Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,947)

Search Parameters:
Keywords = adhesive structures

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3814 KiB  
Article
Features of the Structure of Layered Epoxy Composite Coatings Formed on a Metal-Ceramic-Coated Aluminum Base
by Volodymyr Korzhyk, Volodymyr Kopei, Petro Stukhliak, Olena Berdnikova, Olga Kushnarova, Oleg Kolisnichenko, Oleg Totosko, Danylo Stukhliak and Liubomyr Ropyak
Materials 2025, 18(15), 3620; https://doi.org/10.3390/ma18153620 (registering DOI) - 1 Aug 2025
Abstract
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer [...] Read more.
Difficult, extreme operating conditions of parabolic antennas under precipitation and sub-zero temperatures require the creation of effective heating systems. The purpose of the research is to develop a multilayer coating containing two metal-ceramic layers, epoxy composite layers, carbon fabric, and an outer layer of basalt fabric, which allows for effective heating of the antenna, and to study the properties of this coating. The multilayer coating was formed on an aluminum base that was subjected to abrasive jet processing. The first and second metal-ceramic layers, Al2O3 + 5% Al, which were applied by high-speed multi-chamber cumulative detonation spraying (CDS), respectively, provide maximum adhesion strength to the aluminum base and high adhesion strength to the third layer of the epoxy composite containing Al2O3. On this not-yet-polymerized layer of epoxy composite containing Al2O3, a layer of carbon fabric (impregnated with epoxy resin) was formed, which serves as a resistive heating element. On top of this carbon fabric, a layer of epoxy composite containing Cr2O3 and SiO2 was applied. Next, basalt fabric was applied to this still-not-yet-polymerized layer. Then, the resulting layered coating was compacted and dried. To study this multilayer coating, X-ray analysis, light and raster scanning microscopy, and transmission electron microscopy were used. The thickness of the coating layers and microhardness were measured on transverse microsections. The adhesion strength of the metal-ceramic coating layers to the aluminum base was determined by both bending testing and peeling using the adhesive method. It was established that CDS provides the formation of metal-ceramic layers with a maximum fraction of lamellae and a microhardness of 7900–10,520 MPa. In these metal-ceramic layers, a dispersed subgrain structure, a uniform distribution of nanoparticles, and a gradient-free level of dislocation density are observed. Such a structure prevents the formation of local concentrators of internal stresses, thereby increasing the level of dispersion and substructural strengthening of the metal-ceramic layers’ material. The formation of materials with a nanostructure increases their strength and crack resistance. The effectiveness of using aluminum, chromium, and silicon oxides as nanofillers in epoxy composite layers was demonstrated. The presence of structures near the surface of these nanofillers, which differ from the properties of the epoxy matrix in the coating, was established. Such zones, specifically the outer surface layers (OSL), significantly affect the properties of the epoxy composite. The results of industrial tests showed the high performance of the multilayer coating during antenna heating. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

