Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (100)

Search Parameters:
Keywords = agroclimatic zones

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5507 KiB  
Article
Variable-Rate Nitrogen Application in Wheat Based on UAV-Derived Fertilizer Maps and Precision Agriculture Technologies
by Alexandros Tsitouras, Christos Noulas, Vasilios Liakos, Stamatis Stamatiadis, Miltiadis Tziouvalekas, Ruijun Qin and Eleftherios Evangelou
Agronomy 2025, 15(7), 1714; https://doi.org/10.3390/agronomy15071714 - 16 Jul 2025
Viewed by 1176
Abstract
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct [...] Read more.
Variable-rate nitrogen (VR-N) application allows farmers to optimize nitrogen (N) input site-specifically within field boundaries, enhancing both economic efficiency and environmental sustainability. In this study, VR-N technology was applied to durum wheat in two small-scale commercial fields (3–4 ha each) located in distinct agro-climatic zones of Thessaly, central Greece. A real-time VR-N application algorithm was used to calculate N rates based on easily obtainable near-real-time data from unmanned aerial vehicle (UAV) imagery, tailored to the crop’s actual needs. VR-N implementation was carried out using conventional fertilizer spreaders equipped to read prescription maps. Results showed that VR-N reduced N input by up to 49.6% compared to the conventional uniform-rate N (UR-N) application, with no significant impact on wheat yield or grain quality. In one of the fields, the improved gain of VR-N when compared to UR-N was 7.2%, corresponding to an economic gain of EUR 163.8 ha−1, while in the second field—where growing conditions were less favorable—no considerable VR-N economic gain was observed. Environmental benefits were also notable. The carbon footprint (CF) of the wheat crop was reduced by 6.4% to 22.0%, and residual soil nitrate (NO3) levels at harvest were 13.6% to 36.1% lower in VR-N zones compared to UR-N zones. These findings suggest a decreased risk of NO3 leaching and ground water contamination. Overall, the study supports the viability of VR-N as a practical and scalable approach to improve N use efficiency (NUE) and reduce the environmental impact of wheat cultivation which could be readily adopted by farmers. Full article
Show Figures

Figure 1

16 pages, 3303 KiB  
Article
Assessment of Genetic Diversity by Morphological, Biochemical, and Molecular Markers in Gloriosa superba Ecotypes Collected from Different Agro-Climatic Zones in India
by Moumita Majumdar, Rakesh Arya, Soumya Prakash Sahu, Archana Tiwari and Jong-Joo Kim
Horticulturae 2025, 11(7), 723; https://doi.org/10.3390/horticulturae11070723 - 21 Jun 2025
Viewed by 347
Abstract
Background: Gloriosa superba L., commonly known as Glory Lily, is a medicinally valuable perennial climber native to tropical and subtropical regions of India. It is known for its rich alkaloid content, including colchicine and colchicoside, which contribute to its therapeutic potential in treating [...] Read more.
Background: Gloriosa superba L., commonly known as Glory Lily, is a medicinally valuable perennial climber native to tropical and subtropical regions of India. It is known for its rich alkaloid content, including colchicine and colchicoside, which contribute to its therapeutic potential in treating various ailments. Despite its pharmacological significance, genomic research on G. superba remains limited due to the lack of genetic markers, hindering molecular studies and breeding advancements. Methods: This study utilized a previously reported de novo transcriptome assembly of G. superba, identifying 14,672 EST-SSRs as genomic markers to assess genetic variations across different accessions. Genetic diversity was examined using SSR markers, while 20 morphological traits were systematically evaluated across 19 G. superba accessions from diverse geographic regions to provide insights into trait variability. Results: The most highly variable traits included plant height, number of leaves per plant, number of branches per plant, fresh pod yield, fresh seed yield, dry seed yield, number of pods per plant, leaf width, and internodal length, with coefficients of variation (CV) ranging from 63.53% to 22.45%. Intermediate CV values (10.05% to 18.75%) were observed in eight traits, while three traits (days to flowering, days to 50% flowering, and colchicine content) had low variation (<5%). Principal component analysis (PCA) accounted for 51.3% of phenotypic variation, with PC1 and PC2 contributing 29.4% and 21.9%, respectively. Clustering analysis grouped the 19 G. superba accessions into two main clusters and four sub-clusters, highlighting significant genetic divergence, with the highest dissimilarity (81.45%) observed between accessions from Arrupukottai and Pachmarhi. SSR analysis using 112 markers revealed high polymorphism but a relatively low heterozygosity index (H = 0.277) and PIC values of individual SSRs ranged from 0.26069 in RGM-51635 to 0.4534 in RGM-24219. Conclusions: The genetic divergence observed among the collected G. superba ecotypes provides valuable insights for future breeding programs aimed at enhancing cultivation efficiency and developing superior varieties with improved yield and colchicine content. Full article
(This article belongs to the Special Issue Novel Insights into the Phenology of Medicinal and Aromatic Plants)
Show Figures

