Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO2 for High-Efficiency Indoor Formaldehyde Photodegradation
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Synthesis of Hydrogenated P25 Covered with PtAu Nanoparticles
2.3. Characterization
2.4. Formaldehyde Removal Measurements
2.5. DFT Calculations
3. Results and Discussion
3.1. Characterization of Morphology and Structure
3.2. Optical Properties
3.3. Photocatalytic Performance
3.4. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nie, L.; Jaroniec, M.; Tao, F.F. Room-temperature catalytic oxidation of formaldehyde on catalysts. Cat. Sci. Technol. 2016, 6, 3649–3669. [Google Scholar]
- Jhang, J.S.; Chou, F.; Huang, Y.; Chen, S.; Lin, Y. Formaldehyde adsorption by amine-modified functional group over zeolite-based nano-photocatalyst. Inorg. Chem. Commun. 2024, 170, 113343. [Google Scholar]
- Tang, X.; Bai, Y.; Duong, A.; Smith, M.T.; Li, L.; Zhang, L. Formaldehyde in China: Production, consumption, exposure levels, and health effects. Environ. Int. 2009, 35, 1210–1224. [Google Scholar]
- Kim, M.; Park, E.; Jurng, J. Oxidation of gaseous formaldehyde with ozone over MnOx/TiO2 catalysts at room temperature (25 °C). Powder Technol. 2018, 325, 368–372. [Google Scholar]
- He, M.; Jia, J.; Liu, B.; Huang, H. Reduced TiO2 with tunable oxygen vacancies for catalytic oxidation of formaldehyde at room temperature. Appl. Surf. Sci. 2019, 473, 934–942. [Google Scholar]
- Liu, T.; Li, F.; Li, X. TiO2 hydrosols with high activity for photocatalytic degradation of formaldehyde in a gaseous phase. J. Hazard. Mater. 2008, 152, 347–355. [Google Scholar]
- Kibanova, D.; Sleiman, M.; Cervini-Silva, J.; Destaillats, H. Adsorption and photocatalytic oxidation of formaldehyde on a clay-TiO2 composite. J. Hazard. Mater. 2012, 211–212, 233–239. [Google Scholar]
- Ma, H.; Zhao, L.; Gao, L.; Zhang, H.; Chen, F.; Yu, W. Roles of reactive oxygen species (ROS) in the photocatalytic degradation of pentachlorophenol and its main toxic intermediates by TiO2/UV. J. Hazard. Mater. 2019, 369, 719–726. [Google Scholar]
- Ullattil, S.G.; Narendranath, S.B.; Pillai, S.C.; Periyat, P. Black TiO2 nanomaterials: A review of recent advances. Chem. Eng. J. 2018, 343, 708–736. [Google Scholar]
- Gaur, N.; Dutta, D.; Singh, A.; Dubey, R.; Kamboj, D. Recent advances in the elimination of persistent organic pollutants by photocatalysis. Front. Environ. Sci. 2022, 10, 872514. [Google Scholar]
- Li, Y.; Zhanga, C.; He, H. Significant enhancement in activity of Pd/TiO2 catalyst for formaldehyde oxidation by Na addition. Catal. Today 2017, 281, 412–417. [Google Scholar]
- Zhang, C.B.; Liu, F.D.; Zhai, Y.P.; Ariga, H.; Yi, N.; Liu, Y.C.; Asakura, K.; Flytzani-Stephanopoulos, M.; He, H. Alkali-Metal-Promoted Pt/TiO2 Opens a More Efficient Pathway to Formaldehyde Oxidation at Ambient Temperatures. Angew. Chem. Int. Ed. 2012, 51, 9628–9632. [Google Scholar]
- Huang, H.; Ye, X.; Huang, H.; Zhang, L.; Leung, D.Y.C. Mechanistic study on formaldehyde removal over Pd/TiO2 catalysts: Oxygen transfer and role of water vapor. Chem. Eng. J. 2013, 230, 73–79. [Google Scholar]
- Yang, Y.; Yin, L.C.; Gong, Y.; Niu, P.; Wang, J.Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H.M. An unusual strong visible-light absorption band in red anatase TiO2 photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. Adv. Mater. 2018, 30, 1704479. [Google Scholar]
- Ran, J.; Ma, T.Y.; Gao, G.; Du, X.-W.; Qiao, S.Z. Porous P-doped graphitic carbon nitride nanosheets for synergistically enhanced visible-light photocatalytic H2 production. Energy Environ. Sci. 2015, 8, 3708–3717. [Google Scholar]
- Deng, X.; Liu, J.; Li, X.; Zhu, B.; Zhu, X.; Zhu, A. Kinetic study on visible-light photocatalytic removal of formaldehyde from air over plasmonic Au/TiO2. Catal. Today 2017, 281, 630–635. [Google Scholar]