27 pages, 5832 KiB  
Article
Electrospinning Technology to Influence Hep-G2 Cell Growth on PVDF Fiber Mats as Medical Scaffolds: A New Perspective of Advanced Biomaterial
by Héctor Herrera Hernández, Carlos O. González Morán, Gemima Lara Hernández, Ilse Z. Ramírez-León, Citlalli J. Trujillo Romero, Juan A. Alcántara Cárdenas and Jose de Jesus Agustin Flores Cuautle
J. Compos. Sci. 2025, 9(8), 401; https://doi.org/10.3390/jcs9080401 (registering DOI) - 1 Aug 2025
Abstract
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes [...] Read more.
This research focuses on designing polymer membranes as biocompatible materials using home-built electrospinning equipment, offering alternative solutions for tissue regeneration applications. This technological development supports cell growth on biomaterial substrates, including hepatocellular carcinoma (Hep-G2) cells. This work researches the compatibility of polymer membranes (fiber mats) made of polyvinylidene difluoride (PVDF) for possible use in cellular engineering. A standard culture medium was employed to support the proliferation of Hep-G2 cells under controlled conditions (37 °C, 4.8% CO2, and 100% relative humidity). Subsequently, after the incubation period, electrochemical impedance spectroscopy (EIS) assays were conducted in a physiological environment to characterize the electrical cellular response, providing insights into the biocompatibility of the material. Scanning electron microscopy (SEM) was employed to evaluate cell adhesion, morphology, and growth on the PVDF polymer membranes. The results suggest that PVDF polymer membranes can be successfully produced through electrospinning technology, resulting in the formation of a dipole structure, including the possible presence of a polar β-phase, contributing to piezoelectric activity. EIS measurements, based on Rct and Cdl values, are indicators of ion charge transfer and strong electrical interactions at the membrane interface. These findings suggest a favorable environment for cell proliferation, thereby enhancing cellular interactions at the fiber interface within the electrolyte. SEM observations displayed a consistent distribution of fibers with a distinctive spherical agglomeration on the entire PVDF surface. Finally, integrating piezoelectric properties into cell culture systems provides new opportunities for investigating the influence of electrical interactions on cellular behavior through electrochemical techniques. Based on the experimental results, this electrospun polymer demonstrates great potential as a promising candidate for next-generation biomaterials, with a probable application in tissue regeneration. Full article
(This article belongs to the Special Issue Sustainable Biocomposites, 3rd Edition)
Show Figures

Figure 1

19 pages, 2308 KiB  
Review
The Potential of Functional Hydrogels in Burns Treatment
by Nathalie S. Ringrose, Ricardo W. J. Balk, Susan Gibbs, Paul P. M. van Zuijlen and H. Ibrahim Korkmaz
Gels 2025, 11(8), 595; https://doi.org/10.3390/gels11080595 (registering DOI) - 31 Jul 2025
Abstract
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, [...] Read more.
Burn injuries are complex and require effective wound management strategies. Traditional treatments, such as dermal templates, are limited by simplified extracellular matrix (ECM) composition (e.g., collagen-elastin or collagen-glycosaminoglycan), sheet-based formats, and frequent use of animal-derived materials. These limitations can reduce wound conformity, biocompatibility, and integration with host tissue. Functional hydrogels are being explored as alternatives due to properties such as high water content, biodegradability, adhesiveness, antimicrobial activity, and support for angiogenesis. Unlike standard templates, hydrogels can adapt to irregular wound shapes as in burn wounds and reach deeper tissue layers, supporting moisture retention, cell migration, and controlled drug delivery. These features may improve the wound environment and support healing in burns of varying severity. This review outlines recent developments in functional hydrogel technologies and compares them to current clinical treatments for burn care. Emphasis is placed on the structural and biological features that influence performance, including material composition, bioactivity, and integration capacity. Through an exploration of key mechanisms of action and clinical applications, this review highlights the benefits and challenges associated with hydrogel technology, providing insights into its future role in burn care. Full article
(This article belongs to the Special Issue Hydrogel for Tissue Engineering and Biomedical Therapeutics)
17 pages, 1139 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 (registering DOI) - 31 Jul 2025
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
21 pages, 14595 KiB  
Article
Synchronous Improvement of Mechanical and Room-Temperature Damping Performance in Light-Weight Polyurethane Composites by a Simple Carbon-Coating Strategy
by Qitan Zheng, Zhongzheng Zhu, Junyi Yao, Qinyu Sun, Qunfu Fan, Hezhou Liu, Qiuxia Dong and Hua Li
Polymers 2025, 17(15), 2115; https://doi.org/10.3390/polym17152115 (registering DOI) - 31 Jul 2025
Abstract
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping [...] Read more.
In order to address vibration and noise challenges in modern industry while satisfying the lightweighting requirements for aerospace and transportation applications, the development of polymer elastomers integrating both lightweight and high-damping properties holds substantial significance. This study developed polyurethane (PU) with optimized damping and mechanical properties at room temperature through monomer composition optimization. Hollow glass microspheres (HGMs) were introduced into the PU matrix to increase stiffness and reduce density, though this resulted in decreased tensile strength (Rm) and loss factor (tanδ). To further improve mechanical and damping properties, we applied a carbon coating to the surface of the HGMs to optimize the interface between the HGMs and the PU matrix, and systematically investigated the energy dissipation and load-bearing behavior of PU composites. The effect of enhanced interface damping of HGM@C/PU resulted in broadening of the effective damping temperature range (tanδ ≥ 0.3) and higher maximum loss factor (tanδmax) compared to HGM/PU at equivalent filler loading. The tensile and dynamic properties significantly improved due to optimized interfacial adhesion. In PU composites reinforced with 10 wt% HGM and HGM@C, a 46.8% improvement in Rm and 11.0% improvement in tanδmax occurred after carbon coating. According to acoustic testing, average transmission loss of HGM/PU and HGM@C/PU with the same filler content showed a difference of 0.3–0.5 dB in 500–6300 Hz, confirming that the hollow structure of the HGMs was preserved during carbon coating. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

