Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,656)

Search Parameters:
Keywords = additively manufactured parts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 3962 KiB  
Article
PLA/PBS Biocomposites for 3D FDM Manufacturing: Effect of Hemp Shive Content and Process Parameters on Printing Quality and Performances
by Emilia Garofalo, Luciano Di Maio and Loredana Incarnato
Polymers 2025, 17(17), 2280; https://doi.org/10.3390/polym17172280 (registering DOI) - 23 Aug 2025
Abstract
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents [...] Read more.
This study investigates the processability—via Fused Deposition Modeling (FDM) 3D printing—and mechanical performance of biocomposites based on polylactic acid (PLA), polybutylene succinate (PBS), and their 50/50 wt% blend, each reinforced with hemp shive at 3 and 5 wt%. Blending PLA with PBS represents a straightforward and encouraging strategy to enhance both the printability and mechanical properties of the individual resins, expanding the range of their potential applications. The addition of hemp shive—a by-product of hemp processing—not only enhances the biodegradability of the composites but also improves their thermo-mechanical performance, as well as aligning with circular economy principles. The rheological characterization, performed on all the systems, evidenced that the PLA/PBS blend possesses viscoelastic properties well suited for FDM, enabling smooth extrusion through the nozzle, good shape stability after deposition, and effective interlayer adhesion. Moreover, the constrain effect of hemp shives within the polymer matrix reduced the extrudate swell, a key factor affecting the dimensional accuracy of the printed parts. Optimal processing conditions were identified at a nozzle temperature of 190 °C and a printing speed of 70 mm/s, providing a favorable compromise between print quality, final performances and production efficiency. From a mechanical perspective, the PLA/PBS blend exhibited an 8.6-fold increase in elongation at break compared to neat PLA, and its corresponding composite showed a ductility nearly three times higher than the PLA-based counterpart’s. In conclusion, the findings of this study provide new insights into the interplay between material formulation, rheological behavior and printing conditions, supporting the development of sustainable, hemp-reinforced biocomposites for additive manufacturing applications. Full article
Show Figures

Figure 1

21 pages, 2258 KiB  
Review
Linking Process Parameters, Structure, and Properties in Material Extrusion Additive Manufacturing of Polymers and Composites: A Review
by Attila Debreceni, Zsolt Buri and Sándor Bodzás
J. Manuf. Mater. Process. 2025, 9(9), 286; https://doi.org/10.3390/jmmp9090286 - 22 Aug 2025
Abstract
This review investigates how process parameters and material choices influence the mechanical performance of parts produced by material extrusion additive manufacturing, with a particular focus on Material Extrusion (ME). Through a systematic bibliometric analysis of literature between 2015 and 2025, the study identifies [...] Read more.
This review investigates how process parameters and material choices influence the mechanical performance of parts produced by material extrusion additive manufacturing, with a particular focus on Material Extrusion (ME). Through a systematic bibliometric analysis of literature between 2015 and 2025, the study identifies key factors affecting mechanical strength, anisotropy, and structural reliability, including printing temperature, speed, orientation, layer thickness, and interlayer bonding. Emphasis is placed on emerging techniques such as 4D printing, fiber-reinforced composites, and novel monitoring methods like real-time vibration sensing and thermal imaging, which offer promising pathways to improve part performance and process stability. Three research questions guide the analysis: (1) how printing parameters affect micro- to macrostructure and failure behavior, (2) how optimization strategies enhance part quality, and (3) how material and process selection aligns with functional requirements. The review highlights both advances and persistent limitations in process control, material compatibility, and anisotropic strength. It concludes with a call for further integration of predictive modeling, hybrid material systems, and closed-loop process monitoring to unlock the full potential of additive manufacturing in high-performance engineering applications. Full article
(This article belongs to the Special Issue Recent Advances in Optimization of Additive Manufacturing Processes)
Show Figures