Figure 1

22 pages, 12863 KiB  
Article
The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts
by João Antonio Lorençone, Pedro Antonio Lorençone, Lucas Eduardo de Oliveira Aparecido, Guilherme Botega Torsoni, Glauco de Souza Rolim and Fernando Giovannetti Macedo
AgriEngineering 2025, 7(6), 198; https://doi.org/10.3390/agriengineering7060198 - 19 Jun 2025
Viewed by 754
Abstract
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton ( [...] Read more.
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton (Gossypium hirsutum L.) across Brazil under current and future climate conditions using data from the World-Clim and MapBiomas platforms. Four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) were assessed over multiple time periods. Results showed that rising temperatures and reduced rainfall will likely reduce cotton suitability in traditional producing regions such as Bahia. However, areas with potential for cotton cultivation, especially in Mato Grosso, which currently accounts for 90% of national production, remain extensive, with agroclimatic conditions indicating a theoretical expansion potential of up to 40 times the current cultivated area. This projection must be interpreted with caution, as it does not account for economic, logistical, or social constraints. Notably, Brazilian cotton is cultivated with minimal irrigation, low fertilizer input, and high adoption of no-till systems, making it one of the least carbon-intensive globally. Full article
Show Figures

Graphical abstract

34 pages, 6650 KiB  
Article
Salinity of Irrigated and Non-Irrigated Chernozems and Kastanozems: A Case Study of Causes and Consequences in the Pavlodar Region, Kazakhstan
by Dauren Rakhmanov, Bořivoj Šarapatka, Marek Bednář, Jan Černohorský and Kamilla Alibekova
Soil Syst. 2025, 9(2), 57; https://doi.org/10.3390/soilsystems9020057 - 28 May 2025
Viewed by 503
Abstract
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic [...] Read more.
This study investigated soil salinization processes in the Pavlodar region of Kazakhstan by comparing key soil parameters—namely, electrical conductivity (EC), pH, exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) under irrigated and non-irrigated conditions across different agro-climatic zones and soil types (Haplic Chernozems, Haplic Kastanozems). The focus was on understanding the effects of irrigation and natural factors on soil salinization. Statistical analysis, including descriptive statistics and significance testing, was employed to evaluate differences between soil types, locations, and management practices. The research revealed secondary salinization (EC > 2 dS/m, ESP > 15%) in the topsoil of irrigated Haplic Kastanozems soils in the central Aksu district. This degradation was markedly higher than in non-irrigated plots or irrigated Haplic Chernozems in the northern Irtysh district, highlighting the high vulnerability of Haplic Kastanozems soils under current irrigation management given Aksu’s climatic conditions, which are characterized by high evaporative demand (driven by summer temperatures) and specific precipitation patterns that contribute to soil moisture deficits without irrigation. While ESP indicated sodicity, SAR values remained low. Natural factors, including potentially saline parent materials and likely shallow groundwater dynamics influenced by irrigation, appear to contribute to the observed patterns. The findings underscore the need for implementing optimized irrigation and drainage management, particularly in the Aksu district, potentially including water-saving techniques (e.g., drip irrigation) and selection of salt/sodicity-tolerant crops. A comprehensive approach integrating improved water management, agronomic practices, and potentially soil amendments is crucial for mitigating soil degradation and ensuring sustainable agriculture in the Pavlodar region. Further investigation including groundwater monitoring is recommended. Full article
(This article belongs to the Special Issue Research on Soil Management and Conservation: 2nd Edition)
Show Figures