19 pages, 17315 KiB  
Article
Development and Mechanical Characterization of Environmentally Friendly PLA/Crop Waste Green Composites
by Karolina Ewelina Mazur, Tomasz Wacław Witko, Alicja Kośmider and Stanisław Tadeusz Kuciel
Materials 2025, 18(15), 3608; https://doi.org/10.3390/ma18153608 (registering DOI) - 31 Jul 2025
Abstract
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with [...] Read more.
This study presents the fabrication and characterization of sustainable polylactic acid (PLA)-based biocomposites reinforced with bio-origin fillers derived from food waste: seashells, eggshells, walnut shells, and spent coffee grounds. All fillers were introduced at 15 wt% into a commercial PLA matrix modified with a compatibilizer to improve interfacial adhesion. Mechanical properties (tensile, flexural, and impact strength), morphological characteristics (via SEM), and hydrolytic aging behavior were evaluated. Among the tested systems, PLA reinforced with seashells (PLA15S) and coffee grounds (PLA15C) demonstrated the most balanced mechanical performance, with PLA15S achieving a tensile strength increase of 72% compared to neat PLA. Notably, PLA15C exhibited the highest stability after 28 days of hydrothermal aging, retaining ~36% of its initial tensile strength, outperforming other systems. In contrast, walnut-shell-filled composites showed the most severe degradation, losing over 98% of their mechanical strength after aging. The results indicate that both the physicochemical nature and morphology of the biofiller play critical roles in determining mechanical reinforcement and degradation resistance. This research underlines the feasibility of valorizing agri-food residues into biodegradable, semi-structural PLA composites for potential use in sustainable packaging or non-load-bearing structural applications. Full article
Show Figures

Graphical abstract

30 pages, 8037 KiB  
Review
A Review of Multiscale Interaction Mechanisms of Wind–Leaf–Droplet Systems in Orchard Spraying
by Yunfei Wang, Zhenlei Zhang, Ruohan Shi, Shiqun Dai, Weidong Jia, Mingxiong Ou, Xiang Dong and Mingde Yan
Sensors 2025, 25(15), 4729; https://doi.org/10.3390/s25154729 (registering DOI) - 31 Jul 2025
Abstract
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent [...] Read more.
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent and site-specific spraying operations. This review systematically examines the synergistic dynamics across three hierarchical scales: Droplet–leaf surface wetting and adhesion at the microscale; leaf cluster motion responses at the mesoscale; and the modulation of airflow and spray plume diffusion by canopy architecture at the macroscale. Key variables affecting spray performance—such as wind speed and turbulence structure, leaf biomechanical properties, droplet size and electrostatic characteristics, and spatial canopy heterogeneity—are identified and analyzed. Furthermore, current advances in multiscale modeling approaches and their corresponding experimental validation techniques are critically evaluated, along with their practical boundaries of applicability. Results indicate that while substantial progress has been made at individual scales, significant bottlenecks remain in the integration of cross-scale models, real-time acquisition of critical parameters, and the establishment of high-fidelity experimental platforms. Future research should prioritize the development of unified coupling frameworks, the integration of physics-based and data-driven modeling strategies, and the deployment of multimodal sensing technologies for real-time intelligent spray decision-making. These efforts are expected to provide both theoretical foundations and technological support for advancing precision and intelligent orchard spraying systems. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