Figure 1

16 pages, 4785 KiB  
Article
Wrinkling Analysis and Process Optimization of the Hydroforming Processes of Uncured Fiber Metal Laminates for Aircraft Fairing Structures
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(16), 2267; https://doi.org/10.3390/polym17162267 - 21 Aug 2025
Abstract
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many [...] Read more.
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many researchers in the aerospace manufacturing industry, there are still some challenges that need to be considered. Conventional approaches like lay-up techniques and autoclave molding can achieve the relatively simple FML parts with large radii and profiles required for aircraft fuselages and flat skins. However, these methods are not suitable for forming complex-shaped structural parts due to the limited failure strain of fiber-reinforced materials and complex failure modes of the laminates. This research puts forward a new methodology that combines the hydroforming and subsequent curing process to investigate the feasibility of manufacturing complex aircraft parts like fairings made by FMLs. In this research, wrinkle formations are analyzed under various parameters during the hydroforming process. The geometrical shape of the initial blanks and the parameters, including blank holder force and cavity pressure, have been optimized to avoid flange edge wrinkles, and the addition of local support materials contributes to improving local wrinkling in the sharp corners. A finite element model (FEM) taking material laws, interlayer contacts, and boundary conditions into account is used to predict the dynamic hydroforming process of the fiber metal laminate, and experimental works are carried out for its verification. It is expected that the proposed method will reduce both costs and time, as well as reducing laminate defects. Thus, this method offers great potential for future applications related to manufacturing complex-shaped aerospace parts. Full article
(This article belongs to the Special Issue Polymeric Sandwich Composite Materials)
Show Figures

Figure 1

18 pages, 3320 KiB  
Article
Numerical and Experimental Investigation of Slot-Die Coating Regimes of Alumina Slurries on Glass and Dried Alumina Layer for Ceramic Additive Manufacturing
by Jeonghong Ha
Coatings 2025, 15(8), 977; https://doi.org/10.3390/coatings15080977 - 21 Aug 2025
Viewed by 27
Abstract
Slurry-based additive manufacturing (AM) enables the fabrication of dense and complex ceramic components through the layer-by-layer deposition of high-solid-content slurries. However, the reliable formation of uniform, defect-free slurry layers remains a bottleneck for process stability and final part quality. In this study, the [...] Read more.
Slurry-based additive manufacturing (AM) enables the fabrication of dense and complex ceramic components through the layer-by-layer deposition of high-solid-content slurries. However, the reliable formation of uniform, defect-free slurry layers remains a bottleneck for process stability and final part quality. In this study, the slot-die coating window for alumina slurry (50 wt%, viscosity = 34 Pa·s) was systematically investigated using volume-of-fluid simulations and experiments, with coating speed (0.7–2.8 mm/s), flow rate (0.6–0.8 mL/min), and coating gap (200–400 μm) as key variables. The coating process exhibited three distinct regimes, namely overflow, stable, and unstable, depending on process conditions. For a coating gap of 200 μm on a glass substrate, stable bead formation was observed over the widest coating speed range without overflow or air entrainment. At higher speeds, dynamic wetting failure induced air entrainment and bead breakage, while lower speeds led to overflow defects. When coating on a dried alumina layer (contact angle, CA = 137°), the stable window narrowed significantly compared to the glass substrate (CA = 66.7°), highlighting the substantial influence of substrate wettability on coating stability and defect formation. The results derived in this work offer practical guidance for optimizing process parameters to achieve uniform, defect-free films in multilayer ceramic AM. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 3rd Edition)
Show Figures

