Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,312)

Search Parameters:
Keywords = affective polarization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 4469 KB  
Article
A Dynamic Illumination-Constrained Spatio-Temporal A* Algorithm for Path Planning in Lunar South Pole Exploration
by Qingliang Miao and Guangfei Wei
Remote Sens. 2026, 18(2), 310; https://doi.org/10.3390/rs18020310 - 16 Jan 2026
Abstract
Future lunar south pole missions face dual challenges of highly variable illumination and rugged terrain that directly constrain rover mobility and energy sustainability. To address these issues, this study proposes a dynamic illumination-constrained spatio-temporal A* (DIC3D-A*) path-planning algorithm that jointly optimizes terrain safety [...] Read more.
Future lunar south pole missions face dual challenges of highly variable illumination and rugged terrain that directly constrain rover mobility and energy sustainability. To address these issues, this study proposes a dynamic illumination-constrained spatio-temporal A* (DIC3D-A*) path-planning algorithm that jointly optimizes terrain safety and illumination continuity in polar environments. Using high-resolution digital elevation model data from the Lunar Reconnaissance Orbiter Laser Altimeter, a 1300 m × 1300 m terrain model with 5 m/pixel spatial resolution was constructed. Hourly solar visibility for November–December 2026 was computed based on planetary ephemerides to generate a dynamic illumination dataset. The algorithm integrates slope, distance, and illumination into a unified heuristic cost function, performing a time-dependent search in a 3D spatiotemporal state space. Simulation results show that, compared with conventional A* algorithms considering only terrain or distance, the DIC3D-A* algorithm improves CSDV by 106.1% and 115.1%, respectively. Moreover, relative to illumination-based A* algorithms, it reduces the average terrain roughness index by 17.2%, while achieving shorter path length and faster computation than both the Rapidly-exploring Random Tree Star and Deep Q-Network baselines. These results demonstrate that dynamic illumination is the dominant environmental factor affecting lunar polar rover traversal and that DIC3D-A* provides an efficient, energy-aware framework for illumination-adaptive navigation in upcoming missions such as Chang’E-7. Full article
(This article belongs to the Special Issue Remote Sensing and Photogrammetry Applied to Deep Space Exploration)
19 pages, 5439 KB  
Article
Decoupling Additive and Non-Additive Genetic Effects to Optimize Breeding Strategies for Apple Phenology and Fruit Quality
by Pablo Asprelli, Guido Cipriani and Gloria De Mori
Horticulturae 2026, 12(1), 93; https://doi.org/10.3390/horticulturae12010093 - 16 Jan 2026
Abstract
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were [...] Read more.
Apple breeding programs focus on enhancing yield, quality, and disease resistance, with a strong emphasis on evaluating phenological traits like flowering time and pomological traits such as fruit size and flavour, which are crucial for commercial success and consumer preference. Twenty-four families were obtained by crossing six apple varieties selected as pollen receptors and four apple genotypes resistant to scab selected as pollen donors. Data related to bud burst date, flowering date, harvest date, lengths of the periods between bud burst and flowering and from flowering to harvest (developmental period), fruit equatorial and polar diameter, fruit polar/diameter ratio, soluble solid content (SSC) and flesh firmness were analysed as a genetic partial diallel design. The study’s ANOVA on 24 fruit families across two years revealed significant genotype–environment interactions affecting flowering date, harvest date, and developmental periods, with some variables like fruit weight and soluble solids showing consistent variation. During each year, temperature influenced phenological phases, with earlier budbreak and flowering in warmer, less variable conditions in 2019. Analysis of genetic effects indicated high heritability for phenological traits and moderate heritability for fruit morphology and quality, with parental genetic contributions varying over years. Principal component and Procrustes analyses identified key variable groupings and parent profiles, highlighting genotypes such as ‘Granny Smith’, ‘McIntosh’, and ‘HM100’ with consistent additive effects, and certain families with notable heterotic performance. Overall, genetic and environmental interactions significantly shape phenological and fruit quality traits, guiding breeding strategies. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

