The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
2.3. Future Climate Scenarios
2.4. Land Use and Coverage Data
2.5. Climatic Suitability Assessment for Gossypium hirsutum
2.6. Data Processing Methodology
2.7. Validation of the Agroclimatic Zoning
3. Results
3.1. General Results and Current Scenario
3.2. Validations Results
3.3. Current Climatic Conditions
3.4. Air Temperature Under Future Climate Scenarios
3.5. Precipitation Under Future Climate Scenarios
3.6. Future Climatic Zoning
4. Discussion
4.1. Climatic Conditions for Mato Grosso and Bahia States
4.2. Future Projections for Cotton Cultivation in Brazil Due to Climate Change
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BNF | Biological Nitrogen Fixation |
CEMADEN | National Center for Monitoring and Early Warning of Natural Disasters |
CMIP6 | Coupled Model Intercomparison Project Phase 6 |
CO2-eq | Carbon Dioxide Equivalent |
GEE | Greenhouse Gas Emissions |
GIS | Geographic Information System |
INPE | National Institute for Space Research (Instituto Nacional de Pesquisas Espaciais) |
IPCC | Intergovernmental Panel on Climate Change |
MAD | Mean Absolute Deviation |
QGIS | Quantum Geographic Information System |
SSP | Shared Socioeconomic Pathway |
References
- Zhou, Y.; Li, F.; Xin, Q.; Li, Y.; Lin, Z. Historical Variability of Cotton Yield and Response to Climate and Agronomic Management in Xinjiang, China. Sci. Total Environ. 2024, 912, 169327. [Google Scholar] [CrossRef] [PubMed]
- Fischer, H.; Meissner, K.J.; Mix, A.C.; Abram, N.J.; Austermann, J.; Brovkin, V.; Capron, E.; Colombaroli, D.; Daniau, A.-L.; Dyez, K.A.; et al. Palaeoclimate Constraints on the Impact of 2 °C Anthropogenic Warming and Beyond. Nat. Geosci. 2018, 11, 474–485. [Google Scholar] [CrossRef]
- Gavkharoy, O.; Botirjon, F.D. History of Cotton and Characteristics of Origin. Ijtimoiy Fanlarda Innovasiya Onlayn Ilmiy Jurnali 2023, 3, 117–121. [Google Scholar]
- Gupta, V.; Gupta, S. Cotton Fiber and Its Sustainable Alternatives. In Novel Sustainable Raw Material Alternatives for the Textiles and Fashion Industry; Muthu, S.S., Ed.; Sustainable Textiles: Production, Processing, Manufacturing & Chemistry; Springer Nature: Cham, Switzerland, 2023; pp. 139–160. ISBN 978-3-031-37322-0. [Google Scholar]
- Moazzem, S.; Crossin, E.; Daver, F.; Wang, L. Baseline Scenario of Carbon Footprint of Polyester T-Shirt. J. Fiber. Bioeng. Inf. 2018, 11, 1–14. [Google Scholar] [CrossRef]
- Causarano, H.J.; Franzluebbers, A.J.; Reeves, D.W.; Shaw, J.N. Soil Organic Carbon Sequestration in Cotton Production Systems of the Southeastern United States: A Review. J. Environ. Qual. 2006, 35, 1374–1383. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Wang, K.; Ren, D.; Chen, Z.; Guo, B.; Zhang, H.; Li, D.; Zhao, C.; Han, S.; Li, H.; et al. An Analysis of Uncertainties in Evaluating Future Climate Change Impacts on Cotton Production and Water Use in China. Agronomy 2025, 15, 1209. [Google Scholar] [CrossRef]
- Srikanth, K.; Umamahesh, N.V. Assessment of Climate Change Impacts on Cotton Yield in a Semi-Arid Region: A Case Study. J. Appl. Sci. Eng. 2024, 27, 2549–2562. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Yang, Q.; Biswas, A.; Dong, H. Simulating Climate Change Impacts on Cotton Using AquaCrop Model in China. Agric. Syst. 2024, 216, 103897. [Google Scholar] [CrossRef]
- Assad, E.D.; Martins, S.C.; Beltrão, N.E.D.M.; Pinto, H.S. Impacts of Climate Change on the Agricultural Zoning of Climate Risk for Cotton Cultivation in Brazil. Pesqui. Agropecuária Bras. 2013, 48, 1–8. [Google Scholar] [CrossRef]
- Thornton, P.K.; Jones, P.G.; Ericksen, P.J.; Challinor, A.J. Agriculture and Food Systems in Sub-Saharan Africa in a 4 °C+ World. Phil. Trans. R. Soc. A 2011, 369, 117–136. [Google Scholar] [CrossRef]
- Ovalle-Rivera, O.; Läderach, P.; Bunn, C.; Obersteiner, M.; Schroth, G. Projected Shifts in Coffea Arabica Suitability among Major Global Producing Regions Due to Climate Change. PLoS ONE 2015, 10, e0124155. [Google Scholar] [CrossRef] [PubMed]
- United States Department of Agriculture (USDA). Foreign Agricultural Service. China: Cotton and Products Annual—2024 Forecast Highlights Production Growth in Xinjiang; GAIN Report CH2024-0053; USDA Foreign Agricultural Service: Washington, DC, USA, 2024. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Cotton%20and%20Products%20Annual_Beijing_China%20-%20People%27s%20Republic%20of_CH2024-0053.pdf (accessed on 16 June 2025).
