Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (373)

Search Parameters:
Keywords = air cleaning efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1165 KiB  
Article
China’s Low-Carbon City Pilot Policy, Eco-Efficiency, and Energy Consumption: Study Based on Period-by-Period PSM-DID Model
by Xiao Na Li and Hsing Hung Chen
Energies 2025, 18(15), 4126; https://doi.org/10.3390/en18154126 - 4 Aug 2025
Viewed by 33
Abstract
The sustainable development of Chinese cities is of long-term significance. Multiple environmental regulatory instruments aim to promote the parallel advancement of environmental conservation and economic growth. This study examines three batches of low-carbon city pilot (LCCP) programs, employing eco-efficiency as the outcome variable. [...] Read more.
The sustainable development of Chinese cities is of long-term significance. Multiple environmental regulatory instruments aim to promote the parallel advancement of environmental conservation and economic growth. This study examines three batches of low-carbon city pilot (LCCP) programs, employing eco-efficiency as the outcome variable. Using conventional difference-in-differences (DID) models, time-varying DID models, and period-by-period propensity score matching DID (PSM-DID) models with city and time fixed effects, we investigate the comprehensive impact of pilot policies on both economic and environmental performance. Eco-efficiency, measured through the Data Envelopment Analysis (DEA) model, exhibits a strong correlation with energy consumption patterns, as carbon emissions and air pollutants predominantly originate from non-clean energy utilization. The analysis reveals that LCCP policies significantly enhance eco-efficiency. These findings demonstrate robustness across placebo tests, endogeneity treatments, and alternative outcome variable specifications. The first and third LCCP batches significantly improve eco-efficiency, whereas the second batch demonstrates no statistically significant effect. Significant impacts emerge in regions where cities hold pilot status while provinces do not; conversely, regions where both cities and provinces participate in pilot programs show no significant effects. Finally, from an energy consumption perspective, policy recommendations are proposed to further enhance eco-efficiency through regulatory instruments. Full article
(This article belongs to the Special Issue Sustainable Energy Futures: Economic Policies and Market Trends)
Show Figures

Figure 1

24 pages, 6757 KiB  
Article
Design and Testing of a Pneumatic Jujube Harvester
by Huaming Hou, Wei Niu, Qixian Wen, Hairui Yang, Jianming Zhang, Rui Zhang, Bing Xv and Qingliang Cui
Agronomy 2025, 15(8), 1881; https://doi.org/10.3390/agronomy15081881 - 3 Aug 2025
Viewed by 111
Abstract
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our [...] Read more.
Jujubes have a beautiful taste, and high nutritional and economic value. The planting area of dwarf and densely planted jujubes is large and shows an increasing trend; however, the mechanization level and efficiency of fresh jujube harvesting are low. For this reason, our research group conducted a study on mechanical harvesting technology for fresh jujubes. A pneumatic jujube harvester was designed. This harvester is composed of a self-regulating picking mechanism, a telescopic conveying pipe, a negative pressure generator, a cleaning mechanism, a double-chamber collection box, a single-door shell, a control assembly, a generator, a towing mobile chassis, etc. During the harvest, the fresh jujubes on the branches are picked under the combined effect of the flexible squeezing of the picking roller and the suction force of the negative pressure air flow. They then enter the cleaning mechanism through the telescopic conveying pipe. Under the combined effect of the upper and lower baffles of the cleaning mechanism and the negative-pressure air flow, the fresh jujubes are separated from impurities such as jujube leaves and branches. The clean fresh jujubes fall into the collection box. We considered the damage rate of fresh jujubes, impurity rate, leakage rate, and harvesting efficiency as the indexes, and the negative-pressure suction wind speed, picking roller rotational speed, and the inclination angle of the upper and lower baffles of the cleaning and selection machinery as the test factors, and carried out the harvesting test of fresh jujubes. The test results show that when the negative-pressure suction wind speed was 25 m/s, the picking roller rotational speed was 31 r/min, and the inclination angles of the upper and lower baffle plates for cleaning and selecting were −19° and 19.5°, respectively, the breakage rate of fresh jujube harvesting was 0.90%, the rate of impurity was 1.54%, the rate of leakage was 2.59%, and the efficiency of harvesting was 73.37 kg/h, realizing the high-efficiency and low-loss harvesting of fresh jujubes. This study provides a reference for the research and development of fresh jujube mechanical harvesting technology and equipment. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

