Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties
Abstract
Featured Application
Abstract
1. Introduction
2. Electrochemistry of Nickel Electrodeposition
2.1. Components of an Electroplating Setup
2.2. Electromigration Control Methods
2.3. Watts Bath Nickel Electroplating Reactions
3. Primary or Polymer Metallization
Alternative Methods of PM
4. Common Nickel Electrolyte Compositions and Applications
5. Structural Properties of the Electrodeposited Nickel Parts
5.1. Hardness
5.2. Strength and Ductility
5.3. Modulus of Elasticity
5.4. Internal Stress
5.5. Fatigue Failure and Other Properties
6. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choi, S.; Jeon, S.; Park, I.; Ito, M.; Hiroyoshi, N. Enhanced Cementation of Co2+ and Ni2+ from Sulfate and Chloride Solutions Using Aluminum as an Electron Donor and Conductive Particles as an Electron Pathway. Metals 2021, 11, 248. [Google Scholar] [CrossRef]
- Nagy, Z. (Ed.) Electrochemistry Dictionary and Encyclopedia; The Electrochemical Society: Pennington, NJ, USA, 2014. [Google Scholar]
- de Souza, R.F.B.; Del Pozzo, A.S.; Giuliano, A.D.; Silvestrin, G.; De Micheli, L.; Soares, E.P.; Giovedi, C.; Terremoto, L.A.A.; Somessari, S.L.; Neto, A.O.; et al. In-operando 3D visualization of nickel electrodeposition and mass transport phenomena: Insights from X-ray microcomputed tomography. Int. J. Electrochem. Sci. 2025, 20, 101090. [Google Scholar] [CrossRef]
- Nasirpouri, F. Electrodeposition of Nanostructured Materials; Springer Series in Surface Sciences; Springer Nature: London, UK, 2017; Volume 62. [Google Scholar]
- Gamburg, Y.D.; Zangari, G. Theory and Practice of Metal Electrodeposition; Springer Science & Business Media: New York, NY, USA, 2011. [Google Scholar]
- Brugnatelli, L.V.; Brugnatelli, G.; di Fisica, G. Chimica e Storia Naturale Ossia Raccolte di Memorie Sulle Scienze, Arti e Manifatture ad Esse Relative di Luigi Brugnatelli; Tipogr. Capelli: Pavia, Italy, 1818. [Google Scholar]
- Hunt, L.B. The early history of gold plating. Gold Bull. 1973, 6, 16–27. [Google Scholar] [CrossRef]
- Landolt, D. ChemInform Abstract: Electrodeposition Science and Technology in the Last Quarter of the Twentieth Century. J. Electrochem. Soc. 2002, 149, S9–S20. [Google Scholar] [CrossRef]
- Watts, O.P. Rapid nickel plating. Trans. Am. Electrochem. Soc. 1916, 29, 395–403. [Google Scholar] [CrossRef]
- Nebiolo, W.P.; Chemicals, R. The history of electroplating and a historical review of the evolution of NASF. History 2022, 86, 1–14. [Google Scholar]
- Abner Brenner, G.E.R. Nickel Plating on Steel by Chemical Reduction. J. Res. Natl. Bur. Stand. 1946, 37, 31. [Google Scholar] [CrossRef]
- Giurlani, W.; Zangari, G.; Gambinossi, F.; Passaponti, M.; Salvietti, E.; Di Benedetto, F.; Caporali, S.; Innocenti, M. Electroplating for Decorative Applications: Recent Trends in Research and Development. Coatings 2018, 8, 260. [Google Scholar] [CrossRef]
- Paunovic, M.; Schlesinger, M.; Snyder, D.D. Fundamental Considerations. In Modern Electroplating, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2010; pp. 1–32. [Google Scholar]
- Costa, J.G.; Costa, J.M.; Neto, A.F.A. Progress on Electrodeposition of Metals and Alloys Using Ionic Liquids as Electrolytes. Metals 2022, 12, 2095. [Google Scholar] [CrossRef]
- Whittington, C. Nickel Plating Handbook; Nickel Institute: Toronto, ON, Canada, 2022. [Google Scholar]