- Zhang, Y.; Huang, Y.; Lin, B.; Chen, Z.; Xu, X.; Pan, M. Ti3C2TX MXene supported ZnO nanocomposites with highly efficient photocatalytic performance for degradation of VOCs. Diam. Relat. Mater. 2023, 133, 109763. [Google Scholar]
- Hoffmann, M.R.; Martin, S.T.; Choi, W.; Bahnemann, D.W. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95, 69–96. [Google Scholar]
- Wang, Y.; Dai, C.; Chen, B.; Wang, Y.; Shi, C.; Guo, X. Nanoscale HZSM-5 supported PtAg bimetallic catalysts for simultaneous removal of formaldehyde and benzene. Catal. Today 2015, 258, 616–626. [Google Scholar]
- Wang, X.; Yang, F.; Yi, J.; Kong, J.; Gong, J.; Yuan, A.; Rui, Z.; Ji, H. Constructing synergy of sufficient hydroxyl and oxygen in PtNi/Al2O3 enables room-temperature catalytic HCHO oxidation. AIChE J. 2023, 69, e17895. [Google Scholar]
- He, J.; Johnson, N.J.; Huang, A.; Berlinguette, C.P. Electrocatalytic alloys for CO2 reduction. ChemSusChem 2018, 11, 48–57. [Google Scholar]
- Tan, K.; Cheong, K. Advances of Ag, Cu, and Ag–Cu alloy nanoparticles synthesized via chemical reduction route. J. Nanopart. Res. 2013, 15, 1537. [Google Scholar]
- Qiao, P.; Zou, S.; Xu, S.; Liu, J.; Li, Y.; Ma, G.; Xiao, L.; Lou, H.; Fan, J. A general synthesis strategy of multi-metallic nanoparticles within mesoporous titania via in situ photo-deposition. J. Mater. Chem. A 2014, 2, 17321–17328. [Google Scholar]
- Bawab, B.; Thalluri, S.; Rodriguez-Pereira, J.; Sopha, H.; Zazpe, R.; Macak, J. Anodic TiO2 nanotube layers decorated by Pd nanoparticles using ALD: An efficient electrocatalyst for methanol oxidation. Electrochim. Acta 2022, 429, 141044. [Google Scholar]
- Massalski, T.B.; Okamoto, H.; Subramanian, P.R.; Kacprzak, L. Binary Alloy Phase Diagrams; ASM International: Almere, The Netherlands, 1990. [Google Scholar]
- Li, Y.; Zhang, C.; Ma, J.; Chen, M.; Deng, H.; He, H. High temperature reduction dramatically promotes Pd/TiO2 catalyst for ambient formaldehyde oxidation. Appl. Catal. B Environ. Energy 2017, 217, 560–569. [Google Scholar]
- Ingham, B. X-ray scattering characterisation of nanoparticles. Crystallogr. Rev. 2015, 21, 229–303. [Google Scholar]
- Wang, W.; Lu, C.H.; Ni, Y.R.; Song, J.B.; Su, M.X.; Xu, Z.Z. Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+. Catal. Commun. 2012, 22, 19–23. [Google Scholar]
- Liu, X.; Xing, Z.; Zhang, H.; Wang, W.; Zhang, Y.; Li, Z.; Wu, X.; Yu, X.; Zhou, W. Fabrication of 3D Mesoporous Black TiO2/MoS2/TiO2 Nanosheets for Visible-Light-Driven Photocatalysis. ChemSusChem 2016, 9, 1118–1124. [Google Scholar]
- Wang, D.; Xu, Y.; Sun, F.; Zhang, Q.; Wang, P.; Wang, X. Enhanced photocatalytic activity of TiO2 under sunlight by MoS2 nanodots modification. Appl. Surf. Sci. 2016, 377, 221–227. [Google Scholar]
- Huang, Z.; Song, J.; Pan, L.; Wang, Z.; Zhang, X.; Zou, J.; Mi, W.; Zhang, X.; Wang, L. Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy 2015, 12, 646–656. [Google Scholar]
- Chen, F.; Li, Y.; Liu, Z.; Fang, P. Facile synthesis of TiO2/trititanate heterostructure with enhanced photoelectric efficiency for an improved photocatalysis. Appl. Surf. Sci. 2015, 341, 55–60. [Google Scholar]
- Kumar, V.; Sharma, S.K.; Sharma, T.P.; Singh, V. Band gap determination in thick films from reflectance measurements. Opt. Mater. 1999, 12, 115–119. [Google Scholar]
- Armstrong, D.; Huie, R.; Lymar, S.; Koppenol, W.; Merényi, G.; Neta, P.; Stanbury, D.; Steenken, S.; Wardman, P. Standard electrode potentials involving radicals in aqueous solution: Inorganic radicals. BioInorg. React. Mech. 2013, 87, 59–61. [Google Scholar]
- Rezaee, A.; Rangkooy, H.; Jonidi-Jafari, A.; Khavanin, A. High photocatalytic decomposition of the air pollutant formaldehyde using nano-ZnO on bone char. Environ. Chem. Lett. 2014, 12, 353–357. [Google Scholar]
