Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Site and Selection of Species of Tree
2.2. Research Methodology
2.2.1. Test Setup
2.2.2. Test Methods
2.2.3. NAI Monitoring and Data Processing
2.2.4. Construction and Establishment of the Model for the “Five Capability Indicators”
2.2.5. Assumptions Based on the Evaluation Index System Model
- (1)
- Linkage: The dynamic characteristics of L, n, s, v, and Z have a consistent trend of change, with one eliminating the other, and the other increasing;
- (2)
- Unilaterality: L, n, s, v, and Z tended to fluctuate inconsistently, with one fluctuating and the other increasing.
3. Results
3.1. Characteristics of the Daily NAI Release Capacity of Different Species of Trees
3.1.1. Daily Variation in the NAI Release Contribution L
3.1.2. Daily Variation in the Release Coefficient n of the NAIs
3.1.3. Daily Change in the NAI Release Rate s
3.1.4. Instantaneous Stock vs. Daily Change
3.1.5. Daily Changes in the Total Releases of Z
3.2. Monthly Changes in the NAI Release Capacity of Different Species of Trees
3.3. Trend of Changes in the Five “Capability Indicators”
3.4. Advantage of the Five “Capability Indicators”
- (1)
- It disrupts traditional quantitative methods and broadens the means and scope of analysis and research. To disrupt the bottleneck of the traditional single study on the change in the NAIC content in plants, preceding studies tended to study and analyze the “release contribution rate”, which is relatively simple. In this study, other indicators were added to broaden the means and scope of the analysis of NAIs and conduct research from different dimensions, such as the abilities to contribute, immediately release, and release quantity.
- (2)
- Research in the field of NAIs is more precise and detailed. Plants are the primary source of atmospheric NAIs. A control treatment was added to the five “ability indicators” to “strip” the release effect of the plants themselves from the atmospheric total NAIs and provide a more accurate method of calculation and more precise and detailed NAI field research.
- (3)
- It offers a wider scope of application and stronger applicability. The five “ability indicators” constructed in this study were primarily constructed based on the artificially controlled open-top box (OTC) environment, which can effectively reduce the interference of external environmental factors. The formulae of the five “ability indicators” can be modified according to the conditions in the natural environment, and environmental factors can be added to explore the ability of plants in different vegetation types, such as wild forests and plant communities, to emit NAIs.
4. Discussion
4.1. There Are Individual Differences Among the Different Species of Trees
4.2. Diurnal Variation Characteristics of Five “Ability Indices” of NAIs Released by Each Tree Species
4.3. Characteristics of Monthly Changes in the Five “Capacity Indicators” for the Release of NAIs from Different Species of Trees
4.4. Trend of Change in the Five Ability Indices of Different Species of Trees
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, R.; Lian, Z.; Lan, L.; Qian, X.; Chen, K.; Hou, K.; Li, X. Effects of negative oxygen ions on sleep quality. Procedia Eng. 2017, 205, 2980–2986. [Google Scholar] [CrossRef]
- Bowers, B.; Flory, R.; Ametepe, J.; Staley, L.; Patrick, A.; Carrington, H. Controlled trial evaluation of exposure duration to negative air ions for the treatment of seasonal affective disorder. Psychiatry Res. 2018, 259, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Deng, L.; Deng, Q. The basic roles of indoor plants in human health and comfort. Environ. Sci. Pollut. Res. 2018, 25, 36087–36101. [Google Scholar] [CrossRef]
