The Home-Based Rehabilitation of Patients Through Physical Exercises in the Context of Indoor Air Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Study
2.2. Indoor Air Quality Monitoring
2.3. Interventions
2.4. Statistical Analysis
3. Results
Indicator | Sample Size | MU | Min | Avg | Max | std. dev. | AIS | Ref-AIS |
---|---|---|---|---|---|---|---|---|
T | 18,288 | °C | 21.3 | 27.1 | 32.2 | 1.6 | 20–24 °C cold season, 23–26 °C hot season | [34,35] |
RH | 18,288 | % | 13.6 | 29.5 | 60.5 | 7.2 | 30–60% | [34,35] |
CO2 | 18,288 | ppm | 460 | 893 | 2920 | 485 | 1000 ppm | [36,37] |
HCHO | 18,288 | mg/m3 | 0.14 | 0.44 | 0.62 | 0.078 | <0.1 mg/m3 | [42] |
TVOC | 18,288 | mg/m3 | 0.35 | 0.5 | 0.65 | 0.05 | <1 mg/m3 | [42,43] |
PM1 | 18,288 | µg/m3 | 6.9 | 14.9 | 20.1 | 2.25 | NSI | |
PM2.5 | 18,288 | µg/m3 | 6.1 | 15.7 | 21.4 | 2.43 | 15 µg/m3 | [45,46] |
PM4 | 18,288 | µg/m3 | 6.4 | 15.6 | 20.7 | 2.58 | NSI | |
PM10 | 18,288 | µg/m3 | 6.7 | 15.7 | 20.7 | 2.42 | 45 µg/m3 | [45,46] |
I− | 311 | no. × 103 | 0 | 5.5 | 18 | 4 | >10 × 103 ions | [39,40,41] |
I+ | 311 | no. × 103 | 3 | 15.7 | 38 | 7.5 | <10 × 103 ions | [39,40,41] |
4. Discussion
5. Conclusions
6. Limitations and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SCI | spinal cord injury |
IAQ | indoor air quality |
PM | particulate matter |
TVOC | total volatile organic compounds |
HCHO | formaldehyde |
T | temperature |
I+ | positive ion concentration |
I− | negative ion concentration |
EPA | US Environmental Protection Agency |
HVAC system | heating, ventilation, and air conditioning system |
References
- van den Berg-Emons, R.; Bussmann, J.; Haisma, J.; Sluis, T.A.R.; van der Woude, L.H.; Bergen, M.; Stam, H. A Prospective Study on Physical Activity Levels after Spinal Cord Injury during Inpatient Rehabilitation and the Year after Discharge. Arch. Phys. Med. Rehabil. 2008, 89, 2094–2101. [Google Scholar] [CrossRef] [PubMed]
- Chugh, S.; Roshan, R.; Jagatheeswari, R.; Alagundagi, D. Factors Influencing Adherence to Home-Based Rehabilitation in Individuals with Spinal Cord Injury: A Cross-Sectional Study. Indian J. Phys. Med. Rehabil. 2024, 34, 223–227. [Google Scholar] [CrossRef]
- Richard-Denis, A.; Dionne, A.; Mputu, P.M.; Mac-Thiong, J.-M. Do All Patients with Functional Motor-Incomplete (AIS-D) Traumatic Spinal Cord Injury Need Specialized Inpatient Functional Rehabilitation? A Prospective Observational Cohort Study Proposing Clinical Criteria for Home-Based Rehabilitation after Acute Care. J. Spinal Cord Med. 2024, 47, 753–764. [Google Scholar] [CrossRef]
- Huniadi, A.; Sorian, A.; Iuhas, C.; Bodog, A.; Sandor, M.I. The effect of cannabis in the treatment of Hodgkin’s lymphoma in a pregnant patient—Extensive case report and literature review. J. BUON 2021, 26, 11–16. Available online: https://www.ncbi.nlm.nih.gov/pubmed/33721427 (accessed on 10 May 2025).