Figure 1

17 pages, 6566 KiB  
Article
Microstructural and Mechanical Property Variations in 316L Stainless Steel Fabricated by Laser Powder Bed Fusion Under High-Density Processing Conditions
by Shun Zhang, Xudong Wu, Zhong Wang, Meiling Jiang, Guoliang Huang, Xiaoqiang Peng, Chen Yang, Junyan Zhu and Ke Huang
Materials 2025, 18(16), 3899; https://doi.org/10.3390/ma18163899 - 20 Aug 2025
Viewed by 223
Abstract
It has become a trend to precisely control the additive manufacturing process parameters within the high-density process window to obtain high-performance metal parts. However, there are few reports on this topic currently, leaving this research without sufficient references. This study took 316L austenitic [...] Read more.
It has become a trend to precisely control the additive manufacturing process parameters within the high-density process window to obtain high-performance metal parts. However, there are few reports on this topic currently, leaving this research without sufficient references. This study took 316L austenitic stainless steel as a case study. In total, 36 groups of specimens were manufactured by Laser powder bed melting (LPBF), and then, two highly dense specimens were selected to study the variation in their microstructure and properties. The densities of the selected specimens, S1 (VED = 81 J/mm3) and S2 (VED = 156.3 J/mm3), are 99.68% and 99.99%, respectively. The results indicated that, compared with the S1 specimen, the S2 specimen significantly decreased in terms of yield strength (YS), ultimate tensile strength (UTS), and elongation (EL), which are 7.28%, 6.34%, and 19.15%, respectively. The differences in mechanical properties were primarily attributed to differences in their microstructures. Further, compared with the S1 specimen, the fitted ellipse aspect ratio and average grain size of the S2 specimen increased by 79.88% and 53.45%, respectively, and the kernel average misorientation (KAM) value and geometric necessary dislocation (GND) density increased by 36.00% and 58.43%, respectively. Furthermore, the S1 specimen exhibited a strong texture in the <101>//Z direction, whereas no obvious texture was observed in the S2 specimen. Obviously, the reason why precise regulation within the dense parameter range can achieve better performance is that the microstructure and mechanical properties of the specimens prepared within the dense range are different. More importantly, this study provides a feasible framework for optimizing alloys with broad and dense parameter ranges, demonstrating the potential to achieve high-performance components through precise parameter control. Furthermore, the results reveal that even within a wide range of high-density forming parameters, significant variations in microstructure and mechanical properties can arise depending on the selected parameter combinations. These findings underscore the critical importance of meticulous process parameter optimization and microstructural regulation in tailoring material properties. Full article
(This article belongs to the Special Issue New Advances in High-Temperature Structural Materials)
Show Figures

Figure 1

31 pages, 6276 KiB  
Article
Enhancing Wire Arc Additive Manufacturing for Maritime Applications: Overcoming Operational Challenges in Marine and Offshore Environments
by Pavlenko Petro, Xuezhi Shi, Jinbao Wang, Zhenhua Li, Bo Yin, Hanxiang Zhou, Yuxin Zhou, Bojian Yu and Zhun Wang
Appl. Sci. 2025, 15(16), 9070; https://doi.org/10.3390/app15169070 - 18 Aug 2025
Viewed by 366
Abstract
Wire Arc Additive Manufacturing holds promise for on-board metal part production in maritime settings, yet its implementation remains limited due to the vibrational instability inherent to shipborne environments. This study addresses this critical technological barrier by analyzing the effects of marine vibrations on [...] Read more.
Wire Arc Additive Manufacturing holds promise for on-board metal part production in maritime settings, yet its implementation remains limited due to the vibrational instability inherent to shipborne environments. This study addresses this critical technological barrier by analyzing the effects of marine vibrations on process stability and proposing an integrated solution based on adaptive process control, gyrostabilized platforms, and real-time monitoring systems. The research establishes specific technical requirements for WAAM instrumentation under maritime conditions and evaluates the capabilities and limitations of existing hardware and software tools. A set of engineering recommendations is presented for improving digital modeling, thermal–mechanical monitoring, and feedback control systems. Additionally, the study highlights material-related challenges by examining the influence of alloy properties on print quality under dynamic loads. The proposed approach enhances WAAM process resilience, laying the groundwork for reliable, high-quality additive manufacturing at sea. These findings are particularly relevant to shipboard maintenance, repair, and remote fabrication tasks, marking a significant step toward the industrial adoption of WAAM in marine engineering. Full article
(This article belongs to the Section Additive Manufacturing Technologies)
Show Figures