25 pages, 4723 KB  
Article
Multiphysics Modelling Flow Disturbance Optimization of Proton Exchange Membrane Water Electrolysis Under Bubble Effects
by Chengming Du, Bo Huang, Ziqing Wang, Luhaibo Zhao, Haibo Wu, Shen Xu, Guoliang Wang and Zhiyong Tang
Energies 2026, 19(2), 437; https://doi.org/10.3390/en19020437 - 15 Jan 2026
Abstract
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model [...] Read more.
In Proton Exchange Membrane Water Electrolysis (PEMWE), the two-phase flow distribution in the anode field significantly affects overall electrolysis performance. Based on visualized experimental data, in this paper, the reaction kinetics equations were theoretically revised, and a three-dimensional, two-phase, non-isothermal, multi-physics coupled model of the electrolysis was developed and experimentally validated. Four different configurations of rectangular turbulence promoters were designed within the anode serpentine flow field and compared with a conventional serpentine flow field (SFF) in terms of their multi-physics distribution characteristics. The results showed that, in the double-row rectangular block serpentine flow field (DRB SFF), the uniformity of liquid water saturation, temperature, and current density improved by 16.6%, 0.49% and 40.8%, respectively. The normal mass transfer coefficient increased by a factor of 6.3, and polarization performance improved by 6.98%. A cross-arranged turbulence promoter structure was further proposed. This design maintains effective turbulence while reducing flow resistance and pressure drop, thereby enhancing mass transfer efficiency and overall electrolysis performance through improved bubble fragmentation. Full article
Show Figures

Figure 1

23 pages, 1377 KB  
Review
Immunomodulatory Effects of Lidocaine: Mechanisms of Actions and Therapeutic Applications
by Jianwei Wu, Quanfu Chen, Zhiling He, Bin Yang, Zhenhua Dai and Feifei Qiu
Pharmaceuticals 2026, 19(1), 134; https://doi.org/10.3390/ph19010134 - 12 Jan 2026
Viewed by 204
Abstract
Lidocaine, an amide-type regional anesthetic, has been an important medication in the field of anesthesia since its clinical approval. Recently, lidocaine has emerged as a powerful immunomodulatory agent beyond its classical anesthetic properties. This review has summarized the recent basic and clinical studies [...] Read more.
Lidocaine, an amide-type regional anesthetic, has been an important medication in the field of anesthesia since its clinical approval. Recently, lidocaine has emerged as a powerful immunomodulatory agent beyond its classical anesthetic properties. This review has summarized the recent basic and clinical studies with sufficient evidence on the multifaceted effects of lidocaine on both innate and adaptive immune cells, including macrophages, neutrophils, eosinophils, basophils, natural killer (NK) cells, mast cells, dendritic cells (DCs), monocytes, and T lymphocytes. We have also detailed how lidocaine affects critical cellular processes, such as cellular polarization, cytokine production, phagocytosis, and apoptosis, through multiple signaling pathways, including NF-κB, TLR4/p38 MAPK, voltage-sensitive sodium channels, HIF1α, TGF-β/Smad3, AMPK-SOCS3, TBK1-IRF7, and G protein-coupled receptors. These immunoregulatory effects of lidocaine are dependent on its concentration, duration of action, and the microenvironment. The immunomodulatory actions of lidocaine may contribute to its potential therapeutic value in various settings of diseases, such as cancer, sepsis, acute lung injury, asthma, organ transplantation, ischemia–reperfusion injury (IRI), and diabetes. We propose that lidocaine can be repurposed as an immunomodulator for treating immune-mediated inflammatory diseases. However, future research should define optimal dosing strategies, validate its mechanisms of action in clinical trials, and explore its novel clinical applications as a complementary immunotherapy. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

