalt mixtures under indirect tensile loading by comparing the performance of homogenized and micromechanical finite element (FEMs) models based on the cohesive zone model (CZM). Five asphalt mixture types were tested experimentally, and both models were calibrated and validated using load–displacement curves from indirect tensile tests (IDTs). The micromechanical model, incorporating random aggregate generation and three-phase material definition, exhibited significantly higher predictive accuracy (R2 = 0.86–0.98) than the homogenized model (R2 = 0.66–0.77). The validated micromechanical model was further applied to quantify the impact of construction-related deficiencies—namely, increased air voids, non-continuous gradation, and aggregate segregation. The simulation results showed that higher void content (from 4% to 10%) reduced peak load by up to 35% and increased localized stress concentrations by up to 40%. Discontinuous gradation and uneven aggregate distribution also led to premature crack initiation and more complex fracture paths. These findings demonstrated the value of micromechanical modeling for evaluating sensitivity to mix design and compaction quality, providing a foundation for performance-based asphalt mixture optimization and durability improvement. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

22 pages, 4190 KiB  
Article
Calibration of Building Performance Simulations for Zero Carbon Ready Homes: Two Open Access Case Studies Under Controlled Conditions
by Christopher Tsang, Richard Fitton, Xinyi Zhang, Grant Henshaw, Heidi Paola Díaz-Hernández, David Farmer, David Allinson, Anestis Sitmalidis, Mohamed Dgali, Ljubomir Jankovic and William Swan
Sustainability 2025, 17(15), 6673; https://doi.org/10.3390/su17156673 - 22 Jul 2025
Viewed by 372
Abstract
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. [...] Read more.
This study provides a detailed dataset from two modern homes constructed inside an environmentally controlled chamber. These data are used to carefully calibrate a dynamic thermal simulation model of these homes. The calibrated models show good agreement with measurements taken under controlled conditions. The two case study homes, “The Future Home” and “eHome2”, were constructed within the University of Salford’s Energy House 2.0, and high-quality data were collected over eight days. The calibration process involved updating U-values, air permeability rates, and modelling refinements, such as roof ventilation, ground temperatures, and sub-floor void exchange rates, set as boundary conditions. Results demonstrated a high level of accuracy, with performance gaps in whole-house heat transfer coefficient reduced to 0.5% for “The Future Home” and 0.6% for “eHome2”, falling within aggregate heat loss test uncertainty ranges by a significant amount. The study highlights the improved accuracy of calibrated dynamic thermal simulation models, compared to results from the steady-state Standard Assessment Procedure model. By providing openly accessible calibrated models and a clearly defined methodology, this research presents valuable resources for future building performance modelling studies. The findings support the UK’s transition to dynamic modelling approaches proposed in the recently introduced Home Energy Model approach, contributing to improved prediction of energy efficiency and aligning with goals for zero carbon ready and sustainable housing development. Full article
Show Figures

Figure 1

39 pages, 5325 KiB  
Review
Mechanical Ventilation Strategies in Buildings: A Comprehensive Review of Climate Management, Indoor Air Quality, and Energy Efficiency
by Farhan Lafta Rashid, Mudhar A. Al-Obaidi, Najah M. L. Al Maimuri, Arman Ameen, Ephraim Bonah Agyekum, Atef Chibani and Mohamed Kezzar
Buildings 2025, 15(14), 2579; https://doi.org/10.3390/buildings15142579 - 21 Jul 2025
Viewed by 647
Abstract
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance [...] Read more.
As the demand for energy-efficient homes continues to rise, the importance of advanced mechanical ventilation systems in maintaining indoor air quality (IAQ) has become increasingly evident. However, challenges related to energy balance, IAQ, and occupant thermal comfort persist. This review examines the performance of mechanical ventilation systems in regulating indoor climate, improving air quality, and minimising energy consumption. The findings indicate that demand-controlled ventilation (DCV) can enhance energy efficiency by up to 88% while maintaining CO2 concentrations below 1000 ppm during 76% of the occupancy period. Heat recovery systems achieve efficiencies of nearly 90%, leading to a reduction in heating energy consumption by approximately 19%. Studies also show that employing mechanical rather than natural ventilation in schools lowers CO2 levels by 20–30%. Nevertheless, occupant misuse or poorly designed systems can result in CO2 concentrations exceeding 1600 ppm in residential environments. Hybrid ventilation systems have demonstrated improved thermal comfort, with predicted mean vote (PMV) values ranging from –0.41 to 0.37 when radiant heating is utilized. Despite ongoing technological advancements, issues such as system durability, user acceptance, and adaptability across climate zones remain. Smart, personalized ventilation strategies supported by modern control algorithms and continuous monitoring are essential for the development of resilient and health-promoting buildings. Future research should prioritize the integration of renewable energy sources and adaptive ventilation controls to further optimise system performance. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

