Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. High Temperature Corrosion Test
2.3. Electrochemical Behavior
3. Results
3.1. High-Temperature Corrosion Behaviour of Different Stainless-Steel Types
3.2. Electrochemical Behavior of Different Stainless Steel Types
3.3. Discussion
4. Conclusions
- The high-temperature corrosion behavior of stainless steels was strongly governed by their metallurgical phases. Ferritic grades exhibited combined pitting and intergranular attack, while austenitic grades showed uniform intragranular degradation. Duplex stainless steel experienced localized galvanic corrosion due to the potential difference between ferrite and austenite. These results confirm that phase constitution plays a decisive role in determining degradation mechanisms at 700 °C and must be considered when selecting materials for SOFC interconnect applications.
- Phase-dependent thermomechanical properties (particularly thermal expansion and high-temperature strength) significantly influenced oxidation behavior, while alloy composition further modulated passive-film stability. Variations in Cr, Mo, and N altered the electrochemical responses observed in EIS, OCP, and polarization measurements. Differences in thermal expansion also affected oxide-scale cracking and growth kinetics. These findings demonstrate that both metallurgical phase and alloy composition jointly determine high-temperature corrosion resistance, and neither parameter alone sufficiently explains the observed degradation trends.
- For long-term SOFC interconnect operation, understanding the combined effects of thermomechanical stability, passive-film integrity, and high-temperature oxidation resistance is essential. Among the examined alloys, austenitic stainless steels showed the highest susceptibility due to their large thermal expansion mismatch, while ferritic steels exhibited limited corrosion resistance due to lower alloy content. Duplex stainless steels offered an optimal balance of phase stability and passive-film robustness, with AISI 2507 showing the best overall performance. Therefore, duplex stainless steel represents the most promising candidate for SOFC metallic interconnect applications.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Han, Z.; Ren, W.; Yang, J.; Du, Y.; Wei, R.; Zhang, C.; Chen, Y.; Zhang, G. The Deformation Behavior and Strain Rate Sensitivity of Ultra-Fine Grained CoNiFeCrMn High-Entropy Alloys at Temperatures Ranging from 77 K to 573 K. J. Alloys Compd. 2019, 791, 962–970. [Google Scholar] [CrossRef]
- Guerrini, E.; Cristiani, P.; Grattieri, M.; Santoro, C.; Li, B.; Trasatti, S. Electrochemical Behavior of Stainless Steel Anodes in Membraneless Microbial Fuel Cells. J. Electrochem. Soc. 2013, 161, H62. [Google Scholar] [CrossRef]
- Elhoud, A.M.; Renton, N.C.; Deans, W.F. Hydrogen Embrittlement of Super Duplex Stainless Steel in Acid Solution. Int. J. Hydrogen Energy 2010, 35, 6455–6464. [Google Scholar] [CrossRef]
- Acharyya, S.G.; Khandelwal, A.; Kain, V.; Kumar, A.; Samajdar, I. Surface Working of 304L Stainless Steel: Impact on Microstructure, Electrochemical Behavior and SCC Resistance. Mater. Charact. 2012, 72, 68–76. [Google Scholar] [CrossRef]
- Nilsson, J.-O. Super Duplex Stainless Steels. Mater. Sci. Technol. 1992, 8, 685–700. [Google Scholar] [CrossRef]
- Topolska, S.; Łabanowski, J. Effect of Microstructure on Impact Toughness of Duplex and Superduplex Stainless Steels. J. Achiev. Mater. Manuf. Eng. 2009, 36, 142–149. [Google Scholar]