17 pages, 5783 KB  
Article
Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels
by Dohyung Kim and Byung-Hyun Shin
Metals 2026, 16(1), 82; https://doi.org/10.3390/met16010082 - 12 Jan 2026
Viewed by 107
Abstract
The stainless-steel phase of austenite, ferrite, and duplex was affected by the high temperature corrosion. So, the study of corrosion behavior in high temperatures at 700 °C is important because it is connected to life and maintenance. Various stainless steels (AISI no. 409 [...] Read more.
The stainless-steel phase of austenite, ferrite, and duplex was affected by the high temperature corrosion. So, the study of corrosion behavior in high temperatures at 700 °C is important because it is connected to life and maintenance. Various stainless steels (AISI no. 409 L, 430 L, 304L, 316L, 2205, 2507) are used to identify the most suitable material for high-temperature SOFC applications. The study was checked to surface, microstructure, and corrosion behavior after corrosion at 700 °C during 120 h. The surface and microstructure are checked using FE-SEM and XRD. The electrochemical behavior and corrosion behavior are checked for open circuit potential, electrochemical impedance spectroscopy, and potentiodynamic polarization test by a potentiostat. The potentiodynamic polarization results revealed that the pitting potential (Epit) varied significantly depending on the material, with values of 0.21 V for AISI 304L and 1.14 V for AISI 2507. The breakdown behavior of the passive film exhibited material-dependent characteristics, which were found to be consistent with the observed trends in high-temperature corrosion. Full article
Show Figures