- Azhar Equbal, M.I.E.; Sood, A.K.; Equbal, M.A. A Comparative Study on Electroplating of FDM Parts. Int. J. Technol. 2017, 8, 291–319. [Google Scholar] [CrossRef]
- Thompson; Mahtabi, M.J. Advancing Manufacturing Efficiency: Electroplating Nickel onto 3D-Printed Polymer; University of Texas at Austin: Austin, TX, USA, 2024. [Google Scholar]
- Wang, W.; Zhang, W.; Wang, Y.; Mitsuzak, N.; Chen, Z. Ductile electroless Ni–P coating onto flexible printed circuit board. Appl. Surf. Sci. 2016, 367, 528–532. [Google Scholar] [CrossRef]
- Kieselstein, E.; Sommer, J.-P.; Brämer, K.; Großer, V.; Benecke, W.; Michel, B.; Becker, M.; Notarp, D.L.; Vogel, J. Application of electroplating in MEMS-micromachining exemplified by a microrelay. Microsyst. Technol. 2001, 7, 196–202. [Google Scholar] [CrossRef]
- Niveditha, R.; Saranya, R.; Vishnu, T.; Chamundeswari, K. Comparative study on structural enhancement of polymer based medical devices using additive manufacturing technology and pop (Plating on Plastics). Mater. Today Proc. 2022, 62, 2138–2144. [Google Scholar] [CrossRef]
- Sasikala, G.; Dhanasekaran, R.; Subramanian, C. Electrodeposition and optical characterisation of CdS thin films on ITO-coated glass. Thin Solid Film. 1997, 302, 71–76. [Google Scholar] [CrossRef]
- Silverstone, P.C. Electroforming of Venturi-Type Nozzles for Wind Tunnels and Other Applications. In Symposium on Electroforming—Applications, Uses, and Properties of Electroformed Metals; Committee B-8, Ed.; ASTM International: West Conshohocken, PA, USA, 1962. [Google Scholar]
- Kuzmik, J. Preparation of Plastic Substrates for Electroless Plating and Solutions Therefor. U.S. Patent 3790400, 5 February 1974. [Google Scholar]
- Carl, M.R. Precision Electroforming for Optical Disk Manufacturing. Opt. Mass Data Storage I 1985, 529, 69–75. [Google Scholar]
- Carr, D.S.; Buschow, A.G. Electroforming for Aviation and Aerospace Applications at Bart Manufacturing Corp. In Symposium on Electroforming—Applications, Uses, and Properties of Electroformed Metals; Committee B-8, Ed.; ASTM International: West Conshohocken, PA, USA, 1962. [Google Scholar]
- Parkinson, R. Plating and Electroforming-Essential Industries for Today and the Future; Nickel Development Institute: Toronto, ON, Canada, 2001. [Google Scholar]
- De Silva, U.; Coons, T.P. Molten Salt Electrodeposition. Energies 2024, 17, 3832. [Google Scholar] [CrossRef]
- Gu, Y.; Liu, J.; Qu, S.; Deng, Y.; Han, X.; Hu, W.; Zhong, C. Electrodeposition of alloys and compounds from high-temperature molten salts. J. Alloys Compd. 2017, 690, 228–238. [Google Scholar] [CrossRef]
- Di Bari, G.A. Electrodeposition of Nickel. Mod. Electroplat. 2010, 5, 79–114. [Google Scholar]
- Switzer, J.A.; Kothari, H.M.; Bohannan, E.W. Thermodynamic to Kinetic Transition in Epitaxial Electrodeposition. J. Phys. Chem. B 2002, 106, 4027–4031. [Google Scholar] [CrossRef]
- Barker, D.; Walsh, F.C. Applications of Faraday’s Laws of Electrolysis in Metal Finishing. Trans. IMF 1991, 69, 158–162. [Google Scholar] [CrossRef]
- Schlesinger, M.; Paunovic, M. Modern Electroplating; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Mavukkandy, M.O.; McBride, S.A.; Warsinger, D.M.; Dizge, N.; Hasan, S.W.; Arafat, H.A. Thin film deposition techniques for polymeric membranes—A review. J. Membr. Sci. 2020, 610, 118258. [Google Scholar] [CrossRef]
- Shacham-Diamand, Y.; Osaka, T.; Okinaka, Y.; Sugiyama, A.; Dubin, V. 30 years of electroless plating for semiconductor and polymer micro-systems. Microelectron. Eng. 2015, 132, 35–45. [Google Scholar] [CrossRef]