- Moran, K.; Barclay, L.; Lannin, N.A. Experiences of People with Non-Traumatic Spinal Cord Injuries Returning Home after Inpatient Rehabilitation. Disabil. Rehabil. 2024, 46, 362–368. [Google Scholar] [CrossRef]
- Marmett, B.; Carvalho, R.B.; Dorneles, G.P.; Nunes, R.B.; Rhoden, C.R. Should I Stay or Should I Go: Can Air Pollution Reduce the Health Benefits of Physical Exercise? Med. Hypotheses 2020, 144, 109993. [Google Scholar] [CrossRef] [PubMed]
- Koehle, M.S. Physiological Impacts of Atmospheric Pollution: Effects of Environmental Air Pollution on Exercise. Physiol. Rep. 2024, 12, e16005. [Google Scholar] [CrossRef]
- Andrade, A.; Dominski, F.H. Indoor Air Quality of Environments Used for Physical Exercise and Sports Practice: Systematic Review. J. Environ. Manag. 2018, 206, 577–586. [Google Scholar] [CrossRef]
- Caciora, T.; Ilies, D.C.; Costea, M.; Blaga, L.; Berdenov, Z.; Ilies, A.; Hassan, T.H.; Peres, A.C.; Safarov, B.; Josan, I.; et al. Microclimate Assessment in a 19th-century Heritage Building from Romania. Indoor Air 2024, 2024, 2989136. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Blaga, L.; Hassan, T.H.; Ilieș, A.; Caciora, T.; Grama, V.; Herman, G.V.; Dejeu, P.; Zdringa, M.; Marshall, T.; et al. Indoor Microclimate and Microbiological Risks in Heritage Buildings: A Case Study of the Neologic Sinagogue, Oradea, Romania. Buildings 2023, 13, 2277. [Google Scholar] [CrossRef]
- Cardile, D.; Calderone, A.; De Luca, R.; Corallo, F.; Quartarone, A.; Calabrò, R.S. The Quality of Life in Patients with Spinal Cord Injury: Assessment and Rehabilitation. J. Clin. Med. 2024, 13, 1820. [Google Scholar] [CrossRef] [PubMed]
- Caciora, T.; Ilieş, A.; Berdenov, Z.; Al-Hyari, H.S.; Ilieş, D.C.; Safarov, B.; Hassan, T.H.; Herman, G.V.; Hodor, N.; Bilalov, B.; et al. Comprehensive Analysis of Classroom Microclimate in Context to Health-Related National and International Indoor Air Quality Standards. Front. Public Health 2024, 12, 1440376. [Google Scholar] [CrossRef] [PubMed]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef]
- Ilies, D.C.; Marcu, F.; Caciora, T.; Indrie, L.; Ilies, A.; Albu, A.; Costea, M.; Burtă, L.; Baias, S.; Ilies, M.; et al. Investigations of Museum Indoor Microclimate and Air Quality. Case Study from Romania. Atmosphere 2021, 12, 286. [Google Scholar] [CrossRef]
- Ilieș, D.C.; Safarov, B.; Caciora, T.; Ilieș, A.; Grama, V.; Ilies, G.; Huniadi, A.; Zharas, B.; Hodor, N.; Sandor, M.; et al. Museal Indoor Air Quality and Public Health: An Integrated Approach for Exhibits Preservation and Ensuring Human Health. Sustain. Sci. Pract. Policy 2022, 14, 2462. [Google Scholar] [CrossRef]
- Maung, T.; Bishop, J.E.; Holt, E.; Turner, A.; Pfrang, C. Indoor Air Pollution and the Health of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. Int. J. Environ. Res. Public Health 2022, 19, 8752. [Google Scholar] [CrossRef]
- Liu, Z.; Yuan, W.; Ma, Y. Drivers’ Attention Strategies before Eyes-off-Road in Different Traffic Scenarios: Adaptation and Anticipation. Int. J. Environ. Res. Public Health 2021, 18, 3716. [Google Scholar] [CrossRef]
- Ramos, C.A.; Reis, J.F.; Almeida, T.; Alves, F.; Wolterbeek, H.T.; Almeida, S.M. Estimating the Inhaled Dose of Pollutants during Indoor Physical Activity. Sci. Total Environ. 2015, 527–528, 111–118. [Google Scholar] [CrossRef]
- Molnár, A.; Müller, A. Geographical Influences on Esports Consumption with Special Focus on Urban and Rural Audiences. Geoj. Tour. Geosites 2025, 58, 128–135. [Google Scholar] [CrossRef]