- United States Department of Agriculture (USDA). Foreign Agricultural Service. Cotton: World Markets and Trade—July 2024; USDA Foreign Agricultural Service: Washington, DC, USA, 2024. Available online: https://downloads.usda.library.cornell.edu/usda-esmis/files/kp78gg36g/rv044n671/pr76gz96s/cotton.pdf (accessed on 16 June 2025).
- United States Department of Agriculture (USDA). Economic Research Service. Cotton and Wool Outlook: February 2025; USDA Economic Research Service: Washington, DC, USA, 2025. Available online: https://www.usda.gov/sites/default/files/documents/2025AOF-cotton-outlook.pdf (accessed on 16 June 2025).
- Oosterhuis, D.M.; Snider, J.L. High Temperature Stress on Floral Development and Yield of Cotton. In Stress Physiology in Cotton; The Cotton Foundation: Katy, TX, USA, 2011; Volume 7, pp. 1–24. [Google Scholar]
- Schlenker, W.; Roberts, M.J. Nonlinear Temperature Effects Indicate Severe Damages to U.S. Crop Yields under Climate Change. Proc. Natl. Acad. Sci. USA 2009, 106, 15594–15598. [Google Scholar] [CrossRef] [PubMed]
- Brown, P.W.; Zeiher, C.A. Development of an Effective Screen for Identifying Cotton Cultivars Tolerant to Elevated Night Temperatures During the Monsoon; Final Report; Project 96-342AZ; Cotton Inc.: Raleigh, NC, USA, 1998. [Google Scholar]
- Reddy, K.R.; Hodges, H.F.; McKinion, J.M.; Wall, G.W. Temperature Effects on Pima Cotton Growth and Development. Agron. J. 1992, 84, 237–243. [Google Scholar] [CrossRef]
- Saini, D.K.; Impa, S.M.; McCallister, D.; Patil, G.B.; Abidi, N.; Ritchie, G.; Jaconis, S.Y.; Jagadish, K.S.V. High Day and Night Temperatures Impact on Cotton Yield and Quality—Current Status and Future Research Direction. J. Cotton. Res. 2023, 6, 16. [Google Scholar] [CrossRef]
- Praxedes, S.C.; De Lacerda, C.F.; DaMatta, F.M.; Prisco, J.T.; Gomes-Filho, E. Salt Tolerance Is Associated with Differences in Ion Accumulation, Biomass Allocation and Photosynthesis in Cowpea Cultivars. J. Agron. Crop Sci. 2010, 196, 193–204. [Google Scholar] [CrossRef]
- Carneiro, M.A.C.; Siqueira, J.O.; Curi, N.; Moreira, F.M.S. Efeitos da Inoculação de Fungos Micorrízicos Arbusculares e da Aplicação de Fósforo No Estabelecimento de Forrageiras em Solo Degradado. Pesqui. Agropecuária Bras. 1999, 34, 1669–1677. [Google Scholar] [CrossRef]
- Esetlili, M.T.; Serbeş, Z.A.; Çolak Esetlili, B.; Kurucu, Y.; Delibacak, S. Determination of Water Footprint for the Cotton and Maize Production in the Küçük Menderes Basin. Water 2022, 14, 3427. [Google Scholar] [CrossRef]
- Shavkiev, J.; Azimov, A.; Nabiev, S.; Khamdullaev, S.; Amanov, B.; Kholikova, M.; Matniyazova, H.; Yuldashov, U. Comparative Performance and Genetic Attributes of Upland Cotton Genotypes for Yield-Related Traits under Optimal and Deficit Irrigation Conditions. SABRAO J. Breed. Genet. 2021, 53, 157–171. [Google Scholar]
- Barros, T.C.; De Mello Prado, R.; Roque, C.G.; Arf, M.V.; Vilela, R.G. Silicon and Salicylic Acid in the Physiology and Yield of Cotton. J. Plant Nutr. 2019, 42, 458–465. [Google Scholar] [CrossRef]
- Amorim Neto, M.d.S.; Beltrão, N.d.M.; Medeiros, J.d.C. Edaphic and Climatic Indicators for Zoning Perennial Cotton. Rev. Ol. Fibrosas 1997, 1, 1–6. [Google Scholar]