Figure 1

15 pages, 3291 KB  
Article
Investigating the Therapeutic Effects of Naringenin and Oleuropein on Prostate Cancer Cell Mat-LyLu via miR-155-5p: A Bioinformatics and Molecular Docking Analysis of KRAS and CDK2 Networks
by Cigdem Gungormez
Genes 2026, 17(1), 79; https://doi.org/10.3390/genes17010079 - 9 Jan 2026
Viewed by 217
Abstract
Background: This study systematically investigates the therapeutic effects of naringenin (NAR) and oleuropein (OLE) on prostate cancer through miR-155-5p regulation. Methods: Experimental studies conducted on MAT-LyLu prostate cancer cell lines revealed that the application of NAR (50 μM) and OLE (75 μM) significantly [...] Read more.
Background: This study systematically investigates the therapeutic effects of naringenin (NAR) and oleuropein (OLE) on prostate cancer through miR-155-5p regulation. Methods: Experimental studies conducted on MAT-LyLu prostate cancer cell lines revealed that the application of NAR (50 μM) and OLE (75 μM) significantly increased miR-155-5p expression by 2.89-fold and 1.74-fold, respectively (p < 0.05). Bioinformatics analyses have indicated that miR-155-5p interacts with critical oncogenic pathways such as KRAS, CDK2, NF-κB, and TGF-β/Smad2. Computational analyses have revealed that miR-155-5p interacts with 16 critical oncogenic targets, including KRAS and CDK2. Molecular docking studies showed that NAR binds to the Switch I/II region of KRAS with a binding energy of −8.2 kcal/mol, while OLE binds to the ATP-binding pocket of CDK2 with an affinity of −9.1 kcal/mol. Pharmacokinetic evaluations revealed that NAR indicated high oral bioavailability (93.763% HIA) and full compliance with Lipinski’s rules, while OLE required advanced formulation strategies due to its high polarity. Network pharmacology analyses have shown that NAR affects lysosomal functions and enzyme regulation, while OLE affects G protein-coupled receptors and oxidoreductase activity. Results: Results indicate that NAR and OLE exhibit antitumor effects through multiple mechanisms by increasing miR-155-5p expression and inhibiting critical oncogenic targets in prostate cancer. Conclusion: Findings suggest that the dietary intake of these natural compounds (citrus and olive products) should be considered in prostate cancer prevention strategies, shedding light on the epigenetic mechanisms of polyphenols in cancer treatment and contributing to the development of new therapeutic strategies. Full article
(This article belongs to the Section Bioinformatics)
22 pages, 3736 KB  
Article
In Vitro Evaluation of Surface and Mechanical Behavior of 3D-Printed PMMA After Accelerated and Chemical Aging Under Simulated Oral Conditions
by Vlad-Gabriel Vasilescu, Robert Cătălin Ciocoiu, Andreea Mihaela Custură, Lucian Toma Ciocan, Marian Miculescu, Vasile Iulian Antoniac, Ana-Maria Cristina Țâncu, Marina Imre and Silviu Mirel Pițuru
Dent. J. 2026, 14(1), 40; https://doi.org/10.3390/dj14010040 - 7 Jan 2026
Viewed by 218
Abstract
Studying surface energy and permeability offers insights into the relationship between temporary polymers and the oral environment. Variations in contact angle and surface free energy may signify modifications in surface polarity and tendency for plaque buildup, staining, or microcrack formation. Objectives: The [...] Read more.
Studying surface energy and permeability offers insights into the relationship between temporary polymers and the oral environment. Variations in contact angle and surface free energy may signify modifications in surface polarity and tendency for plaque buildup, staining, or microcrack formation. Objectives: The present study aims to evaluate the influence of simulated salivary and chemical aging conditions on the surface and mechanical properties of 3D-printed PMMA provisional materials. Methods: Two 3D-printed polymethyl methacrylate (PMMA) resins were investigated, namely Anycubic White (Anycubic, Shenzhen, China) and NextDent Creo (NextDent, 3D Systems, Soesterberg, The Netherlands), using two aging protocols. Protocol A consisted of chemical aging in an alcohol-based mouthwash, while Protocol B involved thermal aging in artificial saliva. After aging, surface properties (wettability and SFE) and compressive behaviour were analyzed. Statistical analysis was conducted to assess the influence of temperature, immersion duration, and aging medium, with significance established at p < 0.05. Results: In Protocol A, mechanical properties showed a time-dependent decrease, with material-specific stabilization trends. In Protocol B, thermal aging resulted in elastic modulus reductions ranging from 35% to 46% relative to the reference. The yield strength exhibited similar tendencies. In Protocol A, X samples exhibited a consistent decline, while C samples stabilized after 14 days. For Protocol B, the fitted model produced residuals under 2%, confirming temperature as the primary variable. Conclusions: Chemical and thermal aging influence the physical and mechanical properties of the analyzed 3D-printed PMMA. Among the two protocols, thermal aging in artificial saliva resulted in more pronounced material degradation. After chemical aging in mouthwash, the surface free energy remained almost constant. After thermal aging, all samples demonstrated a gradual rise in SFE with prolonged immersion duration. The current study offers valuable insights into the environmental stability of printed PMMA; however, it is an in vitro evaluation. The findings indicate that temperature exposure and prolonged contact with oral hygiene products may affect the mechanical reliability of 3D-printed provisional restorations, which must be considered during material selection for longer temporary usage. Additionally, spectroscopic and microscopic analyses might better clarify the molecular-level chemical alterations linked to aging. Full article
(This article belongs to the Special Issue 3D Printing Technology in Dentistry)
Show Figures