31 pages, 6351 KiB  
Review
Recent Development on the Synthesis Strategies and Mechanisms of Co3O4-Based Electrocatalysts for Oxygen Evolution Reaction: A Review
by Liangjuan Gao, Yifan Jia and Hongxing Jia
Molecules 2025, 30(15), 3238; https://doi.org/10.3390/molecules30153238 - 1 Aug 2025
Viewed by 114
Abstract
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. [...] Read more.
The usage of fossil fuels has resulted in increasingly severe environmental problems, such as climate change, air pollution, water pollution, etc. Hydrogen energy is considered one of the most promising clean energies to replace fossil fuels due to its pollution-free and high-heat properties. However, the oxygen evolution reaction (OER) remains a critical challenge due to its high overpotential and slow kinetics during water electrolysis for hydrogen production. Electrocatalysts play an important role in lowering the overpotential of OER and promoting the kinetics. Co3O4-based electrocatalysts have emerged as promising candidates for the oxygen evolution reaction (OER) due to their favorable catalytic activity and good compatibility compared with precious metal-based electrocatalysts. This review presents a summary of the recent developments in the synthesis strategies and mechanisms of Co3O4-based electrocatalysts for the OER. Various synthesis strategies have been explored to control the size, morphology, and composition of Co3O4 nanoparticles. These strategies enable the fabrication of well-defined nanostructures with enhanced catalytic performance. Additionally, the mechanisms of OER catalysis on Co3O4-based electrocatalysts have been elucidated. Coordinatively unsaturated sites, synergistic effects with other elements, surface restructuring, and pH dependency have been identified as crucial factors influencing the catalytic activity. The understanding of these mechanisms provides insights into the design and optimization of Co3O4-based electrocatalysts for efficient OER applications. The recent advancements discussed in this review offer valuable perspectives for researchers working on the development of electrocatalysts for the OER, with the goal of achieving sustainable and efficient energy conversion and storage systems. Full article
(This article belongs to the Special Issue Emerging Multifunctional Materials for Next-Generation Energy Systems)
Show Figures

Figure 1

37 pages, 1099 KiB  
Review
Application Advances and Prospects of Ejector Technologies in the Field of Rail Transit Driven by Energy Conservation and Energy Transition
by Yiqiao Li, Hao Huang, Shengqiang Shen, Yali Guo, Yong Yang and Siyuan Liu
Energies 2025, 18(15), 3951; https://doi.org/10.3390/en18153951 - 24 Jul 2025
Viewed by 316
Abstract
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this [...] Read more.
Rail transit as a high-energy consumption field urgently requires the adoption of clean energy innovations to reduce energy consumption and accelerate the transition to new energy applications. As an energy-saving fluid machinery, the ejector exhibits significant application potential and academic value within this field. This paper reviewed the recent advances, technical challenges, research hotspots, and future development directions of ejector applications in rail transit, aiming to address gaps in existing reviews. (1) In waste heat recovery, exhaust heat is utilized for propulsion in vehicle ejector refrigeration air conditioning systems, resulting in energy consumption being reduced by 12~17%. (2) In vehicle pneumatic pressure reduction systems, the throttle valve is replaced with an ejector, leading to an output power increase of more than 13% and providing support for zero-emission new energy vehicle applications. (3) In hydrogen supply systems, hydrogen recirculation efficiency exceeding 68.5% is achieved in fuel cells using multi-nozzle ejector technology. (4) Ejector-based active flow control enables precise ± 20 N dynamic pantograph lift adjustment at 300 km/h. However, current research still faces challenges including the tendency toward subcritical mode in fixed geometry ejectors under variable operating conditions, scarcity of application data for global warming potential refrigerants, insufficient stability of hydrogen recycling under wide power output ranges, and thermodynamic irreversibility causing turbulence loss. To address these issues, future efforts should focus on developing dynamic intelligent control technology based on machine learning, designing adjustable nozzles and other structural innovations, optimizing multi-system efficiency through hybrid architectures, and investigating global warming potential refrigerants. These strategies will facilitate the evolution of ejector technology toward greater intelligence and efficiency, thereby supporting the green transformation and energy conservation objectives of rail transit. Full article
(This article belongs to the Special Issue Advanced Research on Heat Exchangers Networks and Heat Recovery)
Show Figures