Figure 1

14 pages, 4161 KiB  
Article
Genotypic Performance of Coffea canephora at Transitional Altitudes for Climate-Resilient Coffee Cultivation
by Renan Baptista Jordaim, Tafarel Victor Colodetti, Wagner Nunes Rodrigues, Rodrigo Amaro de Salles, José Francisco Teixeira do Amaral, Laiane Silva Maciel, Fábio Luiz Partelli, José Cochicho Ramalho and Marcelo Antonio Tomaz
Horticulturae 2025, 11(6), 595; https://doi.org/10.3390/horticulturae11060595 - 27 May 2025
Viewed by 584
Abstract
The Coffea canephora market has grown significantly, driven by its economic relevance and improvements in beverage quality. Developing varieties adapted to local edaphoclimatic conditions is essential for supporting smallholder farmers, increasing productivity, and ensuring quality in the face of environmental challenges. This study [...] Read more.
The Coffea canephora market has grown significantly, driven by its economic relevance and improvements in beverage quality. Developing varieties adapted to local edaphoclimatic conditions is essential for supporting smallholder farmers, increasing productivity, and ensuring quality in the face of environmental challenges. This study evaluated 27 genotypes under two irrigation regimes using a split-plot design in a completely randomized block arrangement, with four replicates and three plants per plot. Growth and yield parameters were assessed. Genotypes 102, 103, 105, 106, 202, 209, 301, 303, and 305 showed significantly higher yields under full irrigation—up to 60% greater than under minimal irrigation—demonstrating strong responsiveness to water availability. In contrast, genotypes 203 and 206 performed better under minimal irrigation, with 29% higher yields, suggesting lower water requirements or greater drought tolerance. These findings highlight the potential for selecting genotypes suited to transitional altitudes that can benefit from targeted irrigation strategies. The combined use of irrigation and altitude-specific cultivation represents a viable and necessary approach to maximizing genetic potential, optimizing water use, and enhancing the sustainability of C. canephora cultivation in regions facing climate variability. Full article
Show Figures

Figure 1

24 pages, 2819 KiB  
Article
Challenges in Precision Sunflower Cultivation: The Impact of the Agronomic Environment on the Quality of Precision Sowing Techniques and Yield Parameters
by Mihály Zalai, Csaba Bojtor, János Nagy, Adrienn Széles, Szabolcs Monoki and Árpád Illés
AgriEngineering 2025, 7(5), 145; https://doi.org/10.3390/agriengineering7050145 - 6 May 2025
Viewed by 814
Abstract
Precision agriculture and advanced sowing technologies, including variable sowing rates, can be used to optimise sunflower yields by ensuring a uniform plant distribution, efficient resource utilisation, and adaptation to soil variability. These agronomic and technological innovations help mitigate field heterogeneity effects, enhancing sunflower [...] Read more.
Precision agriculture and advanced sowing technologies, including variable sowing rates, can be used to optimise sunflower yields by ensuring a uniform plant distribution, efficient resource utilisation, and adaptation to soil variability. These agronomic and technological innovations help mitigate field heterogeneity effects, enhancing sunflower establishment, growth, and overall yield stability. The main goal of this research was to analyse the interactions among management, soil, and environmental variables and their effects on the sowing quality and yield in the case of precision sunflower production. A sowing field experiment was set up in the period between 2021 and 2023 to identify these effects and their complex interactions, which were evaluated with the aim of improving the sowing and yield parameters, while also understanding the importance of each different parameter. As a key outcome for precision sowing, this research demonstrates that the variability in sowing parameters—such as double and missing sowing rates, as well as sowing uniformity—was significantly influenced by the field conditions, productivity zones, and nominal crop density. These findings underscore the importance of implementing site-specific management strategies to optimise sunflower production and maximise yields. Overall, of the various factors influencing sunflower production, the crop year proved to be more significant than the soil parameters due to the strong influence of annual climatic variability. The field zone was also identified as a more critical determinant of sowing and yield variability than crop density, highlighting the importance of spatial management within fields, and also marking possible directions for future research. Full article
Show Figures