- Engonopoulos, V.; Kouneli, V.; Mavroeidis, A.; Karydogianni, S.; Beslemes, D.; Kakabouki, I.; Papastylianou, P.; Bilalis, D. Cotton versus Climate Change: The Case of Greek Cotton Production. Not. Bot. Horti Agrobot. 2021, 49, 12547. [Google Scholar] [CrossRef]
- Li, N.; Yao, N.; Li, Y.; Chen, J.; Liu, D.; Biswas, A.; Li, L.; Wang, T.; Chen, X. A Meta-Analysis of the Possible Impact of Climate Change on Global Cotton Yield Based on Crop Simulation Approaches. Agric. Syst. 2021, 193, 103221. [Google Scholar] [CrossRef]
- Romanelli, J.P.; Meli, P.; Santos, J.P.B.; Jacob, I.N.; Souza, L.R.; Rodrigues, A.V.; Trevisan, D.P.; Huang, C.; Almeida, D.R.A.; Silva, L.G.M.; et al. Biodiversity Responses to Restoration across the Brazilian Atlantic Forest. Sci. Total Environ. 2022, 821, 153403. [Google Scholar] [CrossRef] [PubMed]
- Tucci, C.E.M.; Hespanhol, I.; Netto, M.O.C. Water Management in Brazil; UNESCO: Brasília, Brazil, 2001. [Google Scholar]
- Xavier, A.C.F.; Rudke, A.P.; Fujita, T.; Blain, G.C.; De Morais, M.V.B.; De Almeida, D.S.; Rafee, S.A.A.; Martins, L.D.; De Souza, R.A.F.; De Freitas, E.D.; et al. Stationary and Non-stationary Detection of Extreme Precipitation Events and Trends of Average Precipitation from 1980 to 2010 in the Paraná River Basin, Brazil. Int. J. Climatol. 2020, 40, 1197–1212. [Google Scholar] [CrossRef]
- Souza, C.M.; Shimbo, J.Z.; Rosa, M.R.; Parente, L.L.; Alencar, A.A.; Rudorff, B.F.T.; Hasenack, H.; Matsumoto, M.; Ferreira, L.G.; Souza-Filho, P.W.M.; et al. Reconstructing Three Decades of Land Use and Land Cover Changes in Brazilian Biomes with Landsat Archive and Earth Engine. Remote Sens. 2020, 12, 2735. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km Spatial Resolution Climate Surfaces for Global Land Areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Bramer, I.; Anderson, B.J.; Bennie, J.; Bladon, A.J.; De Frenne, P.; Hemming, D.; Hill, R.A.; Kearney, M.R.; Körner, C.; Korstjens, A.H.; et al. Advances in Monitoring and Modelling Climate at Ecologically Relevant Scales. In Advances in Ecological Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 58, pp. 101–161. ISBN 978-0-12-813949-3. [Google Scholar]
- Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at High Resolution for the Earth’s Land Surface Areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [PubMed]
- Beck, H.E.; Zimmermann, N.E.; McVicar, T.R.; Vergopolan, N.; Berg, A.; Wood, E.F. Present and Future Köppen-Geiger Climate Classification Maps at 1-Km Resolution. Sci. Data 2018, 5, 180214. [Google Scholar] [CrossRef]
- Meinshausen, M.; Nicholls, Z.R.J.; Lewis, J.; Gidden, M.J.; Vogel, E.; Freund, M.; Beyerle, U.; Gessner, C.; Nauels, A.; Bauer, N.; et al. The Shared Socio-Economic Pathway (SSP) Greenhouse Gas Concentrations and Their Extensions to 2500. Geosci. Model Dev. 2020, 13, 3571–3605. [Google Scholar] [CrossRef]
- Soares-Filho, B.; Rajão, R.; Macedo, M.; Carneiro, A.; Costa, W.; Coe, M.; Rodrigues, H.; Alencar, A. Cracking Brazil’s Forest Code. Science 2014, 344, 363–364. [Google Scholar] [CrossRef]