Figure 1

24 pages, 13010 KiB  
Article
Dual-Vortex Aerosol Mixing Chamber for Micrometer Aerosols: Parametric CFD Analysis and Experimentally Validated Design Improvements
by Ziran Xu, Junjie Liu, Yue Liu, Jiazhen Lu and Xiao Xu
Processes 2025, 13(8), 2322; https://doi.org/10.3390/pr13082322 - 22 Jul 2025
Viewed by 323
Abstract
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol [...] Read more.
Aerosol uniformity in the mixing chamber is one of the key factors in evaluating performance of aerosol samplers and accuracy of aerosol monitors which could output the direct reading of particle size or concentration. For obtaining high uniformity and a stable test aerosol sample during evaluation, a portable mixing chamber, where the sample and clean air were dual-vortex turbulent mixed, was designed. By using computational fluid dynamics (CFD), particle motion within the mixing chamber was illustrated or explained. By adjusting critical structure parameters of chamber such as height and diameter, the flow field structure was optimized to improve particle mixing characteristics. Accordingly, a novel portable aerosol mixing chamber with length and inner diameter of 0.7 m and 60 mm was developed. Through a combination of simulations and experiments, the operating conditions, including working flow rate, ratio of carrier/dilution clean air, and mixture duration, were studied. Finally, by using the optimized parameters, a mixing chamber with high spatial uniformity where variation is less than 4% was obtained for aerosol particles ranging from 0.3 μm to 10 μm. Based on this chamber, a standardized testing platform was established to verify the sampling efficiency of aerosol samplers with high flow rate (28.3 L·min−1). The obtained results were consistent with the reference values in the sampler’s manual, confirming the reliability of the evaluation system. The testing platform developed in this study can provide test aerosol particles ranging from sub-micrometers to micrometers and has significant engineering applications, such as atmospheric pollution monitoring and occupational health assessment. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

25 pages, 10123 KiB  
Article
Fabrication of Micro-Holes with High Aspect Ratios in Cf/SiC Composites Using Coaxial Waterjet-Assisted Nanosecond Laser Drilling
by Chenhu Yuan, Zenggan Bian, Yue Cao, Yinan Xiao, Bin Wang, Jianting Guo and Liyuan Sheng
Micromachines 2025, 16(7), 811; https://doi.org/10.3390/mi16070811 - 14 Jul 2025
Viewed by 272
Abstract
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly [...] Read more.
In the present study, the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in Cf/SiC composites, coupled with nanosecond laser drilling in air for fabricating micro-holes with high aspect ratios, were investigated. The surface morphology, reaction products, and micro-hole shapes were thoroughly examined. The results reveal that, for the coaxial waterjet-assisted nanosecond laser drilling of micro-holes in the Cf/SiC composite, the increasing of waterjet velocity enhances the material removal rate and micro-hole depth, but reduces the micro-hole diameter and taper angle. The coaxial waterjet isolates the laser-ablated region and cools down the corresponding region rapidly, leading to the formation of a mixture of SiC, SiO2, and Si on the surface. As the coaxial waterjet velocity increases, the morphology of residual surface products changes from a net-like structure to individual spheres. Coaxial waterjet-assisted nanosecond laser drilling, with a waterjet velocity of 9.61 m/s, achieves micro-holes with a good balance between efficiency and quality. For the fabrication of micro-holes with a high aspect ratio in Cf/SiC composites, micro-holes fabricated by nanosecond laser drilling in air exhibit obvious taper features, which should be ascribed to the combined effects of spattering slag, plasma, and energy dissipation. The application of coaxial waterjet-assisted nanosecond laser drilling on micro-holes fabricated by laser drilling in air effectively expands the hole diameter. The fabricated micro-holes have very small taper angles, with clean wall surfaces and almost no reaction products. This approach, combining nanosecond laser drilling in air followed by coaxial waterjet-assisted nanosecond laser drilling, offers a promising technique for fabricating high-quality micro-holes with high aspect ratios in Cf/SiC composites. Full article
(This article belongs to the Special Issue Optical and Laser Material Processing, 2nd Edition)
Show Figures