- Huang, Q.; Wang, Q.; TaoT, Z.Y.; Wang, P.; Ding, Z.; Chen, M. Controlled synthesis of Bi2O3/TiO2 catalysts with mixed alcohols for the photocatalytic oxidation of HCHO. Environ. Technol. 2018, 40, 1937–1947. [Google Scholar]
- Yu, L.; Wang, L.; Sun, X.; Ye, D. Enhanced photocatalytic activity of rGO/TiO2 for the decomposition of formaldehyde under visible light irradiation. J. Environ. Sci. 2018, 73, 138–146. [Google Scholar]
- Wu, Y.; Song, M.; Chai, Z.; Huang, J.; Wang, X. Facile construction of Bi2MoO6/Bi/g-C3N4 toward efficient photocatalytic oxidation of indoor gaseous formaldehyde with a wide concentration range under visible light irradiation. ACS Sustain. Chem. Eng. 2020, 8, 7710–7720. [Google Scholar]
- Chen, M.; Wang, H.; Chen, X.; Wang, F.; Qin, X.; Zhang, C.; He, H. High-performance of Cu-TiO2 for photocatalytic oxidation of formaldehyde under visible light and the mechanism study. Chem. Eng. J. 2020, 390, 124481. [Google Scholar]
- Zhang, J.; Yang, P.; Zheng, J.; Li, J.; Lv, S.; Jin, T.; Zou, Y.; Xu, P.; Cheng, C.; Zhang, Y. Degradation of gaseous HCHO in a rotating photocatalytic fuel cell system with an absorption efficiency of up to 94%. Chem. Eng. J. 2020, 392, 123634. [Google Scholar]
- Di, B.; Wang, Z.; Wang, H.; Gong, S.; Zheng, L.; Min, Y.; Li, H. Piezoelectric photocatalytic degradation of formaldehyde based on BFO@OCN heterojunctions. Nano Energy 2024, 132, 110384. [Google Scholar]
- Yan, G. Z-scheme K-C3N4/Ag/Ag3PMo12O40 heterojunction with improved visible light photodegradation of formaldehyde. Appl. Surf. Sci. 2022, 574, 151693. [Google Scholar]
- Yang, R. Synergistic effect of diatomite and Bi self-doping Bi2MoO6 on visible light photodegradation of formaldehyde. Microporous Mesoporous Mater. 2022, 339, 112003. [Google Scholar]
- Yan, G. Study on photocatalytic degradation of formaldehyde and rhodamine B by BiOI@Carbon sphere core–shell nanostructures composite photocatalyst. Inorg. Chem. Commun. 2024, 164, 112410. [Google Scholar]
Unit Cell | Lattice Parameters | ||
---|---|---|---|
Pt-initial | a = 3.94 Å | b = 3.94 Å | c = 3.94 Å |
Pt-relaxation | a = 3.98 Å | b = 3.98 Å | c = 3.98 Å |
PtAu-initial | a = 2.80 Å | b = 2.42 Å | c = 4.84 Å |
PtAu-relaxation | a = 2.82 Å | b = 2.44 Å | c =4.93 Å |
Materials | Light Source | Efficiency (%) | Time (min) | Ref. |
---|---|---|---|---|
P25(H)-PtAu | 300 W Xe lamp 50 mW/cm2 | 97.8 | 240 | This work |
Nano-ZnO | Ultraviolet intensity 1180 mW/cm2 | 73 | 40 | [35] |
Bi2O3/TiO2 | 36 W LED | 94 | 24 h | [36] |
rGO/TiO2 | 500 W Xe lamp | 88.3 | 240 | [37] |
Bi2MoO6/Bi/g-C3N4 | 350 W Xe lamp (λ > 420 nm) | 96.15 | 10 h | [38] |
Cu-TiO2 | 500 W Xe lamp | 100 | 140 | [39] |
TiO2 nanotube | Two low-pressure mercury lamps | 94 | 75 | [40] |
BFO@OCN | ultraviolet light (365 nm) | 55 | 90 | [41] |
K-C3N4/Ag/Ag3PMo12O40 | (λ > 420 nm) | 90 | 60 | [42] |
Bi2MoO6 | Visible light | 94 | 180 | [43] |
BiOI@Carbon | Visible light | 73 | 40 | [44] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Yang, B.; Hou, J.; Wang, Z.; Li, Z. Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO2 for High-Efficiency Indoor Formaldehyde Photodegradation. Nanomaterials 2025, 15, 683. https://doi.org/10.3390/nano15090683
Cai H, Yang B, Hou J, Wang Z, Li Z. Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO2 for High-Efficiency Indoor Formaldehyde Photodegradation. Nanomaterials. 2025; 15(9):683. https://doi.org/10.3390/nano15090683
Chicago/Turabian StyleCai, Hairui, Benjamin Yang, Jie Hou, Ziqi Wang, and Zhuo Li. 2025. "Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO2 for High-Efficiency Indoor Formaldehyde Photodegradation" Nanomaterials 15, no. 9: 683. https://doi.org/10.3390/nano15090683
APA StyleCai, H., Yang, B., Hou, J., Wang, Z., & Li, Z. (2025). Scalable Synthesis of PtAu Nanoalloy-Decorated Hydrogenated TiO2 for High-Efficiency Indoor Formaldehyde Photodegradation. Nanomaterials, 15(9), 683. https://doi.org/10.3390/nano15090683