- Petrovicova, E.; Schadler, L.S. Thermal spraying of polymers. Int. Mater. Rev. 2002, 47, 169–190. [Google Scholar] [CrossRef]
- Kah, P.; Suoranta, R.; Martikainen, J.; Magnus, C. Techniques for Joining Dissimilar Materials: Metals and Polymers. Rev. Adv. Mater. Sci. 2014, 36, 152–164. [Google Scholar]
- Amancio Filho, S.T.; Blaga, L.-A. Joining of Polymer-Metal Hybrid Structures: Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Melentiev, R.; Yudhanto, A.; Tao, R.; Vuchkov, T.; Lubineau, G. Metallization of polymers and composites: State-of-the-art approaches. Mater. Des. 2022, 221, 110958. [Google Scholar] [CrossRef]
- Loto, C.A. Electroless Nickel Plating–A Review; Springer: New York, NY, USA, 2016. [Google Scholar]
- Mallory, G.O.; Hajdu, J.B. Electroless Plating: Fundamentals and Applications; William Andrew: Norwich, NY, USA, 1990. [Google Scholar]
- Bucknall, C.B. Toughened Plastics; Springer: New York, NY, USA, 1977. [Google Scholar]
- Kim, N.K.; Kang, S.M.; Kim, T.; Kim, S.; Kim, G.H. Electroless Plating on Polymer Surfaces: Comprehensive Review of Mechanism, Process, Analysis, and Future Applications. Adv. Mater. Interfaces 2025, 12, 2400931. [Google Scholar] [CrossRef]
- Augustyn, P.; Rytlewski, P.; Moraczewski, K.; Mazurkiewicz, A. A review on the direct electroplating of polymeric materials. J. Mater. Sci. 2021, 56, 14881–14899. [Google Scholar] [CrossRef]
- Chemicals, M. 842AR—Super Shield Silver Conductive Paint. 2025. Available online: https://mgchemicals.com/products/conductive-paint/conductive-acrylic-paints/silver-conductive-paint/ (accessed on 1 January 2025).
- Tsai, Y.-T.; Lin, K.-H.; Chen, C.-S. A study of tolerance allocation and stack-up analysis to improve the assembly precision of an injection mold. J. Chin. Inst. Eng. 2023, 46, 479–489. [Google Scholar] [CrossRef]
- Jayakrishnan, S.; Pushpavanam, M.; Shenoi, B.A. Electrodeposition from organic solutions of metals that are difficult to deposit from aqueous solutions. Surf. Technol. 1981, 13, 225–240. [Google Scholar] [CrossRef]
- Kopeliovich, D.D. Nickel Electroplating [SubTech]: Nickel Electroplating; Nickel Development Institute: Toronto, ON, Canada, 2013. [Google Scholar]
- Safranek, W.H. The Properties of Electrodeposited Metals and Alloys; Elsevier: Amsterdam, The Netherlands, 1974. [Google Scholar]
- Ibrahim, M.A.M. Black nickel electrodeposition from a modified Watts bath. J. Appl. Electrochem. 2006, 36, 295–301. [Google Scholar] [CrossRef]
- Eßbach, C.; Fischer, D.; Nickel, D. Challenges in electroplating of additive manufactured ABS plastics. J. Manuf. Process. 2021, 68, 1378–1386. [Google Scholar] [CrossRef]
- Luo, J.K.; Pritschow, M.; Flewitt, A.J.; Spearing, S.M.; Fleck, N.A.; Milne, W.I. Effects of process conditions on properties of electroplated Ni thin films for microsystem applications. J. Electrochem. Soc. 2006, 153, D155. [Google Scholar] [CrossRef]
- Birlik, I.; Azem, F.A. Influence of bath composition on the structure and properties of nickel coatings produced by electrodeposition technique. J. Sci. Eng. 2018, 20, 689–697. [Google Scholar] [CrossRef]
- Petit, G.S.; Wright, R.R.; Neff, W.A. Evaluation of Variables Which Affect the Hardness of Nickel Plate Deposited from Watts-Type Baths; Oak Ridge Gaseous Diffusion Plant, Tenn: Oak Ridge, TN, USA, 1976. [Google Scholar]