Figure 1

22 pages, 8767 KiB  
Article
Towards Efficiency and Endurance: Energy–Aerodynamic Co-Optimization for Solar-Powered Micro Air Vehicles
by Weicheng Di, Xin Dong, Zixing Wei, Haoji Liu, Zhan Tu, Daochun Li and Jinwu Xiang
Drones 2025, 9(7), 493; https://doi.org/10.3390/drones9070493 - 11 Jul 2025
Viewed by 344
Abstract
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints [...] Read more.
Despite decades of development, micro air vehicles (MAVs) still face challenges related to endurance. While solar power has been successfully implemented in larger aircraft as a clean and renewable source of energy, its adaptation to MAVs presents unique challenges due to payload constraints and complex surface geometries. To address this, this work proposes an automated algorithm for optimal solar panel arrangement on complex upper surfaces of the MAV. In addition to that, the aerodynamic performance is evaluated through computational fluid dynamics (CFD) simulations based on the Reynolds-Averaged Navier–Stokes (RANS) method. A multi-objective optimization approach simultaneously considers photovoltaic energy generation and aerodynamic efficiency. Wind tunnel validation and stability analysis of flight dynamics confirm the advantages of our optimized design. To our knowledge, this represents the first systematic framework for the energy–aerodynamic co-optimization of solar-powered MAVs (SMAVs). Flight tests of a 500mm-span tailless prototype demonstrate the practical feasibility of our approach with maximum solar cell deployment. Full article
Show Figures

Figure 1

25 pages, 11397 KiB  
Article
Impact of Airflow Disturbance from Human Motion on Contaminant Control in Cleanroom Environments: A CFD-Based Analysis
by Abiyeva Guldana, Sayat Niyetbay, Arman Zhanguzhinov, Gulbanu Kassabekova, Dilyara Jartayeva, Kulyash Alimova, Gulnaz Zhakapbayeva and Khalkhabay Bostandyk
Buildings 2025, 15(13), 2264; https://doi.org/10.3390/buildings15132264 - 27 Jun 2025
Viewed by 404
Abstract
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of [...] Read more.
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of evolving threats, such as COVID-19. This study focuses on enhancing the energy efficiency and performance of air conditioning and ventilation systems for cleanrooms, where air recirculation is not permissible. A novel energy-efficient direct-flow air treatment scheme is proposed, integrating a heat pump system with adjustable thermal output. A computational fluid dynamics CFD model of a clean operating room was developed to assess the impact of inlet air velocity on aerosol particle removal and airflow stabilization time. The model also considers the effect of personnel movement. The results supported optimized air distribution, reducing microbial contamination risks, with less than 10 CFU/m3, and improved thermal performance. The proposed system was evaluated for energy and cost efficiency compared to conventional setups. Findings can inform the design and operation of cleanroom ventilation in surgical environments and other high-tech applications. This research contributes to improving indoor air quality and reducing infection risks while enhancing sustainability in healthcare infrastructure. Full article
Show Figures

Figure 1

16 pages, 3867 KiB  
Article
Ultralow-Resistance High-Voltage Loaded Woven Air Filter for Fine Particle/Bacteria Removal
by Weisi Fan, Sanqiang Wei, Ziyun Zhang, Lulu Shi, Jun Wang, Wenlan Hao, Kun Zhang and Qiuran Jiang
Polymers 2025, 17(13), 1765; https://doi.org/10.3390/polym17131765 - 26 Jun 2025
Viewed by 393
Abstract
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage [...] Read more.
Conventional filters for air filtration typically feature compact nonwoven structures, which not only lead to high pressure drop, significant energy consumption, and a decay in filtration efficacy, but are also uncleanable, resulting in substantial pollution upon disposal. In this study, filters with high-voltage electrostatic loading capability were developed with a dopamine binding layer to facilitate the establishment of an Ag conductive layer on the surface of ultraloose woven structure fabrics (pore size: 73.7 μm). The high-voltage-loaded woven structure filtration (VLWF) system was constructed with a negative-ion zone, a high-voltage filtration zone, and a grounded filter. The morphological, chemical, and electrical properties of the filters and the filtration performance of the VLWF system were evaluated. The single-pass filtration efficiencies for PM2.5 and E. coli were 67.4% and 97.0%, respectively. Notably, the pressure drop was reduced to 6.2 Pa, and the quality factor reached 0.1810 Pa−1 with no detectable ozone release. After three cycles of ultrasonic cleaning, approximately 58.4% of filtration efficiency was maintained without any increase in air resistance. The removal of PM2.5 and microorganisms by this system was not solely reliant on blocking and electrostatic attraction but may also involve induced repulsion and biostructure inactivation. By integrating the ultraloose woven structure with high-voltage assistance, this VLWF system effectively balanced the requirements for high filtration efficacy and low air resistance. More importantly, this VLWF system provided a cleanable filter model that reduced the pollution associated with conventional disposable filters and lowered costs for customers. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