- Lee, S.M.; Lee, W.G.; Kim, Y.H.; Jang, H. Surface Roughness and the Corrosion Resistance of 21Cr Ferritic Stainless Steel. Corros. Sci. 2012, 63, 404–409. [Google Scholar] [CrossRef]
- Ha, H.-Y.; Lee, T.-H.; Bae, J.-H.; Chun, D.W. Molybdenum Effects on Pitting Corrosion Resistance of FeCrMnMoNC Austenitic Stainless Steels. Metals 2018, 8, 653. [Google Scholar] [CrossRef]
- Ormerod, R.M. Solid Oxide Fuel Cells. Chem. Soc. Rev. 2003, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Jang, I.; SA Carneiro, J.; Crawford, J.O.; Cho, Y.J.; Parvin, S.; Gonzalez-Casamachin, D.A.; Baltrusaitis, J.; Lively, R.P.; Nikolla, E. Electrocatalysis in Solid Oxide Fuel Cells and Electrolyzers. Chem. Rev. 2024, 124, 8233–8306. [Google Scholar] [CrossRef]
- Singh, M.; Paydar, S.; Singh, A.K.; Singhal, R.; Singh, A.; Singh, M. Recent Advancement of Solid Oxide Fuel Cells towards Semiconductor Membrane Fuel Cells. Energy Mater. 2024, 4, 400012. [Google Scholar] [CrossRef]
- Pettersson, N.; Pettersson, R.F.A.; Wessman, S. Precipitation of Chromium Nitrides in the Super Duplex Stainless Steel 2507. Metall. Mater. Trans. A 2015, 46, 1062–1072. [Google Scholar] [CrossRef]
- Michalska, J.; Chmiela, B. Phase Analysis in Duplex Stainless Steel: Comparison of EBSD and Quantitative Metallography Methods. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Warsaw, Poland, 24–25 April 2014; IOP Publishing: Bristol, UK, 2014; Volume 55, p. 012010. [Google Scholar]
- Metikoš-Huković, M.; Babić, R.; Grubač, Z.; Petrović, Ž.; Lajçi, N. High Corrosion Resistance of Austenitic Stainless Steel Alloyed with Nitrogen in an Acid Solution. Corros. Sci. 2011, 53, 2176–2183. [Google Scholar] [CrossRef]
- Soria, L.; Herrera, E.J. A Reliable Technique to Determine Pitting Potentials of Austenitic Stainless Steels by Potentiodynamic Methods. Weld. Int. 1992, 6, 959–964. [Google Scholar] [CrossRef]
- Faraji, H.; Yıldız, Ç.; Arshad, A.; Arıcı, M.; Choukairy, K.; El Alami, M. Passive Thermal Management Strategy for Cooling Multiple Portable Electronic Components: Hybrid Nanoparticles Enhanced Phase Change Materials as an Innovative Solution. J. Energy Storage 2023, 70, 108087. [Google Scholar] [CrossRef]
- Klink, J.; Hebenbrock, A.; Grabow, J.; Orazov, N.; Nylén, U.; Benger, R.; Beck, H.-P. Comparison of Model-Based and Sensor-Based Detection of Thermal Runaway in Li-Ion Battery Modules for Automotive Application. Batteries 2022, 8, 34. [Google Scholar] [CrossRef]
- Yousaf, M.; Lu, Y.; Akbar, M.; Lei, L.; Jing, S.; Tao, Y. Advances in Solid Oxide Fuel Cell Technologies: Lowering the Operating Temperatures through Material Innovations. Mater. Today Energy 2024, 44, 101633. [Google Scholar] [CrossRef]
- Isidorio, D.K.M.; da Cruz Payão Filho, J.; Uddagiri, M.; NouraniNiaki, K.; Shchyglo, O.; Steinbach, I. Super Duplex Stainless Steel Fabricated by Arc-Based Directed Energy Deposition: Microstructure Evolution and Phase Field Solidification Simulation. Mater. Des. 2025, 254, 114027. [Google Scholar] [CrossRef]
- Jo, H.; Ok, J.-W.; Lee, Y.-S.; Lee, S.; Je, Y.; Kim, S.; Kim, S.; Park, J.; Hong, J.; Lee, T. Impact of Ag Coating Thickness on the Electrochemical Behavior of Super Duplex Stainless Steel SAF2507 for Enhanced Li-Ion Battery Cases. Crystals 2025, 15, 62. [Google Scholar] [CrossRef]
- da Silva, S.P.; Abrão, A.M.; da Silva, E.R.; Câmara, M.A. Enhanced Wear Resistance and Frictional Behavior of AISI H13 Tool Steel through In-Situ Urea-Assisted EDM Nitriding and TiAlN PVD Coating. Int. J. Adv. Manuf. Technol. 2025, 138, 2459–2473. [Google Scholar] [CrossRef]