- Liu, S.; Huang, Q.; Wu, Y.; Song, Y.; Dong, W.; Chu, M.; Yang, D.; Zhang, X.; Zhang, J.; Chen, C.; et al. Metabolic linkages between indoor negative air ions, particulate matter and cardiorespiratory function: A randomized, double-blind crossover study among children. Environ. Int. 2020, 138, 105663. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Zeng, C.; Nie, W.; Nan, X.; Shen, S.; Shi, Y.; Yan, H.; Yang, F.; Wu, R.; Bao, Z. Study of the vertical structures, thermal comfort, negative air ions, and human physiological stress of forest walking spaces in Summer. Forests 2022, 13, 335. [Google Scholar] [CrossRef]
- Nadali, A.; Arfaeinia, H.; Asadgol, Z.; Fahiminia, M. Indoor and outdoor concentration of PM10, PM2.5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environ. Pollut. Bioavailab. 2020, 32, 47–55. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Ma, A.L.; Ramachandran, S. Negative air ions and their effects on human health and air quality improvement. Int. J. Mol. Sci. 2018, 19, 2966. [Google Scholar] [CrossRef]
- Willis, K.J.; Petrokofsky, G. The natural capital of city trees. Science 2017, 356, 374–376. [Google Scholar] [CrossRef]
- Feng, J.; Liu, Q.; Ding, H.; Wang, X.; Qi, Y.; Guo, W.; Wang, H. Effect of Fountain on Variation of Aero-anion and Its Correlation with Meteorological Factors. In Proceedings of the 2015 International Conference on Intelligent Transportation, Big Data and Smart City, Halong Bay, Vietnam, 19–20 December 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 358–361. [Google Scholar]
- Laakso, L.; Hussein, T.; Aarnio, P.; Komppula, M.; Hiltunen, V.; Viisanen, Y.; Kulmala, M. Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic environments in Finland. Atmos. Environ. 2003, 37, 2629–2641. [Google Scholar] [CrossRef]
- Horrak, U.; Salm, J.; Tammet, H. Bursts of intermediate ions in atmospheric air. J. Geophys. Res. Atmos. 1998, 103, 13909–13915. [Google Scholar] [CrossRef]
- Beijing Water Resources Bulletin; Beijing Municipal Water Affairs Bureau: Beijing, China, 2022.
- Zhou, B.; Yu, S.Q.; Zhang, C.; Yi, L. Aero-anion ecological efficiency of 13 tree species in Zhejiang Province. J. Zhejiang A F Univ. 2011, 28, 200–206. (In Chinese) [Google Scholar]
- Wu, R.; Deng, C.; Wang, B.; Huang, D.; Lin, L.; Huang, J.; Zheng, J. Research on germplasm resources of indoor plants with the function of releasing negative ions. Chin. Agric. Sci. Bull. 2011, 27, 91–97. (In Chinese) [Google Scholar]
- Jin, M.J.; Zhang, Y. The Distribution of Air Anion Concentration above Ground at Some Scenic Sites in Guangxi. Environ. Sci. Res. 2004, 17, 25–27. [Google Scholar]
- Bai, B.; Chi, D.; Xu, T.; Shen, Z.; Cao, H. Differences in the Changes of Negative Air lon Concentration among Diffperent Vegetation Types in North Central Henan Province, China. J. Ecol. Environ. 2016, 25, 1629–1637. (In Chinese) [Google Scholar]
- Li, Y.; Li, F.; Xiao, N. Variation Law of Negative Air lons Concentration in Urban Forests of Qiqihar City. J. Northeast For. Univ. 2020, 48, 71–75. [Google Scholar]
- Gao, T.; Lu, J.; Li, J.R.; Han, X.-H.; Baima, Y.-Z. Air Quality Evaluation of Typical Ecological Land in the Main Urban Area of Nyingchi City. J. Southwest Norm. Univ. Nat. Sci. Ed. 2020, 45, 130–137. [Google Scholar]
- LY/T 2586-2016; Technical Specification for Observation of Negative (Oxygen) Ion Concentration in Air. State Forestry Administration of China: Beijing, China, 2016.