Graphical abstract

14 pages, 5134 KB  
Article
Silicon Effect on Conductive Behavior in Rubber Recycled Composites
by Marc Marín-Genescà, Ramon Mujal Rosas, Jordi García Amorós, Lluis Massagues and Xavier Colom
Polymers 2026, 18(1), 137; https://doi.org/10.3390/polym18010137 - 2 Jan 2026
Viewed by 268
Abstract
In the present research, the structure and thermal–dielectric behavior of Styrene Butadiene Rubber (SBR) and of the SBR/EPDMd composite with SiO2 with different compositions and concentrations of EPDMd are analyzed. In this sense, interesting behaviors are observed for the DC-AC regime of [...] Read more.
In the present research, the structure and thermal–dielectric behavior of Styrene Butadiene Rubber (SBR) and of the SBR/EPDMd composite with SiO2 with different compositions and concentrations of EPDMd are analyzed. In this sense, interesting behaviors are observed for the DC-AC regime of the conductive behavior of the material; therefore, a very marked DC and AC regime is observed in the conductivities, showing a different dielectric behavior at low and high frequencies. On the other hand, peak relaxations due to polarization phenomena are observed in terms of the imaginary modulus. Conductively, SiO2 does not produce significant or relevant changes, but it does produce changes in the permittivity and the electrical modulus, so it is concluded that the impact of the incorporation of SiO2 in these compounds affects energy storage (permittivity and modulus) in these types of compounds. Compared with compounds without silica (insights—no SiO2), it is observed that SiO2 maintains a similar operating regime to the initial one (SBR and SBR + EPDMd + SiO2) without SiO2 dielectric changes occurring, so silica presence modifies the dielectric behavior, reducing polarization effects, as can be seen in the dielectric results. Conductively, SiO2 produces more insulating compounds, that is, less conductive; this property can make it interesting as electrical insulation. Full article
(This article belongs to the Special Issue Advances in Functional Rubber and Elastomer Composites, 3rd Edition)
Show Figures

Graphical abstract

22 pages, 640 KB  
Review
Unraveling Jawbone Susceptibility: Distinctive Features Underlying Medication-Related Osteonecrosis
by Balázs Paczona, József Piffkó and Ágnes Janovszky
Dent. J. 2026, 14(1), 18; https://doi.org/10.3390/dj14010018 - 1 Jan 2026
Viewed by 235
Abstract
Medication-related osteonecrosis of the jaw (MRONJ) is a devastating complication arising primarily after invasive dentoalveolar procedures in patients treated with antiresorptive, antiangiogenic, or targeted therapies. Although recognized risk factors are established, the distinctive vulnerability of jawbones compared to long bones is not fully [...] Read more.
Medication-related osteonecrosis of the jaw (MRONJ) is a devastating complication arising primarily after invasive dentoalveolar procedures in patients treated with antiresorptive, antiangiogenic, or targeted therapies. Although recognized risk factors are established, the distinctive vulnerability of jawbones compared to long bones is not fully understood. This review comprehensively synthesizes recent advances regarding the embryological, anatomical, and physiological disparities that contribute to region-specific susceptibility to MRONJ. Recent evidence suggests that jawbones diverge significantly from long bones in embryonic origin, ossification pathways, vascular architecture, innervation patterns, and regenerative capacities. These differences affect bone metabolism, healing dynamics, response to pharmacologic agents, and local cellular activities, such as enhanced bisphosphonate uptake and specialized microcirculation. Experimental and clinical evidence reveals that mandibular periosteal cells exhibit superior osteogenic and angiogenic potentials, and the jaws respond differently to metabolic challenges, trauma, and medication-induced insults. Furthermore, site-specific pharmacologic and inflammatory interactions, including altered periosteal microcirculation and leukocyte–endothelial interactions, may explain the development of MRONJ, although rare cases of medication-related osteonecrosis have also been reported in long bones. Emerging research demonstrates that immune dysregulation, particularly M1 macrophage polarization with overexpression of matrix metalloproteinase-13 (MMP-13), plays a crucial role in early MRONJ development. Understanding these mechanisms highlights the critical need for region-specific preventive measures and therapeutic strategies targeting the unique biology of jawbones. This comparative perspective offers new translational insights for designing targeted interventions, developing tissue engineering solutions, and improving patient outcomes. Future research should focus on gene expression profiling and cellular responses across skeletal regions to further delineate MRONJ pathogenesis and advance personalized therapies for affected patients. Full article
(This article belongs to the Special Issue Dental Oncology)
Show Figures

