Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,110)

Search Parameters:
Keywords = active polymer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5742 KB  
Article
Functionalization of Photopolymer with Laser-Ablated Copper NPs: A Comprehensive Study of ROS Generation, Antimicrobial Activity and Cytotoxic Profile
by Dmitriy E. Burmistrov, Dmitriy A. Serov, Lev R. Sizov, Maxim E. Astashev, Ekaterina E. Karmanova, Ilya V. Baimler, Alexander V. Simakin, Dmitriy N. Ignatenko, Fatikh M. Yanbaev, Evgeny V. Kuzmin and Sergey V. Gudkov
Polymