Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (255)

Search Parameters:
Keywords = air-purifiers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5033 KiB  
Article
Seasonal Variation of Air Purifier Effectiveness and Natural Ventilation Behavior: Implications for Sustainable Indoor Air Quality in London Nurseries
by Shuo Zhang, Didong Chen and Xiangyu Li
Sustainability 2025, 17(15), 7093; https://doi.org/10.3390/su17157093 - 5 Aug 2025
Abstract
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February [...] Read more.
This study investigates the seasonal effectiveness of high-efficiency particulate air (HEPA) purifiers and window-opening behaviors in three London nurseries, using continuous indoor and outdoor PM2.5 monitoring, window state and air purifier use, and occupant questionnaire data collected from March 2021 to February 2022. Of the approximately 40–50 nurseries contacted, only three agreed to participate. Results show that HEPA purifiers substantially reduced indoor particulate matter (PM2.5), with the greatest effect observed during the heating season when windows remained closed for longer periods. Seasonal and behavioral analysis indicated more frequent and longer window opening in the non-heating season (windows were open 41.5% of the time on average, compared to 34.2% during the heating season) driven by both ventilation needs and heightened COVID-19 concerns. Predictive modeling identified indoor temperature as the main driver of window opening, while carbon dioxide (CO2) had a limited effect. In addition, window opening often increased indoor PM2.5 under prevailing outdoor air quality conditions, with mean concentrations rising from 2.73 µg/m3 (closed) to 3.45 µg/m3 (open), thus reducing the apparent benefit of air purifiers. These findings underscore the complex interplay between mechanical purification and occupant-controlled ventilation, highlighting the need to adapt indoor air quality (IAQ) strategies to both seasonal and behavioral factors in educational settings. Full article
(This article belongs to the Special Issue Sustainability and Indoor Environmental Quality)
Show Figures

36 pages, 4816 KiB  
Article
Inactivation of Continuously Released Airborne Virus by Upper-Room UVC LED Irradiation Under Realistic Testing Conditions
by Andreas Schmohl, Anna Nagele-Renzl and Michael Buschhaus
Environments 2025, 12(7), 233; https://doi.org/10.3390/environments12070233 - 9 Jul 2025
Viewed by 652
Abstract
Ultraviolet (UV) radiation can be used to inactivate microorganisms, with upper-room UV germicidal irradiation (UR-UVGI) representing a promising approach. This study investigated the inactivation of the airborne surrogate virus Phi6 by a UR-UVGI system based on light-emitting diodes (LEDs) in a realistic test [...] Read more.
Ultraviolet (UV) radiation can be used to inactivate microorganisms, with upper-room UV germicidal irradiation (UR-UVGI) representing a promising approach. This study investigated the inactivation of the airborne surrogate virus Phi6 by a UR-UVGI system based on light-emitting diodes (LEDs) in a realistic test setup. Two test scenarios were used, one with continuous Phi6 release, simulating a source located in the room and leading to a dynamic equilibrium, and the second simulating a situation in which the source has left the room and an exponential decay is evaluated. The “Incremental Evaluation Model” was adapted and used to evaluate the dynamic equilibrium measurement. At a position in the breathing direction 5 m away from the Phi6 source, the loss coefficient (air exchange rate) was 25 h−1 in the first scenario and 30 h−1 in the second. These results show that UR-UVGI systems can effectively inactivate microorganisms. However, at 1 m distance from the Phi6 source perpendicular to the breathing direction, only minimal inactivation was observed due to short-circuit airflow. At this position, the loss coefficient was <2 h−1 in the first scenario and 17 h−1 in the second scenario, indicating that short-circuit airflows can only be detected by dynamic equilibrium measurements. Full article
Show Figures

Figure 1

12 pages, 234 KiB  
Article
Risk Perception and Self-Monitoring of Particulate Matter 2.5 (PM 2.5) Associated with Anxiety Among General Population in Urban Thailand
by Titaporn Luangwilai, Jadsada Kunno, Basmon Manomaipiboon, Witchakorn Ruamtawee and Parichat Ong-Artborirak
Urban Sci. 2025, 9(7), 256; https://doi.org/10.3390/urbansci9070256 - 3 Jul 2025
Viewed by 412
Abstract
Exposure to fine particulate matter (PM2.5) has become an increasing public health concern, particularly in urban areas facing severe air pollution. In response, individuals are increasingly turning to real-time tracking systems and self-monitoring tools. This study aimed to examine the association between PM2.5 [...] Read more.
Exposure to fine particulate matter (PM2.5) has become an increasing public health concern, particularly in urban areas facing severe air pollution. In response, individuals are increasingly turning to real-time tracking systems and self-monitoring tools. This study aimed to examine the association between PM2.5 risk perception, self-monitoring behaviors, and anxiety levels in the general population of Thailand. A cross-sectional survey was conducted during the dry season using an online questionnaire, which included the 7-item Generalized Anxiety Disorder (GAD-7) scale. A total of 921 participants residing in Bangkok and Chiang Mai were included. Binary logistic regression analysis, adjusted for sex, age, marital status, monthly income, and years of residence, revealed a significant association between anxiety and perceived health risks of PM2.5 exposure (OR = 1.09; 95% CI: 1.06–1.13). Daily self-monitoring of air quality over the past two weeks was also significantly linked to higher anxiety levels compared to non-monitoring individuals: OR = 1.92 (95% CI: 1.11–3.33) for websites, OR = 1.65 (95% CI: 1.01–2.72) for mobile apps, OR = 1.72 (95% CI: 1.12–2.64) for air purifiers, and OR = 3.34 (95% CI: 1.77–6.31) for air quality detectors. Monitoring 4–6 days per week using apps and air detectors was similarly associated with increased anxiety (OR = 1.64 and 2.30, respectively). Heightened perception of PM2.5 health risks and frequent self-monitoring behaviors are associated with increased anxiety among urban residents in Thailand. Public health interventions should consider implementing targeted alert systems during high-pollution periods and prioritize strategies to reduce PM2.5 emissions to alleviate public anxiety. Full article
16 pages, 2460 KiB  
Article
Experimental Study on the Influence of Magnesium on the Separation of Carbon Dioxide from Gas Mixtures with Nitrogen by Combustion Processes
by Ioan Barabulica, Marius Sebastian Secula, Eugenia Teodora Iacob-Tudose and Ioan Mamaliga
Processes 2025, 13(7), 2054; https://doi.org/10.3390/pr13072054 - 28 Jun 2025
Viewed by 301
Abstract
The goal of this paper consists in the experimental evaluation of the possibility to separate industrial gases using magnesium combustion in carbon dioxide–nitrogen mixtures of various concentrations. The choice was made primarily due to the chemical inertness of these two gases. The study [...] Read more.
The goal of this paper consists in the experimental evaluation of the possibility to separate industrial gases using magnesium combustion in carbon dioxide–nitrogen mixtures of various concentrations. The choice was made primarily due to the chemical inertness of these two gases. The study investigates how the Mg combustion changes the concentration of the initial gas mixture and the possibility to apply this process to separate this gas mixture. On the other hand, due to its greenhouse effect, CO2 separation is a process of high interest in itself. Mg reacts exothermically with CO2, so a potential use for this purpose will also benefit from a significant amount of recovered thermal energy. N2 has a particular importance due to its potential to be purified using Mg combustion, and this application might be an economical alternative to air distillation, which is widely used for N2 production at industrial scale. In practice, the CO2-N2 mixtures are commonly used as flue gases resulting from various combustion systems. Mg combustion residue is analyzed by means of energy-dispersive X-ray spectroscopy. It is found that Mg can substantially reduce the concentration of CO2, even more than the stoichiometric reaction for the formation of MgO would suggest. The percentage decrease in CO2 concentration reaches values over 10 vol.%. A secondary yet notable effect is the heat generated by the Mg and CO2 reaction, which is currently being studied as an energy source alternative. Full article
Show Figures

Figure 1

24 pages, 1164 KiB  
Article
A Community-Based Assessment of Attitudes, Health Impacts and Protective Actions During the 24-Day Hangar Fire in Tustin, California
by Shahir Masri, Alana M. W. LeBrón, Annie Zhang, Lisa B. Jones, Oladele A. Ogunseitan and Jun Wu
Int. J. Environ. Res. Public Health 2025, 22(7), 1003; https://doi.org/10.3390/ijerph22071003 - 26 Jun 2025
Viewed by 1052
Abstract
Fire events can impact physical and mental health through smoke exposure, evacuation, property loss, and/or other environmental stressors. In this study, we developed community-driven, cross-sectional online surveys to assess public attitudes, health impacts, and protective actions of residents affected by the Tustin hangar [...] Read more.
Fire events can impact physical and mental health through smoke exposure, evacuation, property loss, and/or other environmental stressors. In this study, we developed community-driven, cross-sectional online surveys to assess public attitudes, health impacts, and protective actions of residents affected by the Tustin hangar fire that burned for 24 days in southern California. Results showed the most frequently reported fire-related exposure concerns (93%) to be asbestos and general air pollution and the most commonly reported mental health impacts to be anxiety (41%), physical fatigue (37%), headaches (33%), and stress (26%). Nose/sinus irritation was the most commonly reported (26.0%) respiratory symptom, while skin- and eye-related conditions were reported by 63.0% and 72.2% of the survey population, respectively. The most commonly reported health-protective actions taken by residents included staying indoors and/or closing doors and windows (67%), followed by wearing face masks (37%) and the indoor use of air purifiers (35%). A higher proportion of low-income residents had to spend money on remediation or other health-protective actions compared to high-income residents. Participants overwhelmingly reported disapproval of their city’s and/or government’s response to the fire disaster. Findings from this study underscore the potential impacts of major pollution events on neighboring communities and offer critical insights to better position government agencies to respond during future disasters while effectively communicating with the public and addressing community needs. Full article
(This article belongs to the Section Environmental Health)
Show Figures

Figure 1

23 pages, 3474 KiB  
Article
Performance of Ventilation, Filtration, and Upper-Room UVGI in Mitigating PM2.5 and SARS-CoV-2 Levels
by Atefeh Abbaspour, Hamidreza Seraj, Ali Bahadori-Jahromi and Alan Janbey
Clean Technol. 2025, 7(3), 53; https://doi.org/10.3390/cleantechnol7030053 - 23 Jun 2025
Viewed by 619
Abstract
This study aimed to improve indoor air quality (IAQ) in an existing college building in London by addressing two key pollutants: PM2.5 particles (from indoor and outdoor sources) and SARS-CoV-2 as a biological contaminant. Various mitigation strategies were assessed, including hybrid ventilation [...] Read more.
This study aimed to improve indoor air quality (IAQ) in an existing college building in London by addressing two key pollutants: PM2.5 particles (from indoor and outdoor sources) and SARS-CoV-2 as a biological contaminant. Various mitigation strategies were assessed, including hybrid ventilation that combined CIBSE-recommended rates with partial window and door opening. The effectiveness of HEPA-based air purifiers (APs) and upper-room ultraviolet germicidal irradiation (UVGI) systems with different intensities was also evaluated for reducing viral transmission and the basic reproduction number (R0). To manage PM2.5 in the kitchen, HEPA and in-duct MERV13 filters were integrated into the ventilation system. Results showed that hybrid ventilation outperformed mechanical systems by achieving greater reductions in infection probability (PI) and maintained higher performance as the number of infectors increased, showing only a 2.5–16% drop, compared to 35% with mechanical ventilation. An R0 analysis indicated that UVGI is more suitable in high-risk settings, while APs combined with hybrid ventilation are effective in lower-risk scenarios. The findings also emphasize that combining Supply–Exhaust ventilation with APs or MERV13 filters is crucial for maintaining safe IAQ in kitchens, aligning with the WHO’s short- and long-term exposure limits. Full article
Show Figures