- Vanini, M.; Searle, S.; Vanmunster, L.; Vanmeensel, K.; Vrancken, B. Local Microstructure Engineering of Super Duplex Stainless Steel via Dual Laser Powder Bed Fusion–an Analytical Modeling and Experimental Approach. Addit. Manuf. 2025, 112, 104994. [Google Scholar] [CrossRef]
- Fande, A.W.; Taiwade, R.V. Welding of Super Duplex Stainless Steel and Austenitic Stainless Steel:# Xd; Influence and Role of Bicomponent Fluxes. Mater. Manuf. Process. 2023, 38, 434–448. [Google Scholar]
- Makhdoom, M.A.; Ahmad, A.; Kamran, M.; Abid, K.; Haider, W. Microstructural and Electrochemical Behavior of 2205 Duplex Stainless Steel Weldments. Surf. Interfaces 2017, 9, 189–195. [Google Scholar] [CrossRef]
- Rani, K.U.; Kumar, R.; Mahapatra, M.M.; Mulik, R.S.; Świerczyńska, A.; Fydrych, D.; Pandey, C. Wire Arc Additive Manufactured Mild Steel and Austenitic Stainless Steel Components: Microstructure, Mechanical Properties and Residual Stresses. Materials 2022, 15, 7094. [Google Scholar] [CrossRef]
- Köse, C. Effect of Heat Input and Post Weld Heat Treatment on the Texture, Microstructure and Mechanical Properties of Laser Beam Welded AISI 317L Austenitic Stainless Steel. Mater. Sci. Eng. A 2022, 855, 143966. [Google Scholar] [CrossRef]
- Seo, M.; Hultquist, G.; Leygraf, C.; Sato, N. The Influence of Minor Alloying Elements (Nb, Ti and Cu) on the Corrosion Resistivity of Ferritic Stainless Steel in Sulfuric Acid Solution. Corros. Sci. 1986, 26, 949–960. [Google Scholar] [CrossRef]
- Ha, H.-Y.; Jang, M.-H.; Lee, T.-H.; Moon, J. Interpretation of the Relation between Ferrite Fraction and Pitting Corrosion Resistance of Commercial 2205 Duplex Stainless Steel. Corros. Sci. 2014, 89, 154–162. [Google Scholar] [CrossRef]
- Tehovnik, F.; Arzensek, B.; Arh, B.; Skobir, D.; Pirnar, B.; Zuzek, B. Microstructure Evolution in SAF 2507 Super Duplex Stainless Steel. Mater. Technol. 2011, 45, 339–345. [Google Scholar]
- Paulraj, P.; Garg, R. Effect of Intermetallic Phases on Corrosion Behavior and Mechanical Properties of Duplex Stainless Steel and Super-Duplex Stainless Steel. Adv. Sci. Technol. Res. J. 2015, 9, 87–105. [Google Scholar] [CrossRef]
- Kim, M.; Ha, J.; Kim, Y.-T.; Choi, J. Stainless Steel: A High Potential Material for Green Electrochemical Energy Storage and Conversion. Chem. Eng. J. 2022, 440, 135459. [Google Scholar] [CrossRef]
- Desta, H.G.; Gebreslassie, G.; Zhang, J.; Lin, B.; Zheng, Y.; Zhang, J. Enhancing Performance of Lower-Temperature Solid Oxide Fuel Cell Cathodes through Surface Engineering. Prog. Mater. Sci. 2025, 147, 101353. [Google Scholar] [CrossRef]
- Rybalka, K.V.; Beketaeva, L.A.; Davydov, A.D. Electrochemical Behavior of Stainless Steel in Aerated NaCl Solutions by Electrochemical Impedance and Rotating Disk Electrode Methods. Russ. J. Electrochem. 2006, 42, 370–374. [Google Scholar] [CrossRef]
- Shin, B.-H.; Jung, S.; Chung, W. Effect of Neodymium Concentration on Electrochemical Properties of 925 Silver. J. Korean Inst. Surf. Eng. 2021, 54, 71–76. [Google Scholar]
- Rehman, A.U.; Lee, S.H. Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells. Materials 2014, 7, 1318–1341. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, M.H.F.; Rocha, F.C.; Medeiros-Junior, R.A.; Helene, P. Corrosion Potential: Influence of Moisture, Water-Cement Ratio, Chloride Content and Concrete Cover. Rev. IBRACON De Estrut. E Mater. 2017, 10, 864–885. [Google Scholar] [CrossRef]
- ASTM F2129-19a; Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices. ASTM International: West Conshohocken, PA, USA, 2019.
- Rahman, A.; Lin, X. Li-Ion Battery Individual Electrode State of Charge and Degradation Monitoring Using Battery Casing through Auto Curve Matching for Standard CCCV Charging Profile. Appl. Energy 2022, 321, 119367. [Google Scholar] [CrossRef]
- Sung, C.; Kim, K.; Chung, W.; Shin, B.-H. Electrochemical Properties of UNS S 32750 and UNS S 32760 Annealed Super Duplex Stainless Steels. Int. J. Electrochem. Sci. 2022, 17, 220526. [Google Scholar] [CrossRef]
- Masarapu, C.; Subramanian, V.; Zhu, H.; Wei, B. Long-Cycle Electrochemical Behavior of Multiwall Carbon Nanotubes Synthesized on Stainless Steel in Li Ion Batteries. Adv. Funct. Mater. 2009, 19, 1008–1014. [Google Scholar] [CrossRef]
- Baghdadchi, A.; Hosseini, V.A.; Valiente Bermejo, M.A.; Axelsson, B.; Harati, E.; Högström, M.; Karlsson, L. Wire Laser Metal Deposition of 22% Cr Duplex Stainless Steel: As-Deposited and Heat-Treated Microstructure and Mechanical Properties. J. Mater. Sci. 2022, 57, 9556–9575. [Google Scholar] [CrossRef]
- Nishimoto, M.; Muto, I.; Sugawara, Y. Review―Understanding and Controlling the Electrochemical Properties of Sulfide Inclusions for Improving the Pitting Corrosion Resistance of Stainless Steels. Mater. Trans. 2023, 64, MT-C2023003. [Google Scholar] [CrossRef]
- Speidel, M.O. Nitrogen Containing Austenitic Stainless Steels. Mater. Und Werkst. Entwickl. Fert. Prüfung Eig. Und Anwendungen Tech. Werkst. 2006, 37, 875–880. [Google Scholar] [CrossRef]
- Saravanan, P.; Govindaraj, Y.; Khalkho, B.; Srikanth, S.; Kumar, V.; Neelakantan, L. Mechanical Properties and Corrosion Behaviour of Developed High Nitrogen High Manganese Stainless Steels. Materwiss Werksttech 2023, 54, 615–626. [Google Scholar] [CrossRef]
- Valiente Bermejo, M.A.; Thalavai Pandian, K.; Axelsson, B.; Harati, E.; Kisielewicz, A.; Karlsson, L. Microstructure of Laser Metal Deposited Duplex Stainless Steel: Influence of Shielding Gas and Heat Treatment. Weld. World 2021, 65, 525–541. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.; Park, J.; Chung, W.; Shin, B.-H. Microstructure and Corrosion Performance of High-Entropy Alloy and Austenite and Super Duplex Stainless Steels in 3.5% NaCl Solution. Int. J. Electrochem. Sci. 2023, 18, 100074. [Google Scholar] [CrossRef]
- Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The Effect of Metakaolin on the Corrosion Behavior of Cement Mortars. Cem. Concr. Compos. 2005, 27, 125–130. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, Y.I.; Lamichhane, B.; Kim, Y.-H.; Lee, Y.; Cho, C.R.; Cheon, M.; Kim, J.C.; Jeong, H.Y.; Ha, T. Flat-Surface-Assisted and Self-Regulated Oxidation Resistance of Cu (111). Nature 2022, 603, 434–438. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, D.; Grosu, I.-G.; Filip, C. How Thick, Uniform and Smooth Are the Polydopamine Coating Layers Obtained under Different Oxidation Conditions? An in-Depth AFM Study. Appl. Surf. Sci. 2022, 597, 153680. [Google Scholar] [CrossRef]