Figure 1

16 pages, 1667 KiB  
Article
Determinants of Farmers’ Strategies for Adaptation to Climate Change in Agricultural Production in Afghanistan
by Senthilnathan Samiappan, Meraj Sarwary, Saravanakumar Venkatachalam, Ezatullah Shinwari, Kokilavani Sembanan, Jeyalakshmi Poornalingam, Kiruthika Natarajan, Nirmaladevi Muthusamy, Indumathi Veeramuthu Murugiah, Satheeshkumar Natesan, Anitha Thiyagarajan and Subasri Kathiravan
World 2025, 6(2), 59; https://doi.org/10.3390/world6020059 - 6 May 2025
Cited by 1 | Viewed by 1615
Abstract
Climate variability and extremes adversely affect the agricultural production system, food security, livestock sector, and water resources. With the cumulative effects of climate variability, there is a need to anticipate and develop appropriate adaptation strategies to cope with changing climatic conditions. It is [...] Read more.
Climate variability and extremes adversely affect the agricultural production system, food security, livestock sector, and water resources. With the cumulative effects of climate variability, there is a need to anticipate and develop appropriate adaptation strategies to cope with changing climatic conditions. It is necessary to study the adaptation strategies that are to be followed for climate change to examine the ability of vulnerable communities and people, frequently affected by drought and other climate-related risks, to adapt to climate change impacts. Hence, the present study examined the determinants of various climate change adaptation strategies followed by farmers as a measure to face climate variability, which will be ultimately beneficial and enlightening to policymakers to gain knowledge about the measures to be taken to mitigate the impact of climate change. The study was undertaken using data collected from 105 farm households with an organized pre-tested interview schedule in the central agro-climatic zone of Afghanistan. The multivariate probit econometric model was used to analyze the factors responsible for major adaptation strategies to mitigate the impact of climate change. The key findings of the model indicated that the probability of educated farmers migrating to the non-agricultural sector for employment has increased by 1.3 percent, and those who have more land area have adopted a reduction in irrigation by 5.2 percent as an adaptive mechanism. The study also found that having access to technical guidance from extension officials increased the likelihood of farmers changing their cropping pattern by 18.6 percent and of diversifying their farms by 19.2 percent. On the other hand, expert guidance reduced the likelihood of drilling new bore wells by 20.5 percentage points and decreased the probability of selling livestock by 10.8 percentage points. The results of the study provide policy insights to improve the ability of farmers to modify their practices through improvement in extension services, irrigation infrastructure facilities, watershed development, and climate-resilient agricultural systems. Full article
Show Figures

Figure 1

32 pages, 3198 KiB  
Article
Shaping the Future of Horticulture: Innovative Technologies, Artificial Intelligence, and Robotic Automation Through a Bibliometric Lens
by Maria Magdalena Poenaru, Liviu Florin Manta, Claudia Gherțescu and Alina Georgiana Manta
Horticulturae 2025, 11(5), 449; https://doi.org/10.3390/horticulturae11050449 - 22 Apr 2025
Cited by 1 | Viewed by 2109
Abstract
This study conducts a bibliometric and content analysis based on publications indexed in the Web of Science Core Collection, aiming to map the evolution and key themes in horticultural research in the context of technological innovation and sustainability. The results reveal a strong [...] Read more.
This study conducts a bibliometric and content analysis based on publications indexed in the Web of Science Core Collection, aiming to map the evolution and key themes in horticultural research in the context of technological innovation and sustainability. The results reveal a strong orientation toward digitalization and automation, particularly through the integration of artificial intelligence, mechatronic systems, and sensor-based monitoring in crop management. In the field of biotechnology, keywords such as gene expression, genetic diversity, and micropropagation reflect a sustained research interest in improving crop resilience and disease resistance through genetic and in vitro propagation techniques. Furthermore, concepts such as environmental control, soilless culture, energy efficiency, and co-generation highlight the focus on optimizing growing conditions and integrating renewable energy sources into protected horticultural systems. The geographical distribution of studies highlights increased academic output in countries like India and regions of sub-Saharan Africa, reflecting a global interest in transferring advanced technologies to vulnerable areas. Moreover, collaboration networks are dominated by leading institutions such as Wageningen University, which act as hubs for knowledge diffusion. The findings suggest that future research should prioritize the development of durable, energy-efficient horticultural technologies adapted to various agro-climatic zones. It is recommended that policymakers and stakeholders support interdisciplinary research initiatives, promote knowledge transfer mechanisms, and ensure equitable access to innovation for smallholder farmers and emerging economies. Full article
Show Figures