- Lurton, T.; Balkanski, Y.; Bastrikov, V.; Bekki, S.; Bopp, L.; Braconnot, P.; Brockmann, P.; Cadule, P.; Contoux, C.; Cozic, A.; et al. Implementation of the CMIP6 Forcing Data in the IPSL-CM6A-LR Model. J. Adv. Model Earth Syst. 2020, 12, e2019MS001940. [Google Scholar] [CrossRef]
- Burke, J.J.; Mahan, J.R.; Hatfield, J.L. Crop-Specific Thermal Kinetic Windows in Relation to Wheat and Cotton Biomass Production. Agron. J. 1988, 80, 553–556. [Google Scholar] [CrossRef]
- Wilson, R.J.; Kay, S.; Ciavatta, S. Partitioning Climate Uncertainty in Ecological Projections: Pacific Oysters in a Hotter Europe. Ecol. Inform. 2024, 80, 102537. [Google Scholar] [CrossRef]
- Cetin, O.; Basbag, S. Effects of Climatic Factors on Cotton Production in Semi-Arid Regions—A Review. Res. Crops 2010, 11, 785–791. [Google Scholar]
- Conaty, W.C.; Burke, J.J.; Mahan, J.R.; Neilsen, J.E.; Sutton, B.G. Determining the Optimum Plant Temperature of Cotton Physiology and Yield to Improve Plant-Based Irrigation Scheduling. Crop Sci. 2012, 52, 1828–1836. [Google Scholar] [CrossRef]
- Sathiyamurthi, S.; Saravanan, S.; Sankriti, R.; Aluru, M.; Sivaranjani, S.; Srivel, R. Integrated GIS and AHP Techniques for Land Suitability Assessment of Cotton Crop in Perambalur District, South India. Int. J. Syst. Assur. Eng. Manag. 2024, 15, 267–278. [Google Scholar] [CrossRef]
- Tang, F.H.M.; Nguyen, T.H.; Conchedda, G.; Casse, L.; Tubiello, F.N.; Maggi, F. CROPGRIDS: A Global Geo-Referenced Dataset of 173 Crops. Sci. Data 2024, 11, 413. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2019; ISBN 978-0-429-05272-9. [Google Scholar]
- Fielding, A.H.; Bell, J.F. A Review of Methods for the Assessment of Prediction Errors in Conservation Presence/Absence Models. Envir. Conserv. 1997, 24, 38–49. [Google Scholar] [CrossRef]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the Accuracy of Species Distribution Models: Prevalence, Kappa and the True Skill Statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the Area under the Receiver Operating Characteristic Curve (AUC) as a Discrimination Measure in Species Distribution Modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Vaddula, Y.; Singh, K. Progression of Drip Irrigation and Fertigation in Cotton across the Globe and Its Future Perspectives for Sustainable Agriculture: An Overview. Appl. Water Sci. 2023, 13, 177. [Google Scholar] [CrossRef]
- Jans, Y.; Von Bloh, W.; Schaphoff, S.; Müller, C. Global Cotton Production under Climate Change—Implications for Yield and Water Consumption. Hydrol. Earth Syst. Sci. 2021, 25, 2027–2044. [Google Scholar] [CrossRef]
- ABRAPA (Associação Brasileira dos Produtores de Algodão). Relatório Anual 2024. Brasília, DF, Brasil, 2025. Available online: https://abrapa.com.br/wp-content/uploads/2025/02/Cotton-Brazil_relatorio_anual_2024_final_0402.pdf (accessed on 16 June 2025).
- United States Department of Agriculture (USDA) Foreign Agricultural Service. Brazil: Cotton and Products Update; GAIN Report BR2024-0024; United States Department of Agriculture: Washington, DC, USA, 2024. Available online: https://apps.fas.usda.gov/newgainapi/api/Report/DownloadReportByFileName?fileName=Cotton+and+Products+Update_Brasilia_Brazil_BR2024-0024.pdf (accessed on 16 June 2025).