- Wang, B.; Lu, S. Evaluation of Ecosystem Service Value of Economic Forests in China. Chin. J. Appl. Ecol. 2009, 20, 417–425. [Google Scholar]
- Li, S. Research on the Service Function of the Forest Ecosystem in Jiangxi Province and Dagangshan. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2007. [Google Scholar]
- Du, W.G.; Wang, C.; Wang, Q.; Bao, H.G.; He, R.; Xu, C.; Gao, F.; Xie, J. Evaluation of Summer Environmental Effects of the Main Vegetation Types in Beijing Fragrant Hills Park. Chin. J. For. 2018, 54, 155–164. [Google Scholar]
- Ding, X.L.; Zhang, W.C.; Huang, L.F.; Zheng, J.G.; Wu, R.Y.; Deng, C.Y. Correlation between the spine number and the release of negative air ions by cactaceous in the natural state. J. Anhui Agric. Univ. 2015, 42, 263–267. [Google Scholar]
- Cai, L.; Wang, C.; Zhang, J.; Meng, P.; Shi, G. The influence mechanism of negative air ion in forest ecosystem based on structural equation. Acta Ecol. Sin. 2024, 44, 1662–1670. [Google Scholar]
- Wu, Z.; Wang, C.; Xu, J.; Hu, L. Six kinds of Summer air Negative ions and particulate matter in Urban Green Spaces. J. Tsinghua Univ. Nat. Sci. Ed. 2007, 47, 2153–2157. [Google Scholar]
- Shao, H.R.; He, Q.T.; Yan, H.P.; Hou, Z.; Li, T. Spatio-temporal changes of negative air ion concentrations in Beijing. J. Beijing For. Univ. 2005, 27, 35–39. (In Chinese) [Google Scholar]
- Jin, Q.; Yan, J. Study on the Division of the Grade of Air Negative Oxygen Ion Concentration in Hubei Province. Environ. Sci. Technol. 2017, 40, 194–199. (In Chinese) [Google Scholar]
- Yin, S.; Zhu, D.; Chen, L. Characteristics of Air Negative Ion Concentration Changes in Dongguan Botanical Garden. Meteorol. Hydrol. Oceanogr. Instrum. 2012, 29, 33–36. [Google Scholar]
- Yan, X.; Wang, H.; Hou, Z.; Wang, S.; Zhang, D.; Xu, Q.; Tokola, T. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: A case study in Maiji, China. Urban For. Urban Green. 2015, 14, 636–645. [Google Scholar] [CrossRef]
- Cheung, H.C.; Chou, C.C.K.; Jayaratne, E.R.; Morawska, L. Impact of particle formation on atmospheric ions and particle number concentrations in an urban environment. Atmos. Res. 2015, 157, 127–136. [Google Scholar] [CrossRef]
- Dos Santos, V.N.; Herrmann, E.; Manninen, H.E.; Manninen, H.E.; Hussein, T.; Hakala, J.; Nieminen, T.; Aalto, P.P.; Merkel, M.; Wiedensohler, A.; et al. Variability of air ion concentrations in urban Paris. Atmos. Chem. Phys. 2015, 15, 13717–13737. [Google Scholar] [CrossRef]
- Lehtipalo, K.; Sipilä, M.; Junninen, H.; Ehn, M.; Berndt, T.; Kajos, M.K.; Worsnop, D.R.; Petäjä, T.; Kulmala, M. Observations of nano-CN in the nocturnal boreal forest. Aerosol Sci. Technol. 2011, 45, 499–509. [Google Scholar] [CrossRef]