21 pages, 14026 KiB  
Article
Development of PEO in Low-Temperature Ternary Nitrate Molten Salt on Ti6V4Al
by Michael Garashchenko, Yuliy Yuferov and Konstantin Borodianskiy
Materials 2025, 18(15), 3603; https://doi.org/10.3390/ma18153603 (registering DOI) - 31 Jul 2025
Abstract
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to [...] Read more.
Titanium alloys are frequently subjected to surface treatments to enhance their biocompatibility and corrosion resistance in biological environments. Plasma electrolytic oxidation (PEO) is an environmentally friendly electrochemical technique capable of forming oxide layers characterized by high corrosion resistance, biocompatibility, and strong adhesion to the substrate. In this study, the PEO process was performed using a low-melting-point ternary eutectic electrolyte composed of Ca(NO3)2–NaNO3–KNO3 (41–17–42 wt.%) with the addition of ammonium dihydrogen phosphate (ADP). The use of this electrolyte system enables a reduction in the operating temperature from 280 to 160 °C. The effects of applied voltage from 200 to 400V, current frequency from 50 to 1000 Hz, and ADP concentrations of 0.1, 0.5, 1, 2, and 5 wt.% on the growth of titanium oxide composite coatings on a Ti-6Al-4V substrate were investigated. The incorporation of Ca and P was confirmed by phase and chemical composition analysis, while scanning electron microscopy (SEM) revealed a porous surface morphology typical of PEO coatings. Corrosion resistance in Hank’s solution, evaluated via Tafel plot fitting of potentiodynamic polarization curves, demonstrated a substantial improvement in electrochemical performance of the PEO-treated samples. The corrosion current decreased from 552 to 219 nA/cm2, and the corrosion potential shifted from −102 to 793 mV vs. the Reference Hydrogen Electrode (RHE) compared to the uncoated alloy. These findings indicate optimal PEO processing parameters for producing composite oxide coatings on Ti-6Al-4V alloy surfaces with enhanced corrosion resistance and potential bioactivity, which are attributed to the incorporation of Ca and P into the coating structure. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

16 pages, 1504 KiB  
Review
Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties
by George W. Thompson and Mohammad J. Mahtabi
Appl. Sci. 2025, 15(15), 8500; https://doi.org/10.3390/app15158500 (registering DOI) - 31 Jul 2025
Abstract
This paper reviews the fundamental principles and techniques of nickel electrodeposition, with a particular focus on metallizing polymeric substrates. It outlines the electrochemical mechanisms involved in depositing nickel from an acidic Watts bath, detailing the roles of key electrolyte components—i.e., nickel sulfate, nickel [...] Read more.
This paper reviews the fundamental principles and techniques of nickel electrodeposition, with a particular focus on metallizing polymeric substrates. It outlines the electrochemical mechanisms involved in depositing nickel from an acidic Watts bath, detailing the roles of key electrolyte components—i.e., nickel sulfate, nickel chloride, and boric acid—and the influence of process parameters, such as current density, temperature, and pH, on deposit quality (density and surface condition) and mechanical properties. In addressing the unique challenges posed by non-conductive polymers, this review compares emerging methods like silver conductive paint, highlighting differences in deposition time, surface resistivity, and environmental impact. Additionally, this paper examines how process parameters affect the as-deposited microstructure, adhesion, and overall mechanical properties (such as hardness, ductility, and tensile strength), while identifying critical issues such as low deposition density and substrate degradation. These insights provide a structured background for optimizing electroplating processes for applications in electronics, automotive, aerospace, and biomedical sectors, and suggest future research directions to enhance deposition uniformity, sustainability, and process control. Full article
Show Figures