- Kang, D.; Eun, S.-D.; Park, J. Pilot Study of Home-Based Virtual Reality Fitness Training in Post-Discharge Rehabilitation for Patients with Spinal Cord Injury: A Randomized Double-Blind Multicenter Trial. Life 2024, 14, 859. [Google Scholar] [CrossRef]
- Marć, M.; Śmiełowska, M.; Namieśnik, J.; Zabiegała, B. Indoor Air Quality of Everyday Use Spaces Dedicated to Physical Activity. Sci. Total Environ. 2017, 584–585, 1040–1051. [Google Scholar]
- Szczurek, A.; Dołęga, A.; Kasperkiewicz, P. Profile of occupant activity impact on indoor air—method of its determination. Energy Build. 2018, 158, 1564–1575. [Google Scholar] [CrossRef]
- Syafei, M.N.; Herumurti, D.; Sutikno, R.; Alamsyah, H. The Effect of Ventilation and Occupant Activities Towards PM2.5 Level in Urban Residential Houses in Tropical Climate. IOP Conf. Ser. Earth Environ. Sci. 2025, 1375, 012050. [Google Scholar]
- Trbovich, M. Efficacy of Various Cooling Techniques during Exercise in Persons with Spinal Cord Injury: A Pilot Crossover Intervention Study. Top. Spinal Cord Inj. Rehabil. 2019, 25, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Minson, C.T.; Brunt, V.E. Thermoregulatory Considerations for the Performance of Exercise in SCI. Physiol. Health Dis. 2016, 3, 370–371. [Google Scholar] [CrossRef]
- Price, M.J. Thermoregulation during Exercise in Individuals with Spinal Cord Injuries. Sports Med. 2006, 36, 863–879. [Google Scholar] [CrossRef]
- Maggio, M.G.; Bonanno, M.; Manuli, A.; Calabrò, R.S. Improving Outcomes in People with Spinal Cord Injury: Encouraging Results from a Multidisciplinary Advanced Rehabilitation Pathway. Brain Sci. 2024, 14, 140. [Google Scholar] [CrossRef] [PubMed]
- Dolbow, D.R.; Gorgey, A.S.; Ketchum, J.M.; Gater, D.R. Home-Based Functional Electrical Stimulation Cycling Enhances Quality of Life in Individuals with Spinal Cord Injury. Top. Spinal Cord Inj. Rehabil. 2013, 19, 324–329. [Google Scholar] [CrossRef]
- Matthews, T.G.; Thompson, C.V.; Wilson, D.L.; Hawthorne, A.R.; Mage, D.T. Air Velocities inside Domestic Environments: An Important Parameter in the Study of Indoor Air Quality and Climate. Environ. Int. 1989, 15, 545–550. [Google Scholar] [CrossRef]
- Shah, K.B.; Kim, D.; Pinakana, S.D.; Hobosyan, M.; Montes, A.; Raysoni, A.U. Evaluating Indoor Air Quality in Residential Environments: A Study of PM2.5 and CO2 Dynamics Using Low-Cost Sensors. Environments 2024, 11, 237. [Google Scholar] [CrossRef]
- Ilies, D.C.; Herman, G.V.; Safarov, B.; Ilies, A.; Blaga, L.; Caciora, T.; Peres, A.C.; Grama, V.; Bambang, S.W.; Brou, T.; et al. Indoor Air Quality Perception in Built Cultural Heritage in Times of Climate Change. Sustainability 2023, 15, 8284. [Google Scholar] [CrossRef]
- Ilieș, A.; Caciora, T.; Marcu, F.; Berdenov, Z.; Ilieș, G.; Safarov, B.; Hodor, N.; Grama, V.; Shomali, M.A.A.; Ilies, D.C.; et al. Analysis of the Interior Microclimate in Art Nouveau Heritage Buildings for the Protection of Exhibits and Human Health. Int. J. Environ. Res. Public Health 2022, 19, 16599. [Google Scholar] [CrossRef]
- Sugumar, P.; Krishnan, T.; Abhinav, B.L.V.V.D.S.S.; Bhavana, P.; Kavya, B.S.; Yeshwanth, V.; Krishna, K.M. Investigation of Indoor Air Quality and Thermal Comfort of a College Building in Hyderabad, India. IOP Conf. Ser. Earth Environ. Sci. 2022, 1074, 012025. [Google Scholar] [CrossRef]
- ASHRAE. ANSI/ASHRAE Standard 55-2020: Thermal Environmental Conditions for Human Occupancy; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2020; Available online: https://www.ashrae.org/technical-resources/bookstore/standard-55-thermal-environmental-conditions-for-human-occupancy (accessed on 10 May 2025).