57 pages, 3664 KiB  
Review
Advancing Municipal Solid Waste Management Through Gasification Technology
by Uzeru Haruna Kun and Ewelina Ksepko
Processes 2025, 13(7), 2000; https://doi.org/10.3390/pr13072000 - 24 Jun 2025
Cited by 1 | Viewed by 833
Abstract
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated [...] Read more.
This review thoroughly evaluates gasification as a transformative alternative to conventional methods for managing municipal solid waste (MSW), highlighting its potential to convert carbonaceous materials into syngas for energy and chemical synthesis. A comparative evaluation of more than 350 papers and documents demonstrated that gasification is superior to incineration and pyrolysis, resulting in lower harmful emissions and improved energy efficiency, which aligns with sustainability goals. Key operational findings indicate that adjusting the temperature to 800–900 °C leads to the consumption of CO2 and the production of CO via the Boudouard reaction. Air gasification produces syngas yields of up to 76.99 wt% at 703 °C, while oxygen gasification demonstrates a carbon conversion efficiency of 80.2%. Steam and CO2 gasification prove to be effective for producing H2 and CO, respectively. Catalysts, especially nickel-based ones, are effective in reducing tar and enhancing syngas quality. Innovative approaches, such as co-gasification, plasma and solar-assisted gasification, chemical looping, and integration with carbon capture, artificial intelligence (AI), and the Internet of Things (IoT), show promise in improving process performance and reducing technical and economic hurdles. The review identifies research gaps in catalyst development, feedstock variability, and system integration, emphasizing the need for integrated research, policy, and investment to fully realize the potential of gasification in the clean energy transition and sustainable MSW management. Full article
(This article belongs to the Special Issue Advances in Solid Waste Treatment and Design (2nd Edition))
Show Figures

Figure 1

26 pages, 4271 KiB  
Article
Machine Learning-Based Predictive Maintenance for Photovoltaic Systems
by Ali Al-Humairi, Enmar Khalis, Zuhair A. Al-Hemyari and Peter Jung
AI 2025, 6(7), 133; https://doi.org/10.3390/ai6070133 - 20 Jun 2025
Viewed by 1285
Abstract
The performance of photovoltaic systems is highly dependent on environmental conditions, with soiling due to dust accumulation often being referred to as a predominant energy degradation factor, especially in dry and semi-arid environments. This paper introduces an AI-based robotic cleaning system that can [...] Read more.
The performance of photovoltaic systems is highly dependent on environmental conditions, with soiling due to dust accumulation often being referred to as a predominant energy degradation factor, especially in dry and semi-arid environments. This paper introduces an AI-based robotic cleaning system that can independently forecast and schedule cleaning sessions from real-time sensor and environmental data. Methods: The system integrates sources of data like embedded sensors, weather stations, and DustIQ data to create an integrated dataset for predictive modeling. Machine learning models were employed to forecast soiling loss based on significant atmospheric parameters such as relative humidity, air pressure, ambient temperature, and wind speed. Dimensionality reduction through the principal component analysis and correlation-based feature selection enhanced the model performance as well as the interpretability. A comparative study of four conventional machine learning models, including logistic regression, k-nearest neighbors, decision tree, and support vector machine, was conducted to determine the most appropriate approach to classifying cleaning needs. Results: Performance, based on accuracy, precision, recall, and F1-score, demonstrated that logistic regression and SVM provided optimal classification performance with accuracy levels over 92%, and F1-scores over 0.90, demonstrating outstanding balance between recall and precision. The KNN and decision tree models, while slightly poorer in terms of accuracy (around 85–88%), had computational efficiency benefits, making them suitable for utilization in resource-constrained applications. Conclusions: The proposed system employs a dry-cleaning mechanism that requires no water, making it highly suitable for arid regions. It reduces unnecessary cleaning operations by approximately 30%, leading to decreased mechanical wear and lower maintenance costs. Additionally, by minimizing delays in necessary cleaning, the system can improve annual energy yield by 3–5% under high-soiling conditions. Overall, the intelligent cleaning schedule minimizes manual intervention, enhances sustainability, reduces operating costs, and improves system performance in challenging environments. Full article
Show Figures