Figure 1

14 pages, 1980 KiB  
Review
Ultrasound in Adhesive Capsulitis: A Narrative Exploration from Static Imaging to Contrast-Enhanced, Dynamic and Sonoelastographic Insights
by Wei-Ting Wu, Ke-Vin Chang, Kamal Mezian, Vincenzo Ricci, Consuelo B. Gonzalez-Suarez and Levent Özçakar
Diagnostics 2025, 15(15), 1924; https://doi.org/10.3390/diagnostics15151924 (registering DOI) - 31 Jul 2025
Abstract
Adhesive capsulitis is a painful and progressive condition marked by significant limitations in shoulder mobility, particularly affecting external rotation. Although magnetic resonance imaging is regarded as the reference standard for assessing intra-articular structures, its high cost and limited availability present challenges in routine [...] Read more.
Adhesive capsulitis is a painful and progressive condition marked by significant limitations in shoulder mobility, particularly affecting external rotation. Although magnetic resonance imaging is regarded as the reference standard for assessing intra-articular structures, its high cost and limited availability present challenges in routine clinical use. In contrast, musculoskeletal ultrasound has emerged as an accessible, real-time, and cost-effective imaging modality for both the diagnosis and treatment guidance of adhesive capsulitis. This narrative review compiles and illustrates current evidence regarding the role of ultrasound, encompassing static B-mode imaging, dynamic motion analysis, contrast-enhanced techniques, and sonoelastography. Key sonographic features—such as thickening of the coracohumeral ligament, fibrosis in the axillary recess, and abnormal tendon kinematics—have been consistently associated with adhesive capsulitis and demonstrate favorable diagnostic performance. Advanced methods like contrast-enhanced ultrasound and elastography provide additional functional insights (enabling evaluation of capsular stiffness and vascular changes) which may aid in disease staging and prediction of treatment response. Despite these advantages, the clinical utility of ultrasound remains subject to operator expertise and technical variability. Limited visualization of intra-articular structures and the absence of standardized scanning protocols continue to pose challenges. Nevertheless, ongoing advances in its technology and utility standardization hold promise for the broader application of ultrasound in clinical practice. With continued research and validation, ultrasound is positioned to play an increasingly central role in the comprehensive assessment and management of adhesive capsulitis. Full article
Show Figures

Figure 1

15 pages, 2594 KiB  
Article
Novel Zwitterionic Hydrogels with High and Tunable Toughness for Anti-Fouling Application
by Kefan Wu, Xiaoyu Guo, Jingyao Feng, Xiaoxue Yang, Feiyang Li, Xiaolin Wang and Hui Guo
Gels 2025, 11(8), 587; https://doi.org/10.3390/gels11080587 - 30 Jul 2025
Abstract
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the [...] Read more.
Zwitterionic hydrogels have emerged as eco-friendly anti-fouling materials owing to their superior hydration-mediated resistance to biofouling. Nevertheless, their practical utility remains constrained by intrinsically poor mechanical robustness. Herein, this study proposes a novel strategy to develop novel tough zwitterionic hydrogels by freezing the gels’ polymer network. As a proof of concept, a zwitterionic hydrogel was synthesized via copolymerization of hydrophobic monomer phenyl methacrylate (PMA) and hydrophilic cationic monomer N-(3-dimethylaminopropyl) methacrylamide (DMAPMA), followed by post-oxidation to yield a zwitterionic structure. At service temperature, the rigid and hydrophobic PMA segments remain frozen, while the hydrophilic zwitterionic units maintain substantial water content by osmotic pressure. Synergistically, the zwitterionic hydrogel achieves robust toughness and adhesiveness, with high rigidity (66 MPa), strength (4.78 MPa), and toughness (2.53 MJ/m3). Moreover, the hydrogel exhibits a distinct temperature-dependent behavior by manifesting softer and more stretchable behavior after heating, since the thawing of the gel network at high temperatures increases segmental mobility. Therefore, it achieved satisfactory adhesiveness to substrates (80 kPa). Additionally, the hydrogel demonstrated remarkable anti-fouling performance, effectively suppressing biofilm formation and larval attachment. In summary, this work opens up promising prospects for the development of zwitterionic hydrogels with high application potential. Full article
Show Figures