- World Health Organization. WHO Housing and Health Guidelines; WHO Press: Geneva, Switzerland, 2018. Available online: https://www.who.int/publications/i/item/9789241550376 (accessed on 10 May 2025).
- ASHRAE. ANSI/ASHRAE Standard 62.1-2019: Ventilation for Acceptable Indoor Air Quality; American Society of Heating, Refrigerating and Air-Conditioning Engineers: Atlanta, GA, USA, 2019; Available online: https://www.ashrae.org/technical-resources/standards-and-guidelines (accessed on 10 May 2025).
- Centers for Disease Control and Prevention (CDC); National Institute for Occupational Safety and Health (NIOSH). Carbon Dioxide (CO2): Workplace Safety & Health Topics; U.S. Department of Health & Human Services: Washington, DC, USA, 2019. Available online: https://www.cdc.gov/niosh/npg/pgintrod.html (accessed on 10 May 2025).
- Norbäck, D.; Nordström, K.; Zhao, Z. Carbon dioxide (CO2) demand-controlled ventilation in university computer classrooms and possible effects on headache, fatigue and perceived indoor environment: An intervention study. Int. Arch. Occup. Environ. Health 2013, 86, 199–209. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Ma, A.; Ramachandran, S. Negative Air Ions and Their Effects on Human Health and Air Quality Improvement. Int. J. Mol. Sci. 2018, 19, 2966. [Google Scholar] [CrossRef]
- Renye, W.; Chuan-Yuan, D.; Gui-Liang, X.; Hai-Yong, W.; Zhijian, Y.; Jun-Rong, Z.; Jin-Gui, Z. Study on the Effect of Indoor Air Quality by Negative Air Ion of Plant. J. Anhui Agric. Sci. 2014, 42, 9491–9494. [Google Scholar]
- Jayaratne, E.; Fatokun, F.J.; Morawska, L. Air Ion Concentrations under Overhead High-Voltage Transmission Lines. Atmos. Environ. 2008, 42, 1846–1856. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Air Quality Guidelines for Europe, 2nd ed.; WHO Regional Publications, European Series No. 91; WHO Regional Office for Europe: Copenhagen, Denmark, 2000. Available online: https://www.who.int/publications/i/item/9789289013581 (accessed on 10 May 2025).
- European Union. Directive 2000/39/EC Establishing a First List of Indicative Occupational Exposure Limit Values. Official Journal of the European Communities L 142/47, 2000. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32000L0039 (accessed on 10 May 2025).
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; WHO Press: Geneva, Switzerland, 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 10 May 2025).
- Akther, T.; Ahmed, M.; Shohel, M.; Ferdousi, F.K.; Salam, A. Particulate Matters and Gaseous Pollutants in Indoor Environment and Association of Ultra-Fine Particulate Matters (PM1) with Lung Function. Environ. Sci. Pollut. Res. Int. 2019, 26, 5475–5484. [Google Scholar] [CrossRef]
- Li, J.; Fan, G.; Ou, Y.; Deng, Q. Characteristics and Control Strategies of Indoor Particles: An Updated Review. Energy Build. 2023, 294, 113232. [Google Scholar] [CrossRef]
- Zhang, L.; Ou, C.; Magana-Arachchi, D.; Vithanage, M.; Vanka, K.; Palanisami, T.; Masakorala, K.; Wijesekara, H.; Yan, Y.; Bolan, N.; et al. Indoor Particulate Matter in Urban Households: Sources, Pathways, Characteristics, Health Effects, and Exposure Mitigation. Int. J. Environ. Res. Public Health 2021, 18, 11055. [Google Scholar] [CrossRef]