Figure 1

11 pages, 653 KiB  
Article
Seroprevalence of Brucellosis in Haryana, India: A Study Using Rose Bengal Plate Test and Enzyme-Linked Immunosorbent Assay
by Dinesh Mittal, Kushal Grakh, Manesh Kumar, Punit Jhandai, Swati Dahiya, Renu Gupta, Ramesh Kumar, Anand Prakash, Pankaj Kumar, Pallavi Moudgil, Rajesh Khurana and Naresh Jindal
Pathogens 2025, 14(4), 373; https://doi.org/10.3390/pathogens14040373 - 10 Apr 2025
Viewed by 666
Abstract
Brucellosis, a contagious reproductive disease of livestock, has a significant economic impact in terms of abortions and stillbirths and has zoonotic importance. A study was conducted to estimate the seroprevalence of brucellosis in a bovine population in Haryana state, India. This study was [...] Read more.
Brucellosis, a contagious reproductive disease of livestock, has a significant economic impact in terms of abortions and stillbirths and has zoonotic importance. A study was conducted to estimate the seroprevalence of brucellosis in a bovine population in Haryana state, India. This study was carried out on 4325 bovine serum samples (Cattle: 2151, Buffalo: 2174) using the Rose Bengal Plate Test (RBPT) and indirect enzyme-linked immunosorbent assay (i-ELISA). The seroprevalence, estimated individually by the RBPT and i-ELISA, was found to be 6.86% (95% CI: 6.11–7.62) and 6.05% (95% CI: 5.34–6.76), respectively. In total, 258 out of 4325 (5.96%; 95% CI: 5.25–6.67) samples were found to be positive by both assays. The prevalence was found to be significantly higher in the cattle population (7.58%) as compared to buffalo (4.37%) (Chi-square = 19, p < 0.001). Seroprevalence was highest in the agroclimatic zone I (8.73%), followed by zone II (7.33%) and zone III (1.45%) (Chi-square = 76.27, p < 0.001). Full article
(This article belongs to the Special Issue Infection and Immunity in Animals)
Show Figures

Figure 1

20 pages, 2348 KiB  
Article
Increased Temperature Effects During Fruit Growth and Maturation on the Fruit Quality, Sensory and Antioxidant Properties of Raspberry (Rubus idaeus L.) cv. Heritage
by Francisca Aguilar, Martina Salazar, Lida Fuentes, Daniel Calderini, Alejandro Jerez and Carolina Contreras
Foods 2025, 14(7), 1201; https://doi.org/10.3390/foods14071201 - 29 Mar 2025
Viewed by 1006
Abstract
Red raspberries are valued for their color, flavor, and health-promoting organic compounds, which may be affected by increased temperatures due to climate change. This work aimed to provide new information on the response of raspberry cv. “Heritage” to thermal increase and its impact [...] Read more.
Red raspberries are valued for their color, flavor, and health-promoting organic compounds, which may be affected by increased temperatures due to climate change. This work aimed to provide new information on the response of raspberry cv. “Heritage” to thermal increase and its impact on fruit quality and perceived flavor. The study was conducted during two seasons in two locations with contrasting agroclimatic conditions. A zone with high background temperatures (central orchard) and low background temperatures (southern orchard) were studied. The treatments were three heating chambers installed at the fruit set, increasing the ambient temperature by ~4 °C, and untreated controls. Heat-treated raspberries were larger than the controls but showed softer fruit. Soluble solids were lower in treated fruit, while titratable acidity did not show a consistent pattern between treatments or orchards. Flavonoid content and anthocyanins did not present a clear pattern for both orchards and seasons. Heated raspberries had lower vitamin C in both years and orchards. The sensory analysis revealed differences only in color uniformity in the heated fruit from the central zone. Increased temperatures will affect the quality and nutritional aspects of the raspberries; however, at a sensory level, these changes may not be perceived. Full article
Show Figures