Figure 1

22 pages, 4259 KB  
Review
Stoichiometry-Controlled Surface Reconstructions in Epitaxial ABO3 Perovskites for Sustainable Energy Applications
by Habib Rostaghi Chalaki, Ebenezer Seesi, Gene Yang, Mohammad El Loubani and Dongkyu Lee
Crystals 2026, 16(1), 37; https://doi.org/10.3390/cryst16010037 - 1 Jan 2026
Viewed by 365
Abstract
ABO3 perovskite oxides are a versatile class of materials whose surfaces and interfaces play essential roles in sustainable energy technologies, including catalysis, solid oxide fuel and electrolysis cells, thermoelectrics, and energy-relevant oxide electronics. The interplay between point defects and surface reconstructions strongly [...] Read more.
ABO3 perovskite oxides are a versatile class of materials whose surfaces and interfaces play essential roles in sustainable energy technologies, including catalysis, solid oxide fuel and electrolysis cells, thermoelectrics, and energy-relevant oxide electronics. The interplay between point defects and surface reconstructions strongly affects interfacial stability, charge transport, and catalytic activity under operating conditions. This review summarizes recent progress in understanding how oxygen vacancies, cation nonstoichiometry, and electronic defects couple to atomic-scale surface rearrangements in representative perovskite systems. We first revisit Tasker’s classification of ionic surfaces and clarify how defect chemistry provides compensation mechanisms that stabilize otherwise polar or metastable terminations. We then discuss experimental and theoretical insights into defect-mediated reconstructions on perovskite surfaces and how they influence the performance of energy conversion devices. Finally, we conclude with a perspective on design strategies that leverage defect engineering and surface control to enhance functionality in energy applications, aiming to connect fundamental surface science with practical materials solutions for the transition to sustainable energy. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

25 pages, 5385 KB  
Article
Theoretical Investigation of Early Cancer Biomarker Sensing Using a PMMA–Gold Hybrid Quasi-D-Shaped Photonic-Crystal-Fiber-Based Surface Plasmon Resonance Biosensor
by Ayushman Ramola, Amit Kumar Shakya, Nezah Balal and Arik Bergman
Micromachines 2026, 17(1), 68; https://doi.org/10.3390/mi17010068 - 31 Dec 2025
Viewed by 456
Abstract
In this work, a quasi-D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) biosensor is proposed and numerically investigated using the finite element method (FEM) implemented in COMSOL Multiphysics version 6.2 for the detection of cancer cells with different refractive indices. The biosensor [...] Read more.
In this work, a quasi-D-shaped photonic crystal fiber (PCF)-based surface plasmon resonance (SPR) biosensor is proposed and numerically investigated using the finite element method (FEM) implemented in COMSOL Multiphysics version 6.2 for the detection of cancer cells with different refractive indices. The biosensor has a coating of plasmonic material gold (Au) and a polymer coat of polymethyl methacrylate (PMMA). The effects of plasmonic material thickness and air hole dimensions on key sensing parameters, including confinement loss (CL), wavelength sensitivity (WS), and amplitude sensitivity (AS), are systematically analyzed. The results revealed that increasing plasmonic thickness beyond its optimum value significantly raises CL while reducing sensitivity due to reduced penetration depth of the evanescent field. Similarly, variations in the geometrical dimensions of the air holes (±10%) also affect the sensor response, emphasizing the importance of precise structural optimization. For the optimized design the proposed biosensor exhibits high performance with a maximum WS of 31,000 nm/RIU for MDA-MB-231 cells under x-polarization and 29,500 nm/RIU under y-polarization. The corresponding resolutions achieved are as low as 3.22 × 10−6 RIU and 3.38 × 10−6 RIU, respectively, with AS exceeding 9000 RIU−1. The WS, AS, and other sensing parameters obtained from our sensor are relatively higher than some of the PCF–SPR sensors reported recently. These numerical results demonstrate that the optimized quasi-D-shaped PCF–SPR biosensor exhibits enhanced sensitivity to refractive index (RI) variations associated with cancerous cells, suggesting its suitability for early detection. Full article
Show Figures