- Carvalho, R.B.; Marmett, B.; Dorneles, G.P.; da Silva, I.M.; Romão, P.R.T.; da Silva Júnior, F.M.R.; Rhoden, C.R. O3 Concentration and Duration of Exposure Are Factors Influencing the Environmental Health Risk of Exercising in Rio Grande, Brazil. Environ. Geochem. Health 2022, 44, 2733–2742. [Google Scholar] [CrossRef]
- Gomes, E.; Florida-James, G. Lung Inflammation, Oxidative Stress and Air Pollution. In Lung Inflammation; InTechOpen: London, UK, 2014. [Google Scholar] [CrossRef]
- Qin, F.; Yang, Y.; Wang, S.-T.; Dong, Y.-N.; Xu, M.-X.; Wang, Z.-W.; Zhao, J.-X. Exercise and Air Pollutants Exposure: A Systematic Review and Meta-Analysis. Life Sci. 2019, 218, 153–164. [Google Scholar] [CrossRef] [PubMed]
- Kocot, K.; Barański, K.; Melaniuk-Wolny, E.; Zajusz-Zubek, E.; Kowalska, M. Exercise under exposure to air pollution and spirometry in healthy adults with and without allergy. Atmosphere 2021, 12, 1168. [Google Scholar] [CrossRef]
- Karaiskos, P.; Martinez-Molina, A.; Alamaniotis, M. Analyzing Indoor Air Pollutants in Naturally Ventilated Athletic Facilities. A Case of Study. J. Build. Eng. 2023, 77, 107457. [Google Scholar] [CrossRef]
- Slezakova, K.; Peixoto, C.; do Carmo Pereira, M.; Morais, S. Indoor Air Quality in Health Clubs: Impact of Occupancy and Type of Performed Activities on Exposure Levels. J. Hazard. Mater. 2018, 359, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, Y.; Xue, L.; Wu, S.; Wang, B.; Li, G.; Huang, J.; Guo, X. Effects of air purification of indoor PM2.5 on the cardiorespiratory biomarkers in young healthy adults. Indoor Air 2021, 31, 1125–1133. [Google Scholar] [CrossRef]
- Park, H.K.; Cheng, K.; Tetteh, A.; Hildemann, L.; Nadeau, K. Effectiveness of air purifier on health outcomes and indoor particles in homes of children with allergic diseases in Fresno, California: A pilot study. J. Asthma 2017, 54, 341–346. [Google Scholar] [CrossRef]
- Patel, R.; Singh, A.; Shankar, R.; Khare, P.; Thakur, A.; Gole, V. Indoor air quality control using lab scale air purifier tower. Int. J. Chem. React. Eng. 2023, 22, 11–17. [Google Scholar] [CrossRef]
- Li, C.; Bai, L.; He, Z.; Liu, X.; Xu, X.L. The effect of air purifiers on the reduction in indoor PM2.5 concentrations and population health improvement. Sustain. Cities Soc. 2021, 75, 103298. [Google Scholar] [CrossRef]
- Chen, R.; Zhao, A.; Chen, H.; Zhao, Z.; Cai, J.; Wang, C.; Yang, C.; Li, H.; Xu, X.; Ha, S.; et al. Cardiopulmonary benefits of reducing indoor particles of outdoor origin: A randomized, double-blind crossover trial of air purifiers. J. Am. Coll. Cardiol. 2015, 65, 2279–2287. [Google Scholar] [CrossRef]
- Wolkoff, P.; Azuma, K.; Carrer, P. Health, work performance, and risk of infection in office-like environments: The role of indoor temperature, air humidity, and ventilation. Int. J. Hyg. Environ. Health 2021, 233, 113709. [Google Scholar] [CrossRef] [PubMed]
- Fang, L.; Clausen, G.; Fanger, P.O. Temperature and humidity: Important factors for perception of air quality and for ventilation requirements. ASHRAE Trans. 2000, 106, 503–510. [Google Scholar]
- Asif, A.; Zeeshan, M.; Jahanzaib, M. Indoor temperature, relative humidity and CO2 levels assessment in academic buildings with different HVAC systems. Build. Environ. 2018, 133, 83–90. [Google Scholar] [CrossRef]