Figure 1

16 pages, 3091 KiB  
Article
Fabrication and Evaluation of Screen-Printed Electrodes on Chitosan Films for Cardiac Patch Applications with In Vitro and In Vivo Evaluation
by Yu-Hsin Lin, Yong-Ji Chen, Jen-Tsai Liu, Ching-Shu Yen, Yi-Zhen Lin, Xiu-Wei Zhou, Shu-Ying Chen, Jhe-Lun Hu, Chi-Hsiang Wu, Ching-Jung Chen, Pei-Leun Kang and Shwu-Jen Chang
Polymers 2025, 17(15), 2088; https://doi.org/10.3390/polym17152088 - 30 Jul 2025
Viewed by 23
Abstract
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the [...] Read more.
Myocardial infarction (MI) remains one of the most common cardiovascular diseases and a leading cause of morbidity and mortality worldwide. In recent years, natural polymeric patches have attracted increasing attention as a promising therapeutic platform for myocardial tissue repair. This study explored the fabrication and evaluation of screen-printed electrodes (SPEs) on chitosan film as a novel platform for cardiac patch applications. Chitosan is a biodegradable and biocompatible natural polymer that provides an ideal substrate for SPEs, providing mechanical stability and promoting cell adhesion. Silver ink was employed to enhance electrochemical performance, and the electrodes exhibited strong adhesion and structural integrity under wet conditions. Mechanical testing and swelling ratio analysis were conducted to assess the patch’s physical robustness and aqueous stability. Silver ink was employed to enhance electrochemical performance, which was evaluated using cyclic voltammetry. In vitro, electrical stimulation through the chitosan–SPE patch significantly increased the expression of cardiac-specific genes (GATA-4, β-MHC, troponin I) in bone marrow mesenchymal stem cells (BMSCs), indicating early cardiogenic differentiation potential. In vivo, the implantation of the chitosan–SPE patch in a rat MI model demonstrated good tissue integration, preserved myocardial structure, and enhanced ventricular wall thickness, indicating that the patch has the potential to serve as a functional cardiac scaffold. These findings support the feasibility of screen-printed electrodes fabricated on chitosan film substrates as a cost-effective and scalable platform for cardiac repair, offering a foundation for future applications in cardiac tissue engineering. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

36 pages, 16047 KiB  
Article
Insights into Sea Spray Ice Adhesion from Laboratory Testing
by Paul Rübsamen-v. Döhren, Sönke Maus, Zhiliang Zhang and Jianying He
Thermo 2025, 5(3), 27; https://doi.org/10.3390/thermo5030027 - 30 Jul 2025
Viewed by 28
Abstract
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is [...] Read more.
Ice accretion from marine icing events accumulating on structures poses a significant hazard to ship and offshore operations in cold regions, being relevant for offshore activities like oil explorations, offshore wind, and shipping in arctic regions. The adhesion strength of such ice is a critical factor in predicting the build-up of ice loads on structures. While the adhesion strength of freshwater ice has been extensively studied, knowledge about sea spray ice adhesion remains limited. This study intends to bridge this gap by investigating the adhesion strength of sea spray icing under controlled laboratory conditions. In this study, we built a new in situ ice adhesion test setup and grew ice at −7 °C to −15 °C on quadratic aluminium samples of 3 cm to 12 cm edge length. The results reveal that sea spray ice adhesion strength is in a significantly lower range—5 kPa to 100 kPa—compared to fresh water ice adhesion and shows a low dependency on the temperature during the spray event, but a notable size effect and influence of the brine layer thickness on the adhesion strength. These findings provide critical insights into sea spray icing, enhancing the ability to predict and manage ice loads in marine environments. Full article
(This article belongs to the Special Issue Frosting and Icing)
Show Figures

