polymers-logo

Journal Browser

Journal Browser

Polymeric Sandwich Composite Materials

A special issue of Polymers (ISSN 2073-4360). This special issue belongs to the section "Polymer Composites and Nanocomposites".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 1621

Special Issue Editors


E-Mail Website
Guest Editor
Engineering Mechanics Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China
Interests: mechanics of lightweight composite materials and structure, including composite materials, cellular materials, porous materials, biomaterials, sandwich panels, lightweight structures, and multi-functional structures
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150080, China
Interests: sandwich composite materials; failure mechanism; structural design; theoretical model; mechanical properties; honeycomb

Special Issue Information

Dear Colleagues,

Polymeric sandwich composite materials have garnered significant interest from both researchers and industries due to their remarkable properties and broad applications, especially in addressing challenges related to material efficiency and sustainability. These materials, known for their lightweight structures, customizable functionalities, and superior mechanical performance, have the potential to transform various sectors, including construction, automotive manufacturing, aerospace engineering, and renewable energy technologies. Recent developments in advanced polymer systems, eco-friendly polymers, and innovative sandwich composite designs have created new opportunities for sustainable solutions and efficient material applications. By combining novel materials with cutting-edge technologies, polymeric sandwich composites are setting the stage for more effective, durable, and environmentally conscious systems across different industries.

This Special Issue is designed to compile cutting-edge research on polymeric sandwich composite materials intended for diverse applications. We welcome submissions focusing on the design, synthesis, and characterization of advanced polymer systems; the design, fabrication process, and mechanical characteristics of composite structures; and innovations in multifunctional sandwich composites that enhance both material efficiency and mechanical performance. Additionally, theoretical and computational studies on the constitutive modeling of these composites, as well as experimental and simulation-based approaches to understanding their behavior under various conditions, are highly encouraged.

Contributions are invited from mechanical scientists, polymer scientists, materials scientists, structural engineers, processing technologists, and physicists. Contributions are welcome on topics related to polymers and sandwich composite materials for construction, automotive, aerospace, marine, renewable energy, and electronic applications.

Prof. Dr. Jian Xiong
Dr. Xingyu Wei
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Polymers is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sandwich composites
  • lightweight structures
  • design and optimization
  • mechanical metamaterials
  • multifunctional polymers or structures
  • biocomposites
  • bio-based hybrid materials
  • polymer composites
  • smart composite polymers
  • industrial applications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 12335 KB  
Article
Free Vibration Behavior of CFRP Composite Sandwich Open Circular Cylindrical Shells with 3D Reentrant Negative Poisson’s Ratio Core
by Shi-Chen Liu and Yun-Long Chen
Polymers 2025, 17(17), 2276; https://doi.org/10.3390/polym17172276 - 22 Aug 2025
Viewed by 405
Abstract
This study explores the free vibration behavior of carbon fiber-reinforced sandwich open circular cylindrical shells featuring 3D reentrant auxetic cores (3D RSOCCSs). For theoretical predictions, a model integrating the Rayleigh–Ritz method (RRM) and Reddy’s third-order shear deformation theory (TOSDT) is adopted, whereas the [...] Read more.
This study explores the free vibration behavior of carbon fiber-reinforced sandwich open circular cylindrical shells featuring 3D reentrant auxetic cores (3D RSOCCSs). For theoretical predictions, a model integrating the Rayleigh–Ritz method (RRM) and Reddy’s third-order shear deformation theory (TOSDT) is adopted, whereas the finite element analysis approach is used for simulation predictions. All-composite 3D RSOCCSs specimens are produced via hot-press molding and interlocking assembly, and the modal characteristics of 3D RSOCCSs are obtained through hammer excitation modal tests. The predicted modal properties are in good agreement with the experimental results. In addition, the influences of fiber ply angles and geometric parameters on the natural frequency in the free vibration are thoroughly analyzed, which can offer insights for the vibration analysis of lightweight auxetic metamaterial cylindrical shells and promote their practical use in engineering scenarios focused on vibration mitigation. Full article
(This article belongs to the Special Issue Polymeric Sandwich Composite Materials)
Show Figures

Figure 1

16 pages, 4785 KB  
Article
Wrinkling Analysis and Process Optimization of the Hydroforming Processes of Uncured Fiber Metal Laminates for Aircraft Fairing Structures
by Yunlong Chen and Shichen Liu
Polymers 2025, 17(16), 2267; https://doi.org/10.3390/polym17162267 - 21 Aug 2025
Viewed by 772
Abstract
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many [...] Read more.
Lightweight composite structures like fiber metal laminates (FMLs) are widely used to manufacture aircraft structures and substitute metallic parts. While the superior mechanical performance of FMLs, including their high specific strength and excellent impact and fatigue resistance, has gained the interest of many researchers in the aerospace manufacturing industry, there are still some challenges that need to be considered. Conventional approaches like lay-up techniques and autoclave molding can achieve the relatively simple FML parts with large radii and profiles required for aircraft fuselages and flat skins. However, these methods are not suitable for forming complex-shaped structural parts due to the limited failure strain of fiber-reinforced materials and complex failure modes of the laminates. This research puts forward a new methodology that combines the hydroforming and subsequent curing process to investigate the feasibility of manufacturing complex aircraft parts like fairings made by FMLs. In this research, wrinkle formations are analyzed under various parameters during the hydroforming process. The geometrical shape of the initial blanks and the parameters, including blank holder force and cavity pressure, have been optimized to avoid flange edge wrinkles, and the addition of local support materials contributes to improving local wrinkling in the sharp corners. A finite element model (FEM) taking material laws, interlayer contacts, and boundary conditions into account is used to predict the dynamic hydroforming process of the fiber metal laminate, and experimental works are carried out for its verification. It is expected that the proposed method will reduce both costs and time, as well as reducing laminate defects. Thus, this method offers great potential for future applications related to manufacturing complex-shaped aerospace parts. Full article
(This article belongs to the Special Issue Polymeric Sandwich Composite Materials)
Show Figures

Figure 1

Back to TopTop