Figure 1

18 pages, 2496 KiB  
Article
The Home-Based Rehabilitation of Patients Through Physical Exercises in the Context of Indoor Air Quality
by Alexandru Bogdan Ilieș, Silviu Vlad, Tudor Caciora, Doriana Ciobanu, Dorina Ianc, Ana Cornelia Pereș, Thowayeb H. Hassan and Lazar Liviu
Healthcare 2025, 13(13), 1493; https://doi.org/10.3390/healthcare13131493 - 23 Jun 2025
Viewed by 390
Abstract
Background: Patients with spinal cord injuries, in addition to rehabilitation in specialized facilities, often continue physical therapy at home. At that time, they become highly exposed to indoor pollutants, which can affect the effectiveness of the recovery program and human health. Methods: Thus, [...] Read more.
Background: Patients with spinal cord injuries, in addition to rehabilitation in specialized facilities, often continue physical therapy at home. At that time, they become highly exposed to indoor pollutants, which can affect the effectiveness of the recovery program and human health. Methods: Thus, the present study presents the monitoring of indoor air quality in a residential facility where a patient with spinal cord injuries undergoes post-traumatic recuperative physical activity. Such a study is useful for ensuring good air quality for the optimal development of a rehabilitation program with the possibility of screening the indoor air quality of the home by the physiotherapist and even by the patient themselves, in the simplest way possible using low-cost equipment. Thus, 11 indoor air quality parameters were monitored for a period of 18 weeks, using low-cost equipment. An air purifier was put into operation for a period of one week to identify differences in the safety of the indoor environment for physical activities. Results: The results indicate an environment with frequent exceedances of the international standards in force for several indicators. After installing the purifier, the air quality stabilized and a much safer and more efficient environment for carrying out the recovery activities was established. Conclusions: Thus, the process of monitoring and optimizing indoor air quality stands as a fundamental requirement for home rehabilitation because it establishes a secure controlled environment that supports recovery in any residential setting. Full article
(This article belongs to the Section TeleHealth and Digital Healthcare)
Show Figures

Figure 1

21 pages, 4818 KiB  
Article
Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity
by Shaoning Li, Di Yu, Na Zhao, Tingting Li, Bin Li, Xiaotian Xu and Shaowei Lu
Forests 2025, 16(7), 1037; https://doi.org/10.3390/f16071037 - 20 Jun 2025
Viewed by 247
Abstract
Negative air ions (NAIs) can purify the atmosphere and maintain human health. In this study, we selected six tree species, Pinus tabuliformis, Pinus bungeana, Acer truncatum, Sophora japonica, Koelreuteria paniculata, Quercus variabilis, Robinia pseudoacacia, and Populus [...] Read more.
Negative air ions (NAIs) can purify the atmosphere and maintain human health. In this study, we selected six tree species, Pinus tabuliformis, Pinus bungeana, Acer truncatum, Sophora japonica, Koelreuteria paniculata, Quercus variabilis, Robinia pseudoacacia, and Populus tomentosa, and we established for the first time five “capacity indicators” to characterize and judge the capacity of plants to release negative ions: they comprised the release contribution rate L, release coefficient n, release rate s, instantaneous current number v, and total level of release Z. These indicators were used to assess the ability of the plants to release NAIs by themselves. The results showed the following. (1) The daily variations in L and n show “W” and “concave” shapes, respectively, and the contribution capacity at night is significantly higher than that during the day. The diurnal variations in s, v, and Z all showed a “bimodal” pattern. The NAI release rate and release level of each tree species during the day were significantly higher than those at night. (2) The trees released the most NAIs during the day at approximately 10:00, while Robinia pseudoacacia and Populus tomentosa peaked with a 2 h lag (12:00). The NAI release capacity of each tree species was the worst at 13:00. (3) During the growing season, the self-contribution effects L and n of the plants were the strongest in May. The release rates and release levels s, v, and Z were the lowest in August. The coniferous plants released NAIs at the fastest rate in September and broad-leaved plants in July, with the highest release levels. In this study, the plants released the most NAIs from 10:00 a.m. to 11:00 a.m., which is the best time to travel. Quercus variabilis was preferentially recommended in the pairing of species of tree with the quickest NAI release and the highest total number released, followed by Koelreuteria paniculata and Sophora japonica. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