- Embrapa Territorial. Does the Brazilian Soybean Production Increase Pose a Threat on Land Use and Forest Conservation? Embrapa Soybean: Londrina, Brazil, 2019. [Google Scholar]
- Instituto Nacional de Pesquisas Espaciais (INPE); Centro Nacional de Monitoramento e Alertas de Desastres Naturais (CEMADEN). Estudo Do CEMADEN e Do INPE Identifica Pela Primeira Vez a Ocorrência de Uma Região Árida No País; INPE: São Paulo, Brazil; CEMADEN: São Paulo, Brazil, 2023.
- Feng, L.; Chi, B.; Dong, H. Cotton Cultivation Technology with Chinese Characteristics Has Driven the 70-Year Development of Cotton Production in China. J. Integr. Agric. 2022, 21, 597–609. [Google Scholar] [CrossRef]
- Pereira, L.A.S.; De Oliveira, A.K.M.; Galafassi, C. Cotton Farming in the Different Mesoregions of Mato Grosso and Land Use and Cover between 2019 and 2021. OLEL 2024, 22, e3305. [Google Scholar] [CrossRef]
- Torres, C.M.M.E.; Jacovine, L.A.G.; Nolasco De Olivera Neto, S.; Fraisse, C.W.; Soares, C.P.B.; De Castro Neto, F.; Ferreira, L.R.; Zanuncio, J.C.; Lemes, P.G. Greenhouse Gas Emissions and Carbon Sequestration by Agroforestry Systems in Southeastern Brazil. Sci. Rep. 2017, 7, 16738. [Google Scholar] [CrossRef]
- Veiga, J.P.S.; Popin, G.V.; Cerri, C.E.P.; Romanelli, T.L. Carbon Footprint of Brazilian Agriculture Based on Field Operations. Agronomy 2024, 14, 1343. [Google Scholar] [CrossRef]
- Ferreira, G.R.; Ferreira, W.P.M.; Barbosa, T.K.M.; Luppi, A.S.L.; Silva, M.A.V. Zoneamento Térmico Para o Cultivo Do Café de Montanha Na Região Das Matas de Minas. RBGF 2018, 11, 1176–1185. [Google Scholar] [CrossRef]
- Prando, A.M.; Barbosa, J.Z.; Oliveira, A.B.D.; Nogueira, M.A.; Possamai, E.J.; Hungria, M. Benefits of Soybean Co-Inoculation with Bradyrhizobium Spp. and Azospirillum Brasilense: Large-Scale Validation with Farmers in Brazil. Eur. J. Agron. 2024, 155, 127112. [Google Scholar] [CrossRef]
- Ferreira, A.C.D.B.; Borin, A.L.D.C.; Lamas, F.M.; Sofiatti, V. Cover Plants in Second Crop: Nutrients in Straw and Cotton Yield in Succession. Pesqui. Agropecu. Trop. 2023, 53, e75032. [Google Scholar] [CrossRef]
Category | MapBiomas Classes (Code ID) |
---|---|
1. Anthropic Barriers | Urban Area—2 |
Mining—30 | |
Beach/Dune/Sand—23 | |
2. Hydrological Systems | River/Lake/Ocean—33 |
Aquaculture—31 | |
3. Protected Ecosystems | Forest Formation—3 |
Mangrove—5 | |
Floodable Forest—6 | |
4. Fragile Formations | Rocky Outcrop—29 |
Hypersaline Tidal Flat—32 |
Tmean | Rainfall | Slope (%) | Class | Justification and References |
---|---|---|---|---|
(°C) | (mm yr−1) | |||
<20 | <1000 or >2000 | – | Unsuitable | Biomass growth and boll development fall outside the range of 20–30 °C and 1000–2000 mm [17,40]. |
<20 | 1000–2000 | – | Unsuitable due to Thermal Deficiency | Photosynthesis and boll differentiation are reduced under mean temperatures below 20 °C [43]. |
20–30 | 1000–2000 | <12 | Suitable | Optimal conditions for cotton growth and yield (21–30 °C; 1000–2000 mm; slope ≤ 12%) [1,40,44]. |
20–30 | 1000–2000 | >12 | Unsuitable due to Topography | Mechanization and soil preparation are unfeasible on slopes > 12% [44]. |