- Valeriano, L.d.C.; Correa, E.O.; Mariano, N.A.; Robin, A.L.M.; Machado, M.A.G. Influence of the Solution-Treatment Temperature and Short Aging Times on the Electrochemical Corrosion Behaviour of Uns S32520 Super Duplex Stainless Steel. Mater. Res. 2019, 22, e20180774. [Google Scholar] [CrossRef]
- Bizeray, A.M.; Howey, D.A.; Monroe, C.W. Resolving a Discrepancy in Diffusion Potentials, with a Case Study for Li-Ion Batteries. J. Electrochem. Soc. 2016, 163, E223. [Google Scholar] [CrossRef]
- Isaacs, H.S.; Ishikawa, Y. Current and Potential Transients during Localized Corrosion of Stainless Steel. J. Electrochem. Soc. 1985, 132, 1288. [Google Scholar] [CrossRef]
- Kim, D.; Kim, K.; Chung, W.; Shin, B.-H. Effect of the Plating Time on Nickel Electroless Coating Properties Deposited on the Super Duplex Stainless Steel UNS S 32750. Int. J. Electrochem. Sci. 2022, 17, 220630. [Google Scholar] [CrossRef]
- Nilsson, J.O.; Wilson, A. Influence of Isothermal Phase Transformations on Toughness and Pitting Corrosion of Super Duplex Stainless Steel SAF 2507. Mater. Sci. Technol. 1993, 9, 545–554. [Google Scholar] [CrossRef]
- Shin, B.-H.; Park, J.; Jeon, J.; Heo, S.; Chung, W. Effect of Cooling Rate after Heat Treatment on Pitting Corrosion of Super Duplex Stainless Steel UNS S 32750. Anti-Corros. Methods Mater. 2018, 65, 492–498. [Google Scholar]
- Kamenskih, S.; Ulyasheva, N.; Buslaev, G.; Voronik, A.; Rudnitskiy, N. Research and Development of the Lightweight Corrosion-Resistant Cement Blend for Well Cementing in Complex Geological Conditions. In Proceedings of the SPE Russian Petroleum Technology Conference, Moscow, Russia, 19–21 September 2018; SPE: Richardson, TX, USA, 2018; p. D023S010R009. [Google Scholar]
- Large, D.; Scandella, F.; Robineau, A.; Dupoiron, F.; Peultier, J.; Fanica, A.; Petit, B.; Thulin, A.; Pettersson, R.; Weisang-Hoinard, F. Welding of Lean Duplex Stainless Steel Grades: Microstructure, Corrosion Resistance and Mechanical Properties. In Proceedings of the NACE CORROSION, Orlando, FL, USA, 11–15 March 2012; NACE: Houston, TX, USA, 2012; p. NACE-2012. [Google Scholar]
- Vukkum, V.B.; Christudasjustus, J.; Darwish, A.A.; Storck, S.M.; Gupta, R.K. Enhanced Corrosion Resistance of Additively Manufactured Stainless Steel by Modification of Feedstock. Npj Mater. Degrad. 2022, 6, 2. [Google Scholar] [CrossRef]