18 pages, 1689 KiB  
Systematic Review
A Bibliometric Analysis on Designing Urban Green and Blue Spaces Related to Environmental and Public Health Benefits
by Catarina de Sousa Silva, Simon Bell, Lenka Lackóová and Thomas Panagopoulos
Land 2025, 14(6), 1230; https://doi.org/10.3390/land14061230 - 6 Jun 2025
Viewed by 673
Abstract
Humans and nature have always been connected. Meanwhile, with the industrial revolution, landscapes have become more artificial, reducing the human–nature relationship. Urban design should follow biophilic principles to reconnect people with nature, mitigate climate change, improve air quality, restore biodiversity loss, and solve [...] Read more.
Humans and nature have always been connected. Meanwhile, with the industrial revolution, landscapes have become more artificial, reducing the human–nature relationship. Urban design should follow biophilic principles to reconnect people with nature, mitigate climate change, improve air quality, restore biodiversity loss, and solve social problems. Poor air quality affects people’s health, and vegetation plays a crucial role in purifying the air. Similarly, contact with nature benefits physical and mental health and well-being. However, there is no consensus on how urban design can be beneficial for improving air quality and human health. This review paper aims to provide a comprehensive evaluation of evidence linking nature-based solutions (NBSs), air quality, carbon neutrality, and human health and well-being. Five hundred articles published between 2000 and 2024 were analysed. A number of publications studied the benefits of green infrastructure in improving air quality, carbon sequestration, or the influence of green spaces on human health. The topic of NBSs has recently emerged related to air quality, health, and promoting physical activity, as has accessibility to green spaces and mental health, also associated with blue spaces and residential gardens. The results revealed the gaps in the literature on how to design green and blue spaces to tackle environmental and public health crises simultaneously. Full article
(This article belongs to the Special Issue Feature Papers for Land Planning and Landscape Architecture Section)
Show Figures

Figure 1

22 pages, 20890 KiB  
Article
Ecological Park with a Sustainable Approach for the Revaluation of the Cultural and Historical Landscape of Pueblo Libre, Peru—2023
by Diego C. Mancilla-Bravo, Vivian M. Chichipe-Mondragón, Doris Esenarro Vargas, Cecilia Uribe Quiroz, Dante Calderón Huamaní, Elvira Ruiz Reyes, Crayla Alfaro and Maria Veliz
Clean Technol. 2025, 7(2), 46; https://doi.org/10.3390/cleantechnol7020046 - 5 Jun 2025
Viewed by 2087
Abstract
Lack of green spaces, citizen insecurity, and crime are the primary issues afflicting the Pueblo Libre district. This research aims to propose public spaces that revalue the cultural and historical landscape of Pueblo Libre. The methodology involves a literature review, urban analysis, and [...] Read more.
Lack of green spaces, citizen insecurity, and crime are the primary issues afflicting the Pueblo Libre district. This research aims to propose public spaces that revalue the cultural and historical landscape of Pueblo Libre. The methodology involves a literature review, urban analysis, and climate analysis, incorporating sustainability strategies supported by digital tools (AutoCAD, Revit, and Sketch-Up). The resulting design features an ecological park with vegetation capable of capturing carbon and emitting oxygen, absorbing up to 3544.99 kg of CO2 annually. It also includes installing 26 solar-powered lights to illuminate necessary spaces efficiently and using eco-friendly materials. Additionally, the park incorporates an artificial wetland with a capacity to process 38,500 L of water using plants that remove toxic elements and capture nutrients. In conclusion, the ecological park seeks to revalue the cultural landscape and counteract environmental degradation by creating a green lung that purifies the air, fosters social connectivity, and integrates users with nature, enhancing their quality of life. Full article
Show Figures