Figure 1

12 pages, 3259 KiB  
Article
An Experimental Study on the Performance of Proton Exchange Membrane Fuel Cells with Marine Ion Contamination
by Shian Li, Li Zhang, Gaokui Chen, Ruiyang Zhang, Aolong Liu, Guogang Yang and Qiuwan Shen
J. Mar. Sci. Eng. 2025, 13(6), 1182; https://doi.org/10.3390/jmse13061182 - 17 Jun 2025
Viewed by 422
Abstract
Proton exchange membrane fuel cells (PEMFCs) have the advantages of high efficiency, a low operating temperature, and a pollution-free reaction. Therefore, PEMFCs have emerged as a viable clean energy solution for ships to reduce their carbon emissions. When PEMFCs operate in marine salt [...] Read more.
Proton exchange membrane fuel cells (PEMFCs) have the advantages of high efficiency, a low operating temperature, and a pollution-free reaction. Therefore, PEMFCs have emerged as a viable clean energy solution for ships to reduce their carbon emissions. When PEMFCs operate in marine salt spray environments, foreign ions entering the cathodes of fuel cells with air can cause a decline in cell performance. In this study, the effects of the cation type (K+, Na+, Mg2+, and Ca2+) and concentration (0.25 M and 0.5 M) on cell performance in terms of the polarization curve were systematically investigated using a fuel cell test system. Cell performance degradation was observed due to the existence of cations. The influence of the four cations on cell performance followed the rule of Ca2+ > Mg2+ > Na+ > K+. Meanwhile, cell performance decreased with an increase in concentration. When the fuel cell was not contaminated, the voltage was 0.645 V at a current density of 1 A/cm2. When the concentration was 0.5 M, the corresponding voltages were 0.594 V, 0.583 V, 0.559 V, and 0.300 V, respectively. In addition, fuel cells contaminated by NaNO3 and NaCl were compared. Due to the existence of Cl, more severe performance degradation was observed when the fuel cells were contaminated by NaCl. Full article
(This article belongs to the Special Issue Research and Development of Green Ship Energy)
Show Figures

Figure 1

22 pages, 7976 KiB  
Article
Comprehensive Optimization of Air Quality in Kitchen Based on Auxiliary Evaluation Indicators
by Hai Huang, Shunyu Zhang, Xiangrui Zhao and Zhenlei Chen
Appl. Sci. 2025, 15(12), 6755; https://doi.org/10.3390/app15126755 - 16 Jun 2025
Viewed by 386
Abstract
Traditional single-scale indoor air quality (IAQ) evaluation methods often fail to meet the demands of modern, personalized kitchens. To address this limitation, we propose a comprehensive IAQ index, integrating experimental data and simulation results. The index incorporates four key IAQ auxiliary evaluation indicators: [...] Read more.
Traditional single-scale indoor air quality (IAQ) evaluation methods often fail to meet the demands of modern, personalized kitchens. To address this limitation, we propose a comprehensive IAQ index, integrating experimental data and simulation results. The index incorporates four key IAQ auxiliary evaluation indicators: air distribution performance index (ADPI), predicted mean vote (PMV), cooking oil fume particulates (COFP), and CO2 concentration. We developed a kitchen model and used the comprehensive IAQ index to benchmark simulation results against experimental tests. Optimal kitchen air quality occurred at a supply air angle of 90° and airflow velocity of 2.268 m3/min, reducing air pollution impact by 29.50%. This configuration enhanced thermal comfort while reducing secondary COFP accumulation in the breathing zone by 22%. The 29.50% Q-index reduction corresponded to a 24% decrease in peak CO2 exposure (638 ppm, clean-air level) and 22% lower COFP in breathing zones, mitigating health risks. Optimized airflow (2.268 m3/min) avoided excessive ventilation, reducing energy waste and achieving balanced IAQ-energy efficiency. Full article
Show Figures