- Romay, F.; Ou, Q.; Pui, D.Y.H. Effect of ionizers on indoor air quality and performance of air cleaning systems. Aerosol Air Qual. Res. 2024, 24, 230240. [Google Scholar] [CrossRef]
- Karim, H.; Muniandy, N.; Ling, K.J.N.H.; Chin, W. The effect of air velocity and indoor ambient properties on the effective operating range of an air ionizer device. J. Phys. Conf. Ser. 2023, 2523, 012045. [Google Scholar] [CrossRef]
- Zuraimi, M.S.; Fang, L.; Tan, T.K.; Chew, F.T.; Tham, K.W. Indoor air purification improves air quality and reduces symptoms for children with asthma in tropical climates. Environ. Res. 2020, 183, 109152. [Google Scholar]
- Alsaadi, M.; Al-Rawabdeh, A.; Khader, M. A novel approach to measure HEPA filter effectiveness using low-cost sensors in indoor environments. Sustain. Cities Soc. 2020, 62, 102388. [Google Scholar]
- Chakraborty, P.; Gupta, T.; Behera, S.N. Effectiveness of portable air cleaners in reducing indoor air pollutants in homes: A case study from India. Build. Environ. 2022, 208, 108576. [Google Scholar]
Indicator | Mean-BF | Mean-AF | ΔM | Variance-BF | Variance-AF | t | p-Value | Cohen’s D |
---|---|---|---|---|---|---|---|---|
T | 26.8 | 28.4 | 1.63 | 19.95 | 22.81 | 7.63 | 3.6958 × 10−14 | 0.353 |
RH | 21.7 | 27.3 | 5.6 | 2.21 | 16.06 | 18.3 | 8.4651 × 10−55 | 1.83 |
CO2 | 624 | 589 | 35 | 28,906 | 15,447 | 5.11 | 3.4051 × 10−07 | 0.237 |
HCHO | 0.428 | 0.237 | 0.191 | 0.0016 | 0.0007 | 53.49 | 5.957 × 10−174 | 5.697 |
TVOC | 0.503 | 0.423 | 0.079 | 0.0016 | 0.0012 | 18.95 | 8.576 × 10−55 | 2.074 |
PM1 | 14.88 | 7.74 | 7.13 | 2.58 | 0.17 | 50.81 | 9.7341 × 10−143 | 6.073 |
PM2.5 | 15.83 | 8.09 | 7.75 | 1.83 | 0.9 | 55.34 | 4.0209 × 10−152 | 6.615 |
PM4 | 15.21 | 7.5 | 7.7 | 3.58 | 0.5 | 45.09 | 7.1052 × 10−130 | 5.39 |
PM10 | 16.74 | 8.07 | 8.66 | 3.04 | 0.66 | 53.35 | 4.4247 × 10−148 | 6.377 |
I− | 5.45 | 5.48 | 0.027 | 15.35 | 16.98 | 0.05 | 0.959 | 0.006 |
I+ | 15.17 | 16.31 | 1.15 | 64.94 | 45.62 | 1.13 | 0.257 | 0.154 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ilieș, A.B.; Vlad, S.; Caciora, T.; Ciobanu, D.; Ianc, D.; Pereș, A.C.; Hassan, T.H.; Liviu, L. The Home-Based Rehabilitation of Patients Through Physical Exercises in the Context of Indoor Air Quality. Healthcare 2025, 13, 1493. https://doi.org/10.3390/healthcare13131493
Ilieș AB, Vlad S, Caciora T, Ciobanu D, Ianc D, Pereș AC, Hassan TH, Liviu L. The Home-Based Rehabilitation of Patients Through Physical Exercises in the Context of Indoor Air Quality. Healthcare. 2025; 13(13):1493. https://doi.org/10.3390/healthcare13131493
Chicago/Turabian StyleIlieș, Alexandru Bogdan, Silviu Vlad, Tudor Caciora, Doriana Ciobanu, Dorina Ianc, Ana Cornelia Pereș, Thowayeb H. Hassan, and Lazar Liviu. 2025. "The Home-Based Rehabilitation of Patients Through Physical Exercises in the Context of Indoor Air Quality" Healthcare 13, no. 13: 1493. https://doi.org/10.3390/healthcare13131493
APA StyleIlieș, A. B., Vlad, S., Caciora, T., Ciobanu, D., Ianc, D., Pereș, A. C., Hassan, T. H., & Liviu, L. (2025). The Home-Based Rehabilitation of Patients Through Physical Exercises in the Context of Indoor Air Quality. Healthcare, 13(13), 1493. https://doi.org/10.3390/healthcare13131493