Figure 1

24 pages, 2765 KiB  
Article
Quantitative Assessment of Soldering-Induced PM2.5 Exposure Using a Distributed Sensor Network in Instructional Laboratory Settings
by Ian M. Kinsella, Anna N. Petrbokova, Rongjie Yang, Zheng Liu, Gokul Nathan, Nicklaus Thompson, Alexander V. Mamishev and Sep Makhsous
Air 2025, 3(2), 16; https://doi.org/10.3390/air3020016 - 4 Jun 2025
Viewed by 673
Abstract
Soldering is a common engineering practice that releases airborne particulate matter (PM), contributing to significant long-term respiratory risk. The health impact of this exposure is significant, with up to 22% of soldering workers worldwide being diagnosed with conditions such as occupational asthma, restrictive [...] Read more.
Soldering is a common engineering practice that releases airborne particulate matter (PM), contributing to significant long-term respiratory risk. The health impact of this exposure is significant, with up to 22% of soldering workers worldwide being diagnosed with conditions such as occupational asthma, restrictive lung disease, and bronchial obstruction. Studies have reported that soldering can produce PM2.5 concentrations up to 10 times higher than the U.S. Environmental Protection Agency’s (EPA) 24 h exposure limit of 35.0 μg/m3—posing significant respiratory and cognitive health risks under chronic exposure. These hazards remain underappreciated by novice engineers in academic and entry-level industrial environments, where safety practices are often informal or inconsistently applied. Air purification systems offer a mitigation approach; however, performance varies significantly with model and placement, and independent validation is limited. This study uses an indoor air quality monitoring system consisting of six AeroSpec sensors to measure PM2.5–10 concentrations during soldering sessions conducted with and without commercial air purifiers. Tests were conducted with and without a selection of commercial air purifiers, and measurements were recorded under consistent spatial and temporal conditions. Datasets were analyzed to evaluate purifier effectiveness and the influence of placement on pollutant distribution. The findings provide independent validation of air purifier capabilities and offer evidence-based suggestions for minimizing particulate exposure and improving safety in laboratory soldering environments. Full article
Show Figures