Figure 1

19 pages, 5377 KiB  
Article
Agroclimatic Indicator Analysis Under Climate Change Conditions to Predict the Climatic Suitability for Wheat Production in the Upper Blue Nile Basin, Ethiopia
by Wondimeneh Leul Demissew, Tadesse Terefe Zeleke, Kassahun Ture, Dejene K. Mengistu and Meaza Abera Fufa
Agriculture 2025, 15(5), 525; https://doi.org/10.3390/agriculture15050525 - 28 Feb 2025
Cited by 1 | Viewed by 965
Abstract
Agricultural productivity is significantly influenced by climate-related factors. Understanding the impacts of climate change on agroclimatic conditions is critical for ensuring sustainable agricultural practices. This study investigates how key agroclimatic variables—temperature, moisture conditions, and length of the growing season (LGS)—influence wheat suitability in [...] Read more.
Agricultural productivity is significantly influenced by climate-related factors. Understanding the impacts of climate change on agroclimatic conditions is critical for ensuring sustainable agricultural practices. This study investigates how key agroclimatic variables—temperature, moisture conditions, and length of the growing season (LGS)—influence wheat suitability in the Upper Blue Nile Basin (UBNB), Ethiopia. The Global Agroecological Zones (GAEZ) methodology was employed to assess agroclimatic suitability, integrating climate projections from Climate Models Intercomparison Project v6 (CMIP6) under shared socioeconomic pathway (ssp370 and ssp585) scenarios. The CMIP6 data provided downscaled projections for temperature and precipitation, while the GAEZ framework translated these climatic inputs into agroclimatic indicators, enabling spatially explicit analyses of land suitability. Projections indicate significant warming, with mean annual temperatures expected to rise between 1.13 °C and 4.85 °C by the end of the century. Precipitation levels are anticipated to increase overall, although spatial variability may challenge moisture availability in some regions. The LGS is projected to extend, particularly in the southern and southeastern UBNB, enhancing agricultural potential in these areas. However, wheat suitability faces considerable declines; under ssp585, the highly suitable area is expected to drop from 24.21% to 13.31% by the 2080s due to thermal and moisture stress. This study highlights the intricate relationship between agroclimatic variables and agricultural productivity. Integrating GAEZ and CMIP6 projections provides quantified insights into the impacts of climate change on wheat suitability. These findings offer a foundation for developing adaptive strategies to safeguard food security and optimize land use in vulnerable regions. Full article
(This article belongs to the Section Ecosystem, Environment and Climate Change in Agriculture)
Show Figures

Figure 1

25 pages, 4065 KiB  
Article
Projected Bioclimatic Changes in Portugal: Assessing Maize Future Suitability
by Daniela Soares, Paula Paredes, Teresa A. Paço and João Rolim
Agronomy 2025, 15(3), 592; https://doi.org/10.3390/agronomy15030592 - 27 Feb 2025
Viewed by 1160
Abstract
In Portugal, maize is a major crop, occupying about 40% of the cereals area. The present study aimed to assess future bioclimatic conditions that could affect maize production in Portugal. For this purpose, a set of indicators was selected including dry spells (DSs) [...] Read more.
In Portugal, maize is a major crop, occupying about 40% of the cereals area. The present study aimed to assess future bioclimatic conditions that could affect maize production in Portugal. For this purpose, a set of indicators was selected including dry spells (DSs) and the aridity index (AI). Two additional indicators were included, one related to the soil water reservoir available for maize (RAW) and the other related to the maize thermal unit (MTU), which were designed to assess the suitability of land for growing different varieties of maize. The analysis focused on historical (1971–2000) and future (2011–2070; 2041–2070; 2071–2100) climate scenarios (RCP4.5 and RCP8.5) using a four-member ensemble of global climate models. The results for the more distant and severe scenario suggest that there will be an overall increasing tendency in the AI, i.e., higher aridity, namely in the southern part of Portugal compared to the north (0.65 vs. 0.45). The soils in the south are characterized by a lower average RAW (<35 mm) than in the north (>50 mm), which leads to a lower irrigation frequency requirement in the north. As a result of the increased MTU, maize production will shift, allowing for varieties with higher thermal requirements and the conversion of areas traditionally used for silage maize to grain maize production areas. Adaptation measures to improve the climate resilience of maize are discussed. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