- Nemerjuk, G.E. Salt losses into the atmosphere during respiration. Fiziol. Rastenii 1970, 17, 673–679. [Google Scholar]
Tree Species | Type of Vegetation | Plant Height (cm) | DGL (cm) |
---|---|---|---|
Pinus tabuliformis | Conifer | 104.40 ± 6.23 | 12.72 ± 0.98 |
Pinus bungeana | Conifer | 87.50 ± 15.00 | 10.78 ± 3.19 |
Acer truncatum | Broadleaf tree | 126.67 ± 1.53 | 12.00 ± 1.22 |
Sophora japonica | Broadleaf tree | 119.00 ± 13.95 | 16.04 ± 1.88 |
Quercus variabilis | Broadleaf tree | 109.67 ± 14.68 | 10.51 ± 3.94 |
Koelreuteria paniculata | Broadleaf tree | 99.83 ± 7.81 | 12.39 ± 2.02 |
Robinia pseudoacacia | Broadleaf tree | 129.75 ± 13.72 | 13.93 ± 1.58 |
Populus tomentosa | Broadleaf tree | 137.50 ± 3.54 | 17.94 ± 2.48 |
Soil Bulk Density (g/cm3) | Total Nitrogen (g/kg) | Total Phosphorus (g/kg) | Total Potassium (g/kg) | Organic Matter (g/kg) |
---|---|---|---|---|
0.65 | 5.12 | 4.2 | 20.64 | 109.36 |
Typology | Tree Species | Daily Average (%) | Nightly Average (%) | 24 h Average (%) |
---|---|---|---|---|
Conifers | Pinus tabuliformis | 76.26 ± 0.61 | 82.15 ± 1.72 | 79.45 ± 2.17 |
Pinus bungeana | 74.46 ± 1.09 | 81.34 ± 1.77 | 78.27 ± 2.19 | |
Broadleaf trees | Acer truncatum | 70.71 ± 0.80 | 78.41 ± 1.47 | 74.90 ± 2.86 |
Sophora japonica | 70.01 ± 0.85 | 77.27 ± 1.49 | 73.95 ± 3.70 | |
Quercus variabilis | 69.21 ± 1.01 | 76.44 ± 1.68 | 73.22 ± 3.12 | |
Koelreuteria paniculata | 68.10 ± 0.75 | 76.41 ± 1.02 | 72.60 ± 2.49 | |
Robinia pseudoacacia | 65.16 ± 1.28 | 73.64 ± 3.07 | 69.75 ± 3.14 | |
Populus tomentosa | 62.15 ± 1.10 | 69.36 ± 2.10 | 66.04 ± 2.88 |
Typology | Tree Species | Daily Average | Nightly Average | 24 h Average |
---|---|---|---|---|
Conifers | Pinus tabuliformis | 3.61 ± 0.13 | 5.56 ± 0.78 | 4.47 ± 0.69 |
Pinus bungeana | 3.23 ± 0.29 | 5.29 ± 0.73 | 4.13 ± 0.63 | |
Broadleaf trees | Acer truncatum | 2.65 ± 0.11 | 4.31 ± 0.45 | 3.38 ± 0.55 |
Sophora japonica | 2.78 ± 0.42 | 3.78 ± 0.73 | 3.19 ± 0.73 | |
Quercus variabilis | 2.40 ± 0.11 | 3.79 ± 0.42 | 3.01 ± 0.47 | |
Koelreuteria paniculata | 2.38 ± 0.13 | 3.64 ± 0.26 | 2.93 ± 0.41 | |
Robinia pseudoacacia | 2.04 ± 0.17 | 3.28 ± 0.49 | 2.58 ± 0.43 | |
Populus tomentosa | 1.69 ± 0.95 | 2.66 ± 0.25 | 2.12 ± 0.29 |
Typology | Species of Tree | Daily Average (×103 Ion·cm−2·min−1) | Nightly Average (×103 Ion·cm−2·min−1) | 24 h Average (×103 Ion·cm−2·min−1) |
---|---|---|---|---|
Conifers | Pinus tabuliformis | 1.59 ± 0.16 | 0.87 ± 0.08 | 1.27 ± 0.19 |
Pinus bungeana | 2.76 ± 0.17 | 1.63 ± 0.07 | 2.26 ± 0.23 | |
Broadleaf trees | Acer truncatum | 1.08 ± 0.10 | 0.63 ± 0.04 | 0.88 ± 0.14 |