20–30 | <1000 | – | Unsuitable due to Water Deficit | Water deficit (<1000 mm yr−1) increases plant stress and reduces productivity [42]. |
20–30 | >2000 | – | Unsuitable due to Water Surplus | Excess rainfall (>2000 mm yr−1) promotes waterlogging and disease incidence [42]. |
>30 | 1000–2000 | – | Unsuitable due to Thermal Excess | Temperatures > 30 °C impair pollination and water balance, leading to yield reductions [43]. |
>30 | >2000 | – | Unsuitable | The combination of extreme heat and high humidity compromises plant physiology [42]. |
– | – | – | Uncultivable Land | Impervious surfaces and protected covers, as detailed in Section 2.4. |
Index | Value |
---|---|
Precision | 0.789 |
Omission error | 21.10% |
Commission error | 26.10% |
Sensitivity (TPR) | 0.789 |
Specificity (TNR) | 0.836 |
True Skill Statistic (TSS) | 0.625 |
Error rate | 25.30% |
Periods | SUI | UCL | UNS | UTE | UTD | UTO | UWD | UWS | |
---|---|---|---|---|---|---|---|---|---|
% | |||||||||
Current scenario | Current Period | 33.9 | 42.4 | 0.1 | 0 | 5.6 | 3.4 | 10.3 | 4.4 |
SSP1-2.6 | 2021–2040 | 34.8 | 42.4 | 0.1 | 0 | 2.6 | 4.9 | 9.9 | 5 |
2041–2060 | 34.8 | 42.4 | 0.1 | 0 | 2 | 4.9 | 10.5 | 5.1 | |
2061–2080 | 34.9 | 42.4 | 0.1 | 0 | 1.9 | 4.9 | 10.4 | 5 | |
2081–2100 | 34.6 | 42.4 | 0.1 | 0 | 2 | 4.9 | 10.5 | 5.2 | |
SSP2-4.5 | 2021–2040 | 34.5 | 42.4 | 0.1 | 0 | 2.5 | 4.9 | 10.3 | 5 |
2041–2060 | 35 | 42.4 | 0.1 | 0.2 | 1.6 | 4.9 | 10.6 | 5 | |
2061–2080 | 34.7 | 42.4 | 0.3 | 0.8 | 1.1 | 4.9 | 10.8 | 4.8 | |
2081–2100 | 33.4 | 42.4 | 0.8 | 2.1 | 0.8 | 4.9 | 10.8 | 4.5 | |
SSP3-7.0 | 2021–2040 | 34.7 | 42.4 | 0.1 | 0 | 2.5 | 4.9 | 10.2 | 4.9 |
2041–2060 | 35.1 | 42.4 | 0.1 | 0.4 | 1.4 | 4.9 | 10.7 | 4.9 | |
2061–2080 | 32.2 | 42.4 | 1.4 | 3.5 | 0.7 | 4.9 | 10.6 | 4 | |
2081–2100 | 20.6 | 42.4 | 5.9 | 15.5 | 0.2 | 4.9 | 8.9 | 1.3 | |
SSP5-8.5 | 2021–2040 | 34.3 | 42.4 | 0.1 | 0 | 2.4 | 4.9 | 10.5 | 5.2 |
2041–2060 | 34.5 | 42.4 | 0.2 | 0.7 | 1.1 | 4.9 | 11.4 | 4.5 | |
2061–2080 | 25.6 | 42.4 | 3.8 | 10.1 | 0.4 | 4.9 | 9.9 | 2.6 | |
2081–2100 | 12.1 | 42.4 | 9.7 | 22.8 | 0 | 4.9 | 7.2 | 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorençone, J.A.; Lorençone, P.A.; Aparecido, L.E.d.O.; Torsoni, G.B.; Rolim, G.d.S.; Macedo, F.G. The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts. AgriEngineering 2025, 7, 198. https://doi.org/10.3390/agriengineering7060198
Lorençone JA, Lorençone PA, Aparecido LEdO, Torsoni GB, Rolim GdS, Macedo FG. The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts. AgriEngineering. 2025; 7(6):198. https://doi.org/10.3390/agriengineering7060198
Chicago/Turabian StyleLorençone, João Antonio, Pedro Antonio Lorençone, Lucas Eduardo de Oliveira Aparecido, Guilherme Botega Torsoni, Glauco de Souza Rolim, and Fernando Giovannetti Macedo. 2025. "The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts" AgriEngineering 7, no. 6: 198. https://doi.org/10.3390/agriengineering7060198
APA StyleLorençone, J. A., Lorençone, P. A., Aparecido, L. E. d. O., Torsoni, G. B., Rolim, G. d. S., & Macedo, F. G. (2025). The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts. AgriEngineering, 7(6), 198. https://doi.org/10.3390/agriengineering7060198