Figure 1

20 pages, 5459 KiB  
Article
Next-Generation Eco-Friendly Hybrid Air Purifier: Ag/TiO2/PLA Biofilm for Enhanced Bioaerosols Removal
by Rotruedee Chotigawin, Bhuvaneswari Kandasamy, Paradee Asa, Tistaya Semangoen, Pravech Ajawatanawong, Sarun Phibanchon, Taddao Pahasup-anan, Surachai Wongcharee and Kowit Suwannahong
Int. J. Mol. Sci. 2025, 26(10), 4584; https://doi.org/10.3390/ijms26104584 - 10 May 2025
Cited by 1 | Viewed by 833
Abstract
Indoor air pollution poses a significant public health risk, particularly in urban areas, where PM2.5 and airborne contaminants contribute to respiratory diseases. In Thailand, including Chonburi Province, PM2.5 levels frequently exceed safety thresholds, underscoring the urgent need for effective mitigation strategies. To address [...] Read more.
Indoor air pollution poses a significant public health risk, particularly in urban areas, where PM2.5 and airborne contaminants contribute to respiratory diseases. In Thailand, including Chonburi Province, PM2.5 levels frequently exceed safety thresholds, underscoring the urgent need for effective mitigation strategies. To address this challenge, we developed a hybrid air purification system incorporating a bioplastic-based photocatalytic film of polylactic acid (PLA) embedded with titanium dioxide (TiO2) nanoparticles. For optimization, PLA films were functionalized with varying TiO2 concentrations and characterized using SEM, FTIR, TGDTA, and UV–Vis. spectroscopy. A 5 wt% TiO2 loading was identified as optimal and further enhanced with silver (Ag) nanoparticles to boost photocatalytic efficiency. The Ag/TiO2/PLA biofilm was fabricated via a compound pellet formulation process followed by blown film extrusion. Various compositions, with and without Ag, were systematically evaluated for photocatalytic performance. The novel customized hybrid air purifier developed in this study is designed to enhance indoor air purification efficiency by integrating Ag/TiO2/PLA biofilms into a controlled oxidation system. The air purification efficacy of the developed biofilm was evaluated through a controlled study on Staphylococcus aureus (S. aureus) removal under different treatment conditions: control, adsorption, photolysis, and photocatalytic oxidation. The impact of light intensity on photocatalytic efficiency was also examined. The photocatalytic oxidation of S. aureus was subjected to the first-order kinetic evaluation through mathematical modeling. Results demonstrated that the Ag/TiO2/PLA biofilm significantly enhances indoor air purification, providing a sustainable, scalable, and energy-efficient solution for microbial decontamination and pollutant removal. This innovative approach outperforms conventional adsorption, adsorption and photocatalytic oxidation systems, offering a promising pathway for improved indoor air quality. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

17 pages, 4243 KiB  
Article
Estimation of Respiratory States Based on a Measurement Model of Airflow Characteristics in Powered Air-Purifying Respirators Using Differential Pressure and Pulse Width Modulation Control Signals—In the Development of a Public-Oriented Powered Air-Purifying Respirator as an Alternative to Lockdown Measures
by Yusaku Fujii, Akihiro Takita, Seiji Hashimoto and Kenji Amagai
Sensors 2025, 25(9), 2939; https://doi.org/10.3390/s25092939 - 7 May 2025
Cited by 1 | Viewed by 699
Abstract
Fluid dynamics modeling was conducted for the supply unit of a Powered Air-Purifying Respirator (PAPR) consisting of a nonwoven fabric filter and a pump, as well as for the exhaust filter (nonwoven fabric). The supply flow rate Q1 was modeled as a [...] Read more.
Fluid dynamics modeling was conducted for the supply unit of a Powered Air-Purifying Respirator (PAPR) consisting of a nonwoven fabric filter and a pump, as well as for the exhaust filter (nonwoven fabric). The supply flow rate Q1 was modeled as a function of the differential pressure ΔP and the duty value d of the PWM control under a constant pump voltage of V = 12.0 [V]. In contrast, the exhaust flow rate Q2 was modeled solely as a function of ΔP. To simulate the pressurized hood compartment of the PAPR, a pressure buffer and a connected “respiratory airflow simulator” (a piston–cylinder mechanism) were developed. The supply unit and exhaust filter were connected to this pressure buffer, and simulated respiratory flow was introduced as an external disturbance flow. Under these conditions, it was demonstrated that the respiratory state—i.e., the expiratory state (flow from the simulator to the pressure buffer) and the inspiratory state (flow from the pressure buffer to the simulator)—can be estimated from the differential pressure ΔP, the pump voltage V, and the PWM duty value d, with respect to the disturbance flow generated by the respiratory airflow simulator. It was also confirmed that such respiratory state estimation remains valid even when the duty value d of the pump is being actively modulated to control the internal pressure of the PAPR hood. Furthermore, based on the estimated respiratory states, a theoretical investigation was conducted on constant pressure control inside the PAPR and on the inverse pressure control aimed at supporting respiratory activity—namely, pressure control that assists breathing by depressurizing when expiratory motion is detected and pressurizing when inspiratory motion is detected. This study was conducted as part of a research and development project on public-oriented PAPR systems, which are being explored as alternatives to lockdown measures in response to airborne infectious diseases such as COVID-19. The present work specifically focused on improving the wearing comfort of the PAPR. Full article
Show Figures