Sophora japonica | 1.23 ± 0.14 | 0.69 ± 0.08 | 0.99 ± 0.20 | |
Quercus variabilis | 1.37 ± 0.38 | 0.77 ± 0.22 | 1.10 ± 0.33 | |
Koelreuteria paniculata | 1.30 ± 0.16 | 0.74 ± 0.05 | 1.05 ± 0.16 | |
Robinia pseudoacacia | 1.18 ± 0.15 | 0.69 ± 0.11 | 0.96 ± 0.15 | |
Populus tomentosa | 1.21 ± 0.10 | 0.65 ± 0.07 | 0.96 ± 0.13 |
Typology | Species of Tree | Daily Average (×103 Ion·cm−2) | Nightly Average (×103 Ion·cm−2) | 24 h Average (×103 Ion·cm−2) |
---|---|---|---|---|
Conifers | Pinus tabuliformis | 15.88 ± 1.58 | 8.68 ± 0.76 | 12.69 ± 1.86 |
Pinus bungeana | 27.58 ± 0.71 | 16.32 ± 0.71 | 22.59 ± 2.27 | |
Broadleaf trees | Acer truncatum | 10.82 ± 0.96 | 6.30 ± 0.37 | 8.82 ± 1.35 |
Sophora japonica | 12.29 ± 1.42 | 6.93 ± 0.84 | 9.92 ± 2.01 | |
Quercus variabilis | 13.67 ± 3.82 | 7.67 ± 2.20 | 11.00 ± 3.29 | |
Koelreuteria paniculata | 12.98 ± 1.64 | 7.45 ± 0.55 | 10.53 ± 1.59 | |
Robinia pseudoacacia | 11.78 ± 1.49 | 6.94 ± 1.08 | 9.64 ± 1.54 | |
Populus tomentosa | 12.10 ± 1.01 | 6.46 ± 0.70 | 9.61 ± 1.30 |
Typology | Species of Tree | Daily Average (×103 Ion·cm−2) | Nightly Average (×103 Ion·cm−2) | 24 h Average (×103 Ion·cm−2) |
---|---|---|---|---|
Conifers | Pinus tabuliformis | 95.25 ± 9.48 | 52.06 ± 4.56 | 76.12 ± 11.18 |
Pinus bungeana | 165.47 ± 10.01 | 97.90 ± 4.26 | 135.53 ± 13.60 | |
Broadleaf trees | Acer truncatum | 64.92 ± 5.78 | 37.82 ± 2.25 | 52.91 ± 8.12 |
Sophora japonica | 73.75 ± 8.54 | 41.60 ± 5.05 | 59.50 ± 12.05 | |
Quercus variabilis | 82.02 ± 22.89 | 46.08 ± 13.20 | 65.97 ± 19.74 | |
Koelreuteria paniculata | 82.10 ± 15.82 | 47.15 ± 6.19 | 66.49 ± 12.75 | |
Robinia pseudoacacia | 70.69 ± 8.96 | 41.64 ± 6.49 | 57.81 ± 9.25 | |
Populus tomentosa | 72.59 ± 6.08 | 38.73 ± 4.19 | 57.67 ± 7.81 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yu, D.; Zhao, N.; Li, T.; Li, B.; Xu, X.; Lu, S. Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity. Forests 2025, 16, 1037. https://doi.org/10.3390/f16071037
Li S, Yu D, Zhao N, Li T, Li B, Xu X, Lu S. Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity. Forests. 2025; 16(7):1037. https://doi.org/10.3390/f16071037
Chicago/Turabian StyleLi, Shaoning, Di Yu, Na Zhao, Tingting Li, Bin Li, Xiaotian Xu, and Shaowei Lu. 2025. "Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity" Forests 16, no. 7: 1037. https://doi.org/10.3390/f16071037
APA StyleLi, S., Yu, D., Zhao, N., Li, T., Li, B., Xu, X., & Lu, S. (2025). Typical Greening Species Based on Five “Capability Indicators” Under the Artificial Control of Negative Ion Releasing Capacity. Forests, 16(7), 1037. https://doi.org/10.3390/f16071037