Figure 1

30 pages, 1062 KB  
Article
Context-Aware Emotion Gating and Modulation for Fine-Grained Sentiment Classification
by Anupama Udayangani Gunathilaka Thennakoon Mudiyanselage, Jinglan Zhang and Yeufeng Li
Mach. Learn. Knowl. Extr. 2026, 8(1), 9; https://doi.org/10.3390/make8010009 - 31 Dec 2025
Viewed by 275
Abstract
Fine-grained sentiment analysis requires a deep understanding of emotional intensity in the text to distinguish subtle shifts in polarity, such as moving from positive to more positive or from negative to more negative, and to clearly separate emotionally neutral statements from polarized expressions, [...] Read more.
Fine-grained sentiment analysis requires a deep understanding of emotional intensity in the text to distinguish subtle shifts in polarity, such as moving from positive to more positive or from negative to more negative, and to clearly separate emotionally neutral statements from polarized expressions, especially in short or contextually sparse texts such as social media posts. While recent advances combine deep semantic encoding with context-aware architectures, such as Bidirectional Long Short-Term Memory (BiLSTM) and Convolutional Neural Networks (CNNs), many models still struggle to detect nuanced emotional cues, particularly in short texts, due to the limited contextual information, subtle polarity shifts, and overlapping affective expressions, which ultimately hinder performance and reduce a model’s ability to make fine-grained sentiment distinctions. To address this challenge, we propose an Emotion- Aware Bidirectional Gating Network (Electra-BiG-Emo) that improves sentiment classification and subtle sentiment differentiation by learning contextual emotion representations and refining them with auxiliary emotional signals. Our model employs an asymmetric gating mechanism within a BiLSTM to dynamically capture both early and late contextual semantics. The gates are temperature-controlled, enabling adaptive modulation of emotion priors, derived from Reddit post datasets to enhance context-aware emotion representation. These soft emotional signals are reweighted based on context, enabling the model to amplify or suppress emotions in the presence of an ambiguous context. This approach advances fine-grained sentiment understanding by embedding emotional awareness directly into the learning process. Ablation studies confirm the complementary roles of semantic encoding, context modeling, and emotion modulation. Further our approach achieves competitive performance on Sem- Val 2017 Task 4c, Twitter US Airline, and SST5 datasets compared with state-of-the-art methods, particularly excelling in detecting subtle emotional variations and classifying short, semantically sparse texts. Gating and modulation analyses reveal that emotion-aware gating enhances interpretability and reinforces the value of explicit emotion modeling in fine-grained sentiment tasks. Full article
(This article belongs to the Section Data)
Show Figures

Figure 1

26 pages, 4162 KB  
Article
Spatial Effects of Implicit Land Use Transition on Land Use Carbon Emissions: A Spatial Econometric Analysis at the County Level in Hebei Province, China
by Weijie Zhang, Zhi Zhou, Li Zhao, Guijun Zhang and Pengtao Zhang
Land 2026, 15(1), 74; https://doi.org/10.3390/land15010074 - 31 Dec 2025
Viewed by 246
Abstract
Focusing on Hebei Province in China, the work investigated the impact of implicit land use transition (ILUT) on land use carbon emissions (LUCEs) for dual carbon goals. A county-level evaluation system and a measurement model were constructed to explore ILUT and carbon emissions’ [...] Read more.
Focusing on Hebei Province in China, the work investigated the impact of implicit land use transition (ILUT) on land use carbon emissions (LUCEs) for dual carbon goals. A county-level evaluation system and a measurement model were constructed to explore ILUT and carbon emissions’ spatiotemporal progression, respectively. The optimal spatial econometric model was selected by employing different testing methods to elucidate how ILUT affected carbon emissions. LUCEs increased from 49.7964 million tons (2000) to 107.401 million tons (2015) and dropped to 92.2173 million tons by 2020. The overall exhibited an inverted V-shape. Values were generally higher in the southeast and lower in the northwest. ILUT index across counties increased from 2000 to 2020, with polarization of implicit indices intensified. Spatial distribution showed that the southeastern area exhibited notably higher values compared to the northwestern parts. Significant positive spatial correlation existed between ILUT and carbon emissions within the county, while a significant negative spatial correlation was observed with carbon emissions in neighboring counties. These findings provide scientific support for formulating differentiated land use policies and optimizing carbon emission control strategies in Hebei Province, holding significant practical value for regional dual carbon targets. Full article
Show Figures