- Yoo, Y.-R.; Choi, S.-H.; Kim, Y.-S. Effect of Laser Peening on the Corrosion Properties of 304L Stainless Steel. Materials 2023, 16, 804. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Park, J.; Ok, J.-W.; Kim, S.; Shin, B.-H.; Yoon, J.-H. Study of Effects of Post-Weld Heat Treatment Time on Corrosion Behavior and Manufacturing Processes of Super Duplex Stainless SAF 2507 for Advanced Li-Ion Battery Cases. Materials 2024, 17, 4107. [Google Scholar] [CrossRef]











| AISI No. | Main Phase | C | N | Ni | Mn | Cr | Mo | Fe |
|---|---|---|---|---|---|---|---|---|
| 409L | Ferrite | 0.01 | 0.0 | 0.1 | 0.3 | 11.2 | 0.0 | Bal |
| 430L | Ferrite | 0.01 | 0.1 | 0.1 | 0.9 | 16.2 | 0.2 | Bal |
| 304L | Austenite | 0.03 | 0.1 | 9.8 | 1.9 | 18.2 | 0.0 | Bal |
| 316L | Austenite | 0.03 | 0.3 | 11.6 | 2.0 | 18.5 | 2.1 | Bal |
| 2205 | Duplex | 0.01 | 0.2 | 5.5 | 1.2 | 22.3 | 3.4 | Bal |
| 2507 | Duplex | 0.01 | 0.3 | 6.8 | 0.8 | 25.0 | 3.8 | Bal |
| AISI No. | 409L | 430L | 304L | 316L | 2205 | 2507 |
|---|---|---|---|---|---|---|
| Oxidation layer | 1.2 ± 0.6 μm | 0.8 ± 0.6 μm | 1.9 ± 1.1 μm | 1.6 ± 0.8 μm | 0.4 ± 0.2 μm | 0.2 ± 0.1 μm |
| AISI No. | Type | Main Phase | Cr, wt.% | Fe, wt.% | O, wt.% |
|---|---|---|---|---|---|
| 409L | AISI409L | Ferrite | 25.50 ± 5.5 | 49.23 ± 6.5 | 25.27 ± 7.2 |
| 430L | AISI430L | Ferrite | 26.27 ± 6.3 | 57.95 ± 6.1 | 15.78 ± 5.1 |
| 304L | AISI304L | Austenite | 27.33 ± 3.5 | 45.23 ± 7.9 | 27.44 ± 8.5 |
| 316L | AISI316L | Austenite | 18.80 ± 5.2 | 61.66 ± 7.6 | 19.54 ± 6.5 |
| 2205 | AISI2205 | Duplex | 40.18 ± 3.4 | 47.02 ± 2.9 | 12.80 ± 5.5 |
| 2507 | AISI2507 | Duplex | 36.44 ± 0.6 | 55.44 ± 1.6 | 8.12 ± 2.1 |
| AISI No. | Main Phase | Coefficient of Thermal Expansion | PREN | Strength |
|---|---|---|---|---|
| 409L | Ferrite | 1.04 × 10−5/°C | 11.2 | 170 MPa |
| 430L | Ferrite | 1.08 × 10−5/°C | 18.5 | 220 MPa |
| 304L | Austenite | 1.73 × 10−5/°C | 19.8 | 190 MPa |
| 316L | Austenite | 1.60 × 10−5/°C | 30.2 | 170 MPa |
| 2205 | Duplex | 1.37 × 10−5/°C | 36.7 | 300 MPa |
| 2507 | Duplex | 1.36 × 10−5/°C | 42.3 | 300 MPa |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Kim, D.; Shin, B.-H. Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels. Metals 2026, 16, 82. https://doi.org/10.3390/met16010082
Kim D, Shin B-H. Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels. Metals. 2026; 16(1):82. https://doi.org/10.3390/met16010082
Chicago/Turabian StyleKim, Dohyung, and Byung-Hyun Shin. 2026. "Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels" Metals 16, no. 1: 82. https://doi.org/10.3390/met16010082
APA StyleKim, D., & Shin, B.-H. (2026). Study on Electrochemical Behavior at a Room and High Temperature at 700 °C Corrosion of Austenite, Ferrite, and Duplex Stainless Steels. Metals, 16(1), 82. https://doi.org/10.3390/met16010082