- Oriňáková, R.; Turoňová, A.; Kladeková, D.; Gálová, M.; Smith, R.M. Recent developments in the electrodeposition of nickel and some nickel-based alloys. J. Appl. Electrochem. 2006, 36, 957–972. [Google Scholar] [CrossRef]
- Schmitz, E.P.S.; Quinaia, S.P.; Garcia, J.R.; de Andrade, C.K.; Lopes, M.C. Influence of commercial organic additives on the nickel electroplating. Int. J. Electrochem. Sci. 2016, 11, 983–997. [Google Scholar] [CrossRef]
- Mohanty, U.S.; Tripathy, B.C.; Singh, P.; Keshavarz, A.; Iglauer, S. Roles of organic and inorganic additives on the surface quality, morphology, and polarization behavior during nickel electrodeposition from various baths: A review. J. Appl. Electrochem. 2019, 49, 847–870. [Google Scholar] [CrossRef]
- Feng, L.; Ren, Y.-Y.; Zhang, Y.-H.; Wang, S.; Li, L. Direct correlations among the grain size, texture, and indentation behavior of nanocrystalline nickel coatings. Metals 2019, 9, 188. [Google Scholar] [CrossRef]
- Rashidi, A.M.; Amadeh, A. Effect of electroplating parameters on microstructure of nanocrystalline nickel coatings. J. Mater. Sci. Technol. 2010, 26, 82–86. [Google Scholar] [CrossRef]
- Parkinson, R. Mechanical Properties of Electroformed Metals; National Association for Surface Finishing: Washington, DC, USA, 1996. [Google Scholar]
- Boukhouiete, A.A.-O.; Boumendjel, S.; Sobhi, N.E. Effect of current density on the microstructure and morphology of the electrodeposited nickel coatings. Turk. J. Chem. 2021, 45, 1599–1608. [Google Scholar] [CrossRef]
- Dibari, G.A. Nickel Plating. In Universal Metal Finishing Guidebook; Elsevier: Amsterdam, The Netherlands, 2012; pp. 334–350. [Google Scholar]
- Schlesinger, M. Electroplating; Kirk-Othmer Encyclopedia of Chemical Technology: New York, NY, USA, 2000. [Google Scholar]
- Kittelty, D.; Nicol, M. The physical properties of nickel electrodeposits. Electrochem. Miner. Met. Process. V 2000, 14, 362–373. [Google Scholar]
- Okonkwo, B.O.; Jeong, C.; Jang, C. Advances on Cr and Ni Electrodeposition for Industrial Applications—A Review. Coatings 2022, 12, 1555. [Google Scholar] [CrossRef]
- Fukunaga, A.; Ueda, S. Pulse electrodeposition of Ni–P alloy coatings from Watts baths: P content, current efficiency, and internal stress. Electrochim. Acta 2024, 502, 144839. [Google Scholar] [CrossRef]
- Tan, Y.-J.; Lim, K.Y. Understanding and improving the uniformity of electrodeposition. Surf. Coat. Technol. 2003, 167, 255–262. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC press: Boca Raton, FL, USA, 2004; Volume 85. [Google Scholar]
- Fuchs, H.O.; Stephens, R.I.; Saunders, H. Metal Fatigue in Engineering, 2nd ed.; Wiley: Hoboken, NJ, USA, 2000; p. 498. [Google Scholar]
- Suresh, S. Fatigue of Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Yadollahi, A.; Mahtabi, M.; Khalili, A.; Doude, H.; Newman, J. Fatigue life prediction of additively manufactured material: Effects of surface roughness, defect size, and shape. Fatigue Fract. Eng. Mater. Struct. 2018, 41, 1602–1614. [Google Scholar] [CrossRef]
- Sangid, M.D. The physics of fatigue crack initiation. Int. J. Fatigue 2013, 57, 58–72. [Google Scholar] [CrossRef]
- Noble, H.J.; Reed, E.C. The influence of residual stress in nickel and chromium plates on fatigue. Exp. Mech. 1974, 14, 463–467. [Google Scholar] [CrossRef]
- Mahtabi, M.; Yadollahi, A.; Ataollahi, S.; Mahtabi, M.J. Effect of build height on structural integrity of Ti-6Al-4V fabricated via laser powder bed fusion. Eng. Fail. Anal. 2023, 154, 107691. [Google Scholar] [CrossRef]