31 pages, 4435 KiB  
Article
A Low-Cost IoT Sensor and Preliminary Machine-Learning Feasibility Study for Monitoring In-Cabin Air Quality: A Pilot Case from Almaty
by Nurdaulet Tasmurzayev, Bibars Amangeldy, Gaukhar Smagulova, Zhanel Baigarayeva and Aigerim Imash
Sensors 2025, 25(14), 4521; https://doi.org/10.3390/s25144521 - 21 Jul 2025
Viewed by 488
Abstract
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular [...] Read more.
The air quality within urban public transport is a critical determinant of passenger health. In the crowded and poorly ventilated cabins of Almaty’s metro, buses, and trolleybuses, concentrations of CO2 and PM2.5 often accumulate, elevating the risk of respiratory and cardiovascular diseases. This study investigates the air quality along three of the city’s busiest transport corridors, analyzing how the concentrations of CO2, PM2.5, and PM10, as well as the temperature and relative humidity, fluctuate with the passenger density and time of day. Continuous measurements were collected using the Tynys mobile IoT device, which was bench-calibrated against a commercial reference sensor. Several machine learning models (logistic regression, decision tree, XGBoost, and random forest) were trained on synchronized environmental and occupancy data, with the XGBoost model achieving the highest predictive accuracy at 91.25%. Our analysis confirms that passenger occupancy is the primary driver of in-cabin pollution and that these machine learning models effectively capture the nonlinear relationships among environmental variables. Since the surveyed routes serve Almaty’s most densely populated districts, improving the ventilation on these lines is of immediate importance to public health. Furthermore, the high-temporal-resolution data revealed short-term pollution spikes that correspond with peak ridership, advancing the current understanding of exposure risks in transit. These findings highlight the urgent need to combine real-time monitoring with ventilation upgrades. They also demonstrate the practical value of using low-cost IoT technologies and data-driven analytics to safeguard public health in urban mobility systems. Full article
(This article belongs to the Special Issue IoT-Based Sensing Systems for Urban Air Quality Forecasting)
Show Figures

Figure 1

26 pages, 5914 KiB  
Article
BiDGCNLLM: A Graph–Language Model for Drone State Forecasting and Separation in Urban Air Mobility Using Digital Twin-Augmented Remote ID Data
by Zhang Wen, Junjie Zhao, An Zhang, Wenhao Bi, Boyu Kuang, Yu Su and Ruixin Wang
Drones 2025, 9(7), 508; https://doi.org/10.3390/drones9070508 - 19 Jul 2025
Viewed by 398
Abstract
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to [...] Read more.
Accurate prediction of drone motion within structured urban air corridors is essential for ensuring safe and efficient operations in Urban Air Mobility (UAM) systems. Although real-world Remote Identification (Remote ID) regulations require drones to broadcast critical flight information such as velocity, access to large-scale, high-quality broadcast data remains limited. To address this, this study leverages a Digital Twin (DT) framework to augment Remote ID spatio-temporal broadcasts, emulating the sensing environment of dense urban airspace. Using Remote ID data, we propose BiDGCNLLM, a hybrid prediction framework that integrates a Bidirectional Graph Convolutional Network (BiGCN) with Dynamic Edge Weighting and a reprogrammed Large Language Model (LLM, Qwen2.5–0.5B) to capture spatial dependencies and temporal patterns in drone speed trajectories. The model forecasts near-future speed variations in surrounding drones, supporting proactive conflict avoidance in constrained air corridors. Results from the AirSUMO co-simulation platform and a DT replica of the Cranfield University campus show that BiDGCNLLM outperforms state-of-the-art time series models in short-term velocity prediction. Compared to Transformer-LSTM, BiDGCNLLM marginally improves the R2 by 11.59%. This study introduces the integration of LLMs into dynamic graph-based drone prediction. It shows the potential of Remote ID broadcasts to enable scalable, real-time airspace safety solutions in UAM. Full article
Show Figures

Figure 1

18 pages, 6313 KiB  
Article
Unveiling PM2.5 Transport Pathways: A Trajectory-Channel Model Framework for Spatiotemporally Quantitative Source Apportionment
by Yong Pan, Jie Zheng, Fangxin Fang, Fanghui Liang, Mengrong Yang, Lei Tong and Hang Xiao
Atmosphere 2025, 16(7), 883; https://doi.org/10.3390/atmos16070883 - 18 Jul 2025
Viewed by 241
Abstract
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory [...] Read more.
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory analysis, TCTM enables the precise identification of source regions, the delineation of key transport corridors, and a quantitative assessment of regional contributions to receptor sites. Focusing on four Yangtze River Delta cities (Hangzhou, Shanghai, Nanjing, Hefei) during a January 2020 pollution event, the results demonstrate that TCTM’s Weighted Concentration Source (WCS) and Source Pollution Characteristic Index (SPCI) outperform traditional PSCF and CWT methods in source-attribution accuracy and resolution. Unlike receptor-based statistical approaches, TCTM reconstructs pollutant transport processes, quantifies spatial decay, and assigns contributions via physically interpretable metrics. This innovative framework offers actionable insights for targeted air-quality management strategies, highlighting its potential as a robust tool for pollution mitigation planning. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

Back to TopTop