Figure 1

14 pages, 3746 KiB  
Article
Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO2 for High-Efficiency Indoor Formaldehyde Photodegradation
by Hairui Cai, Benjamin Yang, Jie Hou, Ziqi Wang and Zhuo Li
Nanomaterials 2025, 15(9), 683; https://doi.org/10.3390/nano15090683 - 30 Apr 2025
Viewed by 440
Abstract
Formaldehyde, a pervasive indoor air pollutant posing significant health risks, has driven extensive research into advanced mitigation strategies to ensure safer living environments. Herein, this study presents a synthesis method for the large-scale production of hydrogenated TiO2 (P25) loaded with PtAu nanoalloys [...] Read more.
Formaldehyde, a pervasive indoor air pollutant posing significant health risks, has driven extensive research into advanced mitigation strategies to ensure safer living environments. Herein, this study presents a synthesis method for the large-scale production of hydrogenated TiO2 (P25) loaded with PtAu nanoalloys (P25(H)-PtAu), using a combination of ball milling and high-temperature annealing. Hydrogenation-induced defect-rich TiO2 efficiently improves visible light absorption, enhancing the utilization of visible light in photocatalytic reactions. Mechanochemical ball milling was employed to prepare ultrasmall PtAu nanoalloys with a size of 3.7 ± 0.1 nm, which were uniformly dispersed on the surface of P25(H). Density functional theory (DFT) results indicate that PtAu nanoalloys synergistically enhance charge separation via Schottky junctions and surface reaction kinetics by optimizing reactant adsorption. As a result, P25(H)-PtAu achieves industrially relevant formaldehyde removal efficiency (97.8%) under ambient light conditions while maintaining scalability (10 g batches). This work provides a scalable framework for developing manufacturable photocatalysts, with immediate applications in heating, ventilation and air conditioning systems, and air purifiers. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Graphical abstract

20 pages, 4937 KiB  
Article
Sleep Posture Recognition Method Based on Sparse Body Pressure Features
by Changyun Li, Guoxin Ren and Zhibing Wang
Appl. Sci. 2025, 15(9), 4920; https://doi.org/10.3390/app15094920 - 29 Apr 2025
Cited by 2 | Viewed by 847
Abstract
Non-visual techniques for identifying sleep postures have become essential for enhancing sleep health. Conventional methods depend on a costly professional medical apparatus that is challenging to adapt for domestic use. This study developed an economical airbag mattress and introduced a method for detecting [...] Read more.
Non-visual techniques for identifying sleep postures have become essential for enhancing sleep health. Conventional methods depend on a costly professional medical apparatus that is challenging to adapt for domestic use. This study developed an economical airbag mattress and introduced a method for detecting sleeping positions via restricted body pressure data. The methodology relies on distributed body pressure data obtained from barometric pressure sensors positioned at various locations on the mattress. Two combinations of base learners were chosen based on the complementary attributes of the model, each of which can be amalgamated through a soft-voting strategy. Additionally, the architectures of Autoencoder and convolutional neural networks were integrated, collectively constituting the base learning layer of the model. Gradient enhancement was utilized in the meta-learner layer to amalgamate the output of the basic learning layer. The experimental findings indicate that the suggested holistic learning model has high classification accuracy of up to 95.95%, precision of up to 96.13%, and F1 index of up to 95.01% in sleep posture recognition assessments and possesses considerable merit. In the subsequent application, the sleep monitoring device identified the sleep posture and employed an air conditioner and an air purifier to create a more comfortable sleep environment. The user can utilize the sleep posture data to improve the quality of sleep and prevent related diseases. Full article
Show Figures

Figure 1

Back to TopTop