- Zhao, Y.; He, S.; Li, L. Application of Hot Isostatic Pressing in Nickel-Based Single Crystal Superalloys. Crystals 2022, 12, 805. [Google Scholar] [CrossRef]
- Shao, S.; Mahtabi, M.J.; Shamsaei, N.; Thompson, S.M. Solubility of argon in laser additive manufactured α-titanium under hot isostatic pressing condition. Comput. Mater. Sci. 2017, 131, 209–219. [Google Scholar] [CrossRef]
- Adlington, J.E. The Fatigue Strength of Electroplated Components; University of Surrey: Surrey, UK, 1990. [Google Scholar]
- Tehranchi, A.; Curtin, W.A. The role of atomistic simulations in probing hydrogen effects on plasticity and embrittlement in metals. Eng. Fract. Mech. 2019, 216, 106502. [Google Scholar] [CrossRef]
PM Method | Advantages | Disadvantages |
---|---|---|
Physical Vapor Deposition (PVD) | High precision, thin coatings, uniform coverage, high-quality finish | Expensive, slow deposition rates, not suitable for complex geometries |
Electroless Plating | Uniform coating, no electrical current required, suitable for complex geometries | Limited material compatibility, slow deposition rates, less durable |
Thermal Spray Methods | High deposition rates, one step process, superior coating adhesion | Metals compatibility is limited, special resolution is low, coatings are porous |
Direct Polymer-Metal Bonding | Strong bonding, versatility in method selection, customizable surface finish | Temperature limitations on polymers, weak mechanical properties, time intensive |
Primary Metallization Process | Surface Resistivity (Ω) | Required Time for Similarly Sized Parts |
---|---|---|
Chromic Acid Etching | 920,000 | ~48 h |
Aluminum–Charcoal Paste | 0.09 | ~48 h |
Silver Conductive Paint | 0.015 | ~0.5 h |
Electrolyte | Chemical Name | Formula | Concentration (g/L) | Applications |
---|---|---|---|---|
Watts | Nickel sulfate | 200–300 | Corrosion and wear resistant, decorative, structural | |
Nickel chloride | 45–150 | |||
Boric acid | 30–52 | |||
Nickel sulfamate | Nickel sulfamate | 300–450 | Abrasion and corrosion resistant, structural | |
Nickel chloride | 0–30 | |||
Boric acid | 30–45 | |||
Sulfate-chloride | Nickel sulfate | 150–225 | High deposition rate and slightly higher internal stress | |
Nickel chloride | 150–225 | |||
Boric acid | 30–45 | |||
All-sulfate | Nickel sulfate | 225–410 | Insoluble anode | |
Boric acid | 30–45 | |||
Hard nickel | Nickel sulfate | 180 | High hardness and tensile strength | |
Ammonium chloride | 25 | |||
Boric acid | 30 | |||
Black nickel | Nickel ammonium sulfate | 60 | Plating on brass, bronze, or steel | |
Zinc sulfate | 22 | |||
Sodium thiocyanate | 15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, G.W.; Mahtabi, M.J. Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties. Appl. Sci. 2025, 15, 8500. https://doi.org/10.3390/app15158500
Thompson GW, Mahtabi MJ. Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties. Applied Sciences. 2025; 15(15):8500. https://doi.org/10.3390/app15158500
Chicago/Turabian StyleThompson, George W., and Mohammad J. Mahtabi. 2025. "Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties" Applied Sciences 15, no. 15: 8500. https://doi.org/10.3390/app15158500
APA StyleThompson, G. W., & Mahtabi, M. J. (2025). Electrodeposition of Nickel onto Polymers: A Short Review of Plating Processes and Structural Properties. Applied Sciences, 15(15), 8500. https://doi.org/10.3390/app15158500