31 pages, 1788 KiB  
Review
The Myth That Eucalyptus Trees Deplete Soil Water—A Review
by Priscila Lira de Medeiros, Alexandre Santos Pimenta, Neyton de Oliveira Miranda, Rafael Rodolfo de Melo, Jhones da Silva Amorim and Tatiane Kelly Barbosa de Azevedo
Forests 2025, 16(3), 423; https://doi.org/10.3390/f16030423 - 26 Feb 2025
Cited by 2 | Viewed by 5589
Abstract
The increase in demand for timber and global eucalyptus cultivation has generated controversy regarding its potential impact on water resources, especially in regions with limited water availability, with the myth that “eucalyptus dries out the soil” being spread. In this regard, this review [...] Read more.
The increase in demand for timber and global eucalyptus cultivation has generated controversy regarding its potential impact on water resources, especially in regions with limited water availability, with the myth that “eucalyptus dries out the soil” being spread. In this regard, this review study addresses the factors that influence water consumption by eucalyptus, providing solutions to reduce, mitigate, or even avoid any impact on water resources at a given site. In this manuscript, the authors reviewed 200 works published from 1977 to 2024 to survey all information to confirm if the factual background allows someone to state if eucalyptus can deplete soil water. With a solid scientific basis, many research studies show that eucalyptus’ water demand is comparable to that of native forest species and crops worldwide and that species, age, edaphoclimatic conditions, and forest management practices mainly influence water consumption. On the other hand, it is a hasty conclusion that some eucalyptus species can contribute to reduced soil water. Effectively, without proper management, the environmental impacts of a eucalyptus plantation are the same as those of poorly managed crops. Indeed, if cultivated with proper agroclimatic zoning and correct management practices, the growth of eucalyptus culture is an environmentally correct activity. By adopting measures such as maintaining sufficient native forest cover to ensure ecosystem services, cultivation based on zoning maps, and considering local specificities (e.g., deeper, sandier soils are preferable), selection of species appropriate to the carrying capacity of each region, adoption of lower planting densities, and reduced rotation, eucalyptus cultivation will not negatively affect water resources. Sustainable eucalyptus cultivation has several economic and environmental benefits, in addition to positive social impacts on surrounding communities in terms of employment and family income, and its sustainable management can guarantee its viability, demystifying the idea that eucalyptus trees cause water scarcity. The works reviewed herein demonstrated no solid ground to sustain the eucalyptus’ water depletion myth. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 12303 KiB  
Article
Soil and Water Assessment Tool-Based Prediction of Runoff Under Scenarios of Land Use/Land Cover and Climate Change Across Indian Agro-Climatic Zones: Implications for Sustainable Development Goals
by Saravanan Subbarayan, Youssef M. Youssef, Leelambar Singh, Dominika Dąbrowska, Nassir Alarifi, RAAJ Ramsankaran, R. Visweshwaran and Ahmed M. Saqr
Water 2025, 17(3), 458; https://doi.org/10.3390/w17030458 - 6 Feb 2025
Cited by 12 | Viewed by 1725
Abstract
Assessing runoff under changing land use/land cover (LULC) and climatic conditions is crucial for achieving effective and sustainable water resource management on a global scale. In this study, the focus was on runoff predictions across three diverse Indian watersheds—Wunna, Bharathapuzha, and Mahanadi—spanning distinct [...] Read more.
Assessing runoff under changing land use/land cover (LULC) and climatic conditions is crucial for achieving effective and sustainable water resource management on a global scale. In this study, the focus was on runoff predictions across three diverse Indian watersheds—Wunna, Bharathapuzha, and Mahanadi—spanning distinct agro-climatic zones to capture varying climatic and hydrological complexities. The soil and water assessment (SWAT) tool was used to simulate future runoff influenced by LULC and climate change and to explore the related sustainability implications, including related challenges and proposing countermeasures through a sustainable action plan (SAP). The methodology integrated high-resolution satellite imagery, the cellular automata (CA)–Markov model for projecting LULC changes, and downscaled climate data under representative concentration pathways (RCPs) 4.5 and 8.5, representing moderate and extreme climate scenarios, respectively. SWAT model calibration and validation demonstrated reliable predictive accuracy, with the coefficient of determination values (R2) > 0.50 confirming the reliability of the SWAT model in simulating hydrological processes. The results indicated significant increases in surface runoff due to urbanization, reaching >1000 mm, 600 mm, and 400 mm in southern Bharathapuzha, southeastern Wunna, and northwestern Mahanadi, respectively, especially by 2040 under RCP 8.5. These findings indicate that water quality, agricultural productivity, and urban infrastructure may be threatened. The proposed SAP includes nature-based solutions, like wetland restoration, and climate-resilient strategies to mitigate adverse effects and partially achieve sustainable development goals (SDGs) related to clean water and climate action. This research provides a robust framework for sustainable watershed management in similar regions worldwide. Full article
Show Figures