Figure 1

26 pages, 3377 KiB  
Article
Which Offers Greater Techno-Economic Potential: Oil or Hydrogen Production from Light Oil Reservoirs?
by Chinedu J. Okere, James J. Sheng and Princewill M. Ikpeka
Geosciences 2025, 15(6), 214; https://doi.org/10.3390/geosciences15060214 - 9 Jun 2025
Cited by 1 | Viewed by 528
Abstract
The global emphasis on clean energy has increased interest in producing hydrogen from petroleum reservoirs through in situ combustion-based processes. While field practices have demonstrated the feasibility of co-producing hydrogen and oil, the question of which offers greater economic potential, oil, or hydrogen, [...] Read more.
The global emphasis on clean energy has increased interest in producing hydrogen from petroleum reservoirs through in situ combustion-based processes. While field practices have demonstrated the feasibility of co-producing hydrogen and oil, the question of which offers greater economic potential, oil, or hydrogen, remains central to ongoing discussions, especially as researchers explore ways to produce hydrogen exclusively from petroleum reservoirs. This study presents the first integrated techno-economic model comparing oil and hydrogen production under varying injection strategies, using CMG STARS for reservoir simulations and GoldSim for economic modeling. Key technical factors, including injection compositions, well configurations, reservoir heterogeneity, and formation damage (issues not addressed in previous studies), were analyzed for their impact on hydrogen yield and profitability. The results indicate that CO2-enriched injection strategies enhance hydrogen production but are economically constrained by the high costs of CO2 procurement and recycling. In contrast, air injection, although less efficient in hydrogen yield, provides a more cost-effective alternative. Despite the technological promise of hydrogen, oil revenue remains the dominant economic driver, with hydrogen co-production facing significant economic challenges unless supported by policy incentives or advancements in gas lifting, separation, and storage technologies. This study highlights the economic trade-offs and strategic considerations crucial for integrating hydrogen production into conventional petroleum extraction, offering valuable insights for optimizing hydrogen co-production in the context of a sustainable energy transition. Additionally, while the present work focuses on oil reservoirs, future research should extend the approach to natural gas and gas condensate reservoirs, which may offer more favorable conditions for hydrogen generation. Full article
Show Figures

Figure 1

13 pages, 1844 KiB  
Article
Adaptation of Grain Cleaning Equipment for Kalonji and Sesame Seeds
by Ramadas Narayanan, Vu Hoan Tram, Tieneke Trotter, Charissa Rixon, Gowrishankaran Raveendran, Federico Umansky and Surya P. Bhattarai
AgriEngineering 2025, 7(6), 179; https://doi.org/10.3390/agriengineering7060179 - 6 Jun 2025
Viewed by 822
Abstract
Threshing and cleaning are crucial for efficient harvest procedures that are carried out to separate the grains from the biomass and eliminate any potential contaminants or foreign debris. This study examines the cleaning capabilities of the grain cleaning equipment Kimseed Cleaner MK3, a [...] Read more.
Threshing and cleaning are crucial for efficient harvest procedures that are carried out to separate the grains from the biomass and eliminate any potential contaminants or foreign debris. This study examines the cleaning capabilities of the grain cleaning equipment Kimseed Cleaner MK3, a vibratory sieve and air-screen device, for tiny oilseed crops, particularly kalonji (Nigella sativa) and sesame (Sesamum indicum L.), which are valued for their industrial, medicinal, and nutritional properties. These crops frequently provide post-harvest cleaning issues because of their tiny size and vulnerability to contamination from weed seeds, plant residues, and immature or damaged conditions. In order to determine the ideal operating parameters, 0.5 kg of threshed seed samples with 10% moisture content were utilised in the experiment. A variety of shaker frequencies (0.1–10 Hz) and airflow speeds (0.1–10 m/s) were assessed. A two-stage cleaning method was applied for sesame: the first stage targeted larger contaminants (6.5–7.0 Hz and 1.25–1.5 m/s), while the second stage targeted finer impurities (5.25–5.5 Hz and 1.75–2.0 m/s). With a single-stage procedure (5.5–6.0 Hz and 1.0–1.5 m/s), kalonji was successfully cleaned. The findings demonstrated that sesame attained 98.5% purity at the output rate of 200.6 g/min (12.03 kg/h) while kalonji reached 97.6% seed purity at an output rate of 370.2 g/min (22.2 kg/h). These results demonstrate how important carefully regulated shaker frequency and airflow speed are for improving output quality and cleaning effectiveness. The study shows that the Kimseed MK3 is a suitable low-cost, scalable option for research operations and smallholder farmers, providing better seed quality and processing efficiency for underutilised yet economically valuable oilseed crops. Full article
(This article belongs to the Section Agricultural Mechanization and Machinery)
Show Figures

Figure 1

Back to TopTop