Figure 1

15 pages, 15023 KiB  
Article
Surface-Localized Crosslinked MEW PCL–Hydrogel Scaffolds with Tunable Porosity for Enhanced Cell Adhesion and Viability
by Yixin Li, Le Kang and Kai Cao
Polymers 2025, 17(15), 2086; https://doi.org/10.3390/polym17152086 - 30 Jul 2025
Viewed by 51
Abstract
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this [...] Read more.
Hydrogel is widely used as a scaffolding material for tissue engineering due to its excellent cytocompatibility and potential for biofunctionalization. However, its poor mechanical property limits its further application. Fabrication of fiber-reinforced hydrogel composite scaffolds has emerged as a solution to overcome this problem. However, existing strategies usually produce nonporous composite scaffolds, where the interfiber pores are completely filled with hydrogel. This design can hinder oxygen and nutrient exchange between seeded cells and the culture medium, thereby limiting cell invasion and colonization within the scaffold. In this study, sodium alginate (SA) hydrogel was exclusively grafted onto the surface of the constituent fibers of the melt electrowritten scaffold while preserving the porous structure. The grafted hydrogel amount and pore size were precisely controlled by adjusting the SA concentration and the crosslinking ratio (SA: CaCl2). Experimental results demonstrated that the porous composite scaffolds exhibited superior swelling capacity, degradation ratio, mechanical properties, and biocompatibility. Notably, at an SA concentration of 0.5% and a crosslinking ratio of 2:1, the porous composite scaffold achieved optimal cell adhesion and viability. This study highlights the critical importance of preserving porous structures in composite scaffolds for tissue-engineering applications. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

18 pages, 3939 KiB  
Article
Transparent Alicyclic Polyimides Prepared via Copolymerization or Crosslinking: Enhanced Flexibility and Optical Properties for Flexible Display Cover Windows
by Hyuck-Jin Kwon, Jun Hwang, Suk-Min Hong and Chil Won Lee
Polymers 2025, 17(15), 2081; https://doi.org/10.3390/polym17152081 - 30 Jul 2025
Viewed by 87
Abstract
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such [...] Read more.
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such as flexible display cover windows. Furthermore, the refractive index of most transparent polyimides is approximately 1.57, which differs from that of the optically clear adhesives (OCAs) and window materials that have values typically around 1.5, resulting in visual distortion. This study employed 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the base structure of polyimides (6T). Additionally, 1,3-bis(aminomethyl)cyclohexane (BAC) with a monocyclic structure and bis(aminomethyl)bicyclo[2,2,1]heptane (BBH) with a bicyclic structure were introduced as co-monomers or crosslinking agents to 6T. The mechanical, thermal, and optical properties of the obtained copolymers (6T-BAC and 6T-BBH series) and crosslinked polymers (6T-CL-BAC and 6T-CL-BBH series) were compared. Both the copolymer series (6T-BAC and 6T-BBH) and the crosslinked series (6T-CL-BAC and 6T-CL-BBH) exhibited improved optical properties compared to the conventional 6T, with maximum transmittance exceeding 90% and refractive indices ranging from approximately 1.53 to 1.55. Notably, the copolymer series achieved transmittance levels above 95% and exhibited lower refractive indices (~1.53), demonstrating superior optical performance relative not only to the 6T baseline but also to the crosslinked series. The alicyclic polyimides synthesized in this study exhibited mechanical flexibility, high optical transmittance, and a refractive index approaching 1.5, demonstrating their applicability for use as flexible display cover window materials. Full article
Show Figures

Graphical abstract

Back to TopTop