Figure 1

29 pages, 31883 KiB  
Article
Optimal Land Selection for Agricultural Purposes Using Hybrid Geographic Information System–Fuzzy Analytic Hierarchy Process–Geostatistical Approach in Attur Taluk, India: Synergies and Trade-Offs Among Sustainable Development Goals
by Subbarayan Sathiyamurthi, Youssef M. Youssef, Rengasamy Gobi, Arthi Ravi, Nassir Alarifi, Murugan Sivasakthi, Sivakumar Praveen Kumar, Dominika Dąbrowska and Ahmed M. Saqr
Sustainability 2025, 17(3), 809; https://doi.org/10.3390/su17030809 - 21 Jan 2025
Cited by 14 | Viewed by 2059
Abstract
The precise selection of agricultural land is essential for guaranteeing global food security and sustainable development. Additionally, agricultural land suitability (AgLS) analysis is crucial for tackling issues including resource scarcity, environmental degradation, and rising food demands. This research examines the synergies and trade-offs [...] Read more.
The precise selection of agricultural land is essential for guaranteeing global food security and sustainable development. Additionally, agricultural land suitability (AgLS) analysis is crucial for tackling issues including resource scarcity, environmental degradation, and rising food demands. This research examines the synergies and trade-offs among the sustainable development goals (SDGs) using a hybrid geographic information system (GIS)–fuzzy analytic hierarchy process (FAHP)–geostatistical framework for AgLS analysis in Attur Taluk, India. The area was chosen for its varied agro-climatic conditions, riverine habitats, and agricultural importance. Accordingly, data from ten topographical, climatic, and soil physiochemical variables, such as slope, temperature, and soil texture, were obtained and analyzed to carry out the study. The geostatistical analysis demonstrated the spatial variability of soil parameters, providing essential insights into key factors in the study area. Based on the receiver operating characteristic curve analysis, the results showed that the FAHP method (AUC = 0.71) outperformed the equal-weighting scheme (AUC = 0.602). Moreover, suitability mapping designated 17.31% of the study area as highly suitable (S1), 41.32% as moderately suitable (S2), and 7.82% as permanently unsuitable (N2). The research identified reinforcing and conflicting correlations with SDGs, emphasizing the need for policies to address trade-offs. The findings showed 40% alignment to climate action (SDG 13) via improved resilience, 33% to clean water (SDG 6) by identifying low-salinity zones, and 50% to zero hunger (SDG 2) through sustainable food systems. Conflicts arose with SDG 13 (20%) due to reliance on rain-fed agriculture, SDG 15 (11%) from soil degradation, and SDG 2 (13%) due to inefficiencies in low-productivity zones. A sustainable action plan (SAP) can tackle these issues by promoting drought-resistant crops, nutrient management, and participatory land-use planning. This study can provide a replicable framework for integrating agriculture with global sustainability objectives worldwide. Full article
(This article belongs to the Special Issue GIS Implementation in Sustainable Urban Planning)
Show Figures

Figure 1

Back to TopTop