Figure 1

19 pages, 3976 KiB  
Article
Improving Centrifugal Pump Performance and Efficiency Using Composite Materials Through Additive Manufacturing
by Vasileios Papageorgiou, Gabriel Mansour and Ilias Chouridis
Machines 2025, 13(8), 729; https://doi.org/10.3390/machines13080729 - 17 Aug 2025
Viewed by 235
Abstract
Additive Manufacturing is a rapidly developing technology that enables the fabrication of objects with complex geometries and high levels of customization while keeping the prototyping costs relatively low. In recent years, its application has grown to include the fabrication of end-use parts, creating [...] Read more.
Additive Manufacturing is a rapidly developing technology that enables the fabrication of objects with complex geometries and high levels of customization while keeping the prototyping costs relatively low. In recent years, its application has grown to include the fabrication of end-use parts, creating new opportunities in industries such as the automotive, aerospace, mechanical, and hydraulic engineering industries. The present research paper focuses on the fabrication and evaluation of 3D-printed operational end-use parts of a water pump, which were originally made from cast iron. This approach aims to determine whether AM can be an alternative for metal parts in operational systems such as water pumps. In particular, the impeller of a centrifugal pump is remanufactured using material extrusion AM technology with PPS-CF composite polymer as a fabrication material. Subsequently, the surface roughness of the two parts is measured, and the performance of each part is predicted by creating a CFD model. Additionally, the printed part is compared to the original part by conducting a centrifugal pump performance test for each impeller. The results show that the 3D-printed impeller achieves an approximate 15% increase in overall efficiency compared to the original impeller. Full article
(This article belongs to the Section Turbomachinery)
Show Figures

Figure 1

14 pages, 24231 KiB  
Article
Optimizing Interfacial Adhesion and Mechanical Performance of Multimaterial Joints Fabricated by Material Extrusion
by Jakub Zatloukal, Mathieu Viry, Aleš Mizera, Pavel Stoklásek, Lukáš Miškařík and Martin Bednařík
Materials 2025, 18(16), 3846; https://doi.org/10.3390/ma18163846 - 16 Aug 2025
Viewed by 297
Abstract
Multimaterial 3D printing is transforming the landscape of additive manufacturing, enabling the production of advanced, functional parts with tailored properties for sectors like automotive, aerospace, and engineering. However, achieving strong interlayer adhesion between different polymers remains a significant challenge, limiting the mechanical reliability. [...] Read more.
Multimaterial 3D printing is transforming the landscape of additive manufacturing, enabling the production of advanced, functional parts with tailored properties for sectors like automotive, aerospace, and engineering. However, achieving strong interlayer adhesion between different polymers remains a significant challenge, limiting the mechanical reliability. This study investigates adhesion properties of widely used materials—polycarbonate (PC), acrylonitrile styrene acrylate (ASA), polylactic acid (PLA), and polyethylene terephthalate glycol (PETG)—and enhances mechanical performance of structural joints through optimized interlayer bonding techniques. Using the Material Extrusion (MEX) method, tensile testing was employed to evaluate the mechanical strength of joints by co-depositing and bonding material layers during the printing process. The results demonstrate that specific material combinations and joint design strategies, particularly increasing the interfacial contact area and applying interlayer bonding pressure, significantly enhance tensile strength. For instance, the strength of PC/PTEG composite joints increased from 15.2 MPa (standard joint) to 29.9 MPa (interlayer bonding strategy), nearly doubling the bond strength. These findings provide valuable insights into the behavior of multimaterial joints and propose practical approaches for improving the durability and functionality of 3D-printed structures. This research lays the groundwork for advancing multimaterial additive manufacturing, with implications for high-performance applications in engineering, aerospace, and beyond. Full article
(This article belongs to the Special Issue Processing and Mechanical Properties of Polymer Composites)
Show Figures

Figure 1

23 pages, 7663 KiB  
Review
Advances in 3D Printing: Microfabrication Techniques and Forming Applications
by Di Pan, Fanghui Jia, Muyuan Zhou, Hao Liu, Jingru Yan, Lisong Zhu, Ming Yang and Zhengyi Jiang
Micromachines 2025, 16(8), 940; https://doi.org/10.3390/mi16080940 - 15 Aug 2025
Viewed by 368
Abstract
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex [...] Read more.
Stainless steel is essential in high-performance industries due to its strength, corrosion resistance, and biocompatibility. However, conventional manufacturing methods limit material efficiency, design complexity, and customization. Additive manufacturing (AM) has emerged as a powerful alternative, enabling the production of stainless-steel components with complex geometries, tailored microstructures, and integrated functionalities. Key AM methodologies, including laser powder bed fusion (L-PBF), binder jetting, and directed energy deposition (DED), are evaluated for their effectiveness in producing stainless-steel components with optimal performance characteristics. This review highlights innovations in stainless-steel AM, focusing on microfabrication, multi-material approaches, and post-processing strategies such as heat treatment, hot isostatic pressing (HIP), and surface finishing. It also examines the impact of process parameters on microstructure, mechanical anisotropy, and defects. Emerging trends include AM-specific alloy design, functionally graded structures, and AI-based control. Applications span biomedical implants, micro-tooling, energy systems, and automotive parts, with emphasis on microfabrication for biomedical micromachines and precision microforming. Full article
Show Figures

Figure 1

23 pages, 1776 KiB  
Article
Assessment of Greenhouse Gas Emissions, Energy Demand and Solid Waste Generation Between Two Manufacturing Processes: A Case Study
by Fernando Nogueira Cardoso, João da Cruz Payão Filho, Margareth Nascimento de Souza Lira and Claudinei de Souza Guimarães
Recycling 2025, 10(4), 163; https://doi.org/10.3390/recycling10040163 - 13 Aug 2025
Viewed by 257
Abstract
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, [...] Read more.
Additive manufacturing (AM) is an Industry 4.0 technology that assists or replaces the conventional manufacturing (CM) of complex geometries in various sectors, including transport, steel, aerospace, military, and architecture. The aim is to improve processes, reduce energy consumption, atmospheric emissions, and solid waste, and streamline stages while complying with the new environmental regulations. The main objective of this work was to carry out a cradle-to-gate Life Cycle Assessment (LCA), considering the raw material extraction, pre-processing, manufacturing, and post-processing stages, comparing two manufacturing methods for the same ER-90 metal flange part, conventional forging and wire and arc additive manufacturing (WAAM), all following the requirements and operations proposed by the ISO 14040/44 standard. WAAM is a Directed Energy Deposition (DED) technology that uses welding techniques to produce 3D objects with more complex geometries. Compared to the forging industry, which requires a lot of heat and kinetic energy in its metal part production stages, WAAM is a more sustainable and modern alternative because it does not require high temperatures and energy to produce the same parts. The environmental indicators compared in the process stages were energy consumption, greenhouse gas (GHG) emissions, and solid waste. The total energy consumption in AM was 18,846.61 MJ, the GHG emissions were 864.49 kgCO2-eq, and the solid waste generated was 142.34 kg, which were 63.8 %, 90.5%, and 31.6% lower than the environmental indicators calculated for CM, respectively. Full article
Show Figures

Graphical abstract

9 pages, 1119 KiB  
Article
Effects of Ultrasonic Vibration Intensity and Initial Powder Amount in the Hopper on Powder Dispensing Rate in Binder Jetting Additive Manufacturing
by Mostafa Meraj Pasha, Zhijian Pei, Yi-Tang Kao and Ken Dubovick
J. Manuf. Mater. Process. 2025, 9(8), 268; https://doi.org/10.3390/jmmp9080268 - 9 Aug 2025
Viewed by 320
Abstract
In binder jetting additive manufacturing (BJAM), parts are fabricated layer by layer by depositing a liquid binder on selected regions of the powder bed. Powder particles in the hopper of the printer are dispensed onto the powder bed to form a layer of [...] Read more.
In binder jetting additive manufacturing (BJAM), parts are fabricated layer by layer by depositing a liquid binder on selected regions of the powder bed. Powder particles in the hopper of the printer are dispensed onto the powder bed to form a layer of powder. Powder dispensing rate affects material usage and print quality. Too high dispensing rates can cause excessive powder dispensing, increasing powder waste, while too low dispensing rates may result in incomplete layer formation, leading to reduced density of printed parts. The present study investigates how ultrasonic vibration intensity and initial powder amount in the hopper affect powder dispensing rate in BJAM when using a bimodal powder. A set of experiments with full factorial design were conducted using three levels of ultrasonic vibration intensity (50%, 75%, and 100%) and three levels of initial powder amount (600 g, 1000 g, and 1400 g) in the hopper. The results show that both ultrasonic vibration intensity and initial powder amount, as well as their interaction, significantly influence powder dispensing rate. Powder dispensing rate was higher when ultrasonic vibration intensity was higher or initial powder amount was smaller. Increasing initial powder amount from 600 to 1400 g, resulted in a much bigger decrease in powder dispensing rate when ultrasonic vibration intensity was 50% than when ultrasonic vibration intensity was 100%. Full article
Show Figures

Figure 1

16 pages, 1192 KiB  
Review
The Use of Non-Degradable Polymer (Polyetheretherketone) in Personalized Orthopedics—Review Article
by Gabriela Wielgus, Wojciech Kajzer and Anita Kajzer
Polymers 2025, 17(15), 2158; https://doi.org/10.3390/polym17152158 - 7 Aug 2025
Viewed by 416
Abstract
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused [...] Read more.
Polyetheretherketone (PEEK) is a semi-crystalline thermoplastic polymer which, due to its very high mechanical properties and high chemical resistance, has found application in the automotive, aerospace, chemical, food and medical (biomedical engineering) industries. Owing to the use of additive technologies, particularly the Fused Filament Fabrication (FFF) method, this material is the most widely used plastic to produce skull reconstruction implants, parts of dental implants and orthopedic implants, including spinal, knee and hip implants. PEEK enables the creation of personalized implants, which not only have greater elasticity compared to implants made of metal alloys but also resemble the physical properties of the cortical layer of human bone in terms of their mechanical properties. Therefore, the aim of this article is to characterize polyether ether ketone as an alternative material used in the manufacturing of implants in orthopedics and dentistry. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 398 KiB  
Article
Analyzing Regional Disparities in China’s Green Manufacturing Transition
by Xuejuan Wang, Qi Deng, Riccardo Natoli, Li Wang, Wei Zhang and Catherine Xiaocui Lou
Sustainability 2025, 17(15), 7127; https://doi.org/10.3390/su17157127 - 6 Aug 2025
Viewed by 411
Abstract
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the [...] Read more.
China has identified the high-quality development of its green manufacturing transition as the top priority for upgrading their industrial structure system which will lead to the sustainable development of an innovation ecosystem. To assess their progress in this area, this study selects the panel data of 31 provinces in China from 2011 to 2021 and constructs an evaluation index system for the green transformation of the manufacturing industry from four dimensions: environment, resources, economy, and industrial structure. This not only comprehensively and systematically reflects the dynamic changes in the green transformation of the manufacturing industry but also addresses the limitations of currently used indices. The entropy value method is used to calculate the comprehensive score of the green transformation of the manufacturing industry, while the key factors influencing the convergence of the green transformation of the manufacturing industry are further explored. The results show that first, the overall level of the green transformation of the manufacturing industry has significantly improved as evidenced by an approximate 32% increase. Second, regional differences are significant with the eastern region experiencing significantly higher levels of transformation compared to the central and western regions, along with a decreasing trend from the east to the central and western regions. From a policy perspective, the findings suggest that tailored production methods for each region should be adopted with a greater emphasis on knowledge exchanges to promote green transition in less developed regions. In addition, further regulations are required which, in part, focus on increasing the degree of openness to the outside world to promote the level of green manufacturing transition. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

16 pages, 2029 KiB  
Article
Multi-Objective Optimization of Biodegradable and Recyclable Composite PLA/PHA Parts
by Burak Kisin, Mehmet Kivanc Turan and Fatih Karpat
Polymers 2025, 17(15), 2147; https://doi.org/10.3390/polym17152147 - 6 Aug 2025
Viewed by 406
Abstract
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key [...] Read more.
Additive manufacturing (AM) techniques, especially fused deposition modeling (FDM), offer significant advantages in terms of cost, material efficiency, and design flexibility. In this study, the mechanical performance of biodegradable PLA/PHA composite samples produced via FDM was optimized by evaluating the influence of key printing parameters—layer height, printing orientation, and printing speed—on both the tensile and compressive strength. A full factorial design (3 × 3 × 3) was employed, and all of the samples were triplicated to ensure the consistency of the results. Grey relational analysis (GRA) was used as a multi-objective optimization method to determine the optimal parameter combinations. An analysis of variance (ANOVA) was also conducted to assess the statistical significance of each parameter. The ANOVA results revealed that printing orientation is the most significant parameter for both tensile and compression strength. The optimal parameter combination for maximizing mechanical properties was a layer height of 0.1 mm, an X printing orientation, and a printing speed of 50 mm/s. This study demonstrates the effectiveness of GRA in optimizing the mechanical properties of biodegradable composites and provides practical guidelines to produce environmentally sustainable polymer parts. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Figure 1

20 pages, 3145 KiB  
Article
Determination of Dynamic Elastic Properties of 3D-Printed Nylon 12CF Using Impulse Excitation of Vibration
by Pedro F. Garcia, Armando Ramalho, Joel C. Vasco, Rui B. Ruben and Carlos Capela
Polymers 2025, 17(15), 2135; https://doi.org/10.3390/polym17152135 - 4 Aug 2025
Viewed by 432
Abstract
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic [...] Read more.
Material Extrusion (MEX) process is increasingly used to fabricate components for structural applications, driven by the availability of advanced materials and greater industrial adoption. In these contexts, understanding the mechanical performance of printed parts is crucial. However, conventional methods for assessing anisotropic elastic behavior often rely on expensive equipment and time-consuming procedures. The aim of this study is to evaluate the applicability of the impulse excitation of vibration (IEV) in characterizing the dynamic mechanical properties of a 3D-printed composite material. Tensile tests were also performed to compare quasi-static properties with the dynamic ones obtained through IEV. The tested material, Nylon 12CF, contains 35% short carbon fibers by weight and is commercially available from Stratasys. It is used in the fused deposition modeling (FDM) process, a Material Extrusion technology, and exhibits anisotropic mechanical properties. This is further reinforced by the filament deposition process, which affects the mechanical response of printed parts. Young’s modulus obtained in the direction perpendicular to the deposition plane (E33), obtained via IEV, was 14.77% higher than the value in the technical datasheet. Comparing methods, the Young’s modulus obtained in the deposition plane, in an inclined direction of 45 degrees in relation to the deposition direction (E45), showed a 22.95% difference between IEV and tensile tests, while Poisson’s ratio in the deposition plane (v12) differed by 6.78%. This data is critical for designing parts subject to demanding service conditions, and the results obtained (orthotropic elastic properties) can be used in finite element simulation software. Ultimately, this work reinforces the potential of the IEV method as an accessible and consistent alternative for characterizing the anisotropic properties of components produced through additive manufacturing (AM). Full article
(This article belongs to the Special Issue Mechanical Characterization of Polymer Composites)
Show Figures

Figure 1

Back to TopTop