Figure 1

16 pages, 6261 KB  
Article
Polarization Effect in Contactless X-Band Detection of Bars in Reinforced Concrete Structures
by Adriana Brancaccio and Simone Palladino
Appl. Sci. 2026, 16(1), 412; https://doi.org/10.3390/app16010412 - 30 Dec 2025
Viewed by 125
Abstract
This study investigates the influence of electromagnetic field polarization in the non-destructive testing of reinforced concrete structures through both theoretical analysis and experimental validation. Theoretical models predict that the orientation of reinforcement bars relative to the incident electric field significantly affects the scattered [...] Read more.
This study investigates the influence of electromagnetic field polarization in the non-destructive testing of reinforced concrete structures through both theoretical analysis and experimental validation. Theoretical models predict that the orientation of reinforcement bars relative to the incident electric field significantly affects the scattered signal, influencing their detectability. Laboratory experiments on realistic reinforced concrete specimens presenting both vertical bars and horizontal brackets confirm these predictions, demonstrating that polarization can be exploited to enhance measurement accuracy. These findings provide useful insights into the development of microwave-based diagnostic techniques for structural assessment. Full article
Show Figures

Figure 1

30 pages, 9332 KB  
Article
Resilience and Vulnerability to Sustainable Urban Innovation: A Comparative Analysis of Knowledge and Technology Networks in China
by Jie Liu and Tianxing Zhu
Sustainability 2026, 18(1), 317; https://doi.org/10.3390/su18010317 - 28 Dec 2025
Viewed by 275
Abstract
This study examines the structural evolution of Knowledge Innovation Networks (KINs) and Technology Innovation Networks (TINs) across Chinese cities (2015–2024). Using SCI/SSCI co-authorship and prefecture-level patent data, we construct dual-layer networks and assess their resilience through metrics such as average clustering coefficient, path [...] Read more.
This study examines the structural evolution of Knowledge Innovation Networks (KINs) and Technology Innovation Networks (TINs) across Chinese cities (2015–2024). Using SCI/SSCI co-authorship and prefecture-level patent data, we construct dual-layer networks and assess their resilience through metrics such as average clustering coefficient, path length, global efficiency, and largest-component ratio. Our framework clarifies how network structure, spatial proximity, and urban hierarchy jointly shape innovation dynamics and opportunity distribution. Three main findings emerge. First, KINs have moved toward polycentricity yet remain hierarchically rigid, with persistent core–periphery gaps despite improved connectivity in tier 2–4 cities. TINs show greater cross-tier adaptability, creating new innovation gateways while intensifying intra-tier polarization. Second, under simulated disruptions, KINs are vulnerable to targeted attacks and exhibit path-dependent degradation, whereas TINs maintain efficiency until a critical threshold, then collapse abruptly. Third, MRQAP analysis reveals that economic and geographic proximity facilitate collaboration in KIN but constrain linkages in TINs, with spatial proximity exerting a stronger influence on knowledge flows. These results demonstrate how innovation networks mediate urban–rural interactions, affect spatial inequality, and shape regional resilience. We argue for differentiated policies that strengthen core–periphery connectivity while mitigating proximity-induced lock-in, fostering more inclusive, resilient, and sustainable urban innovation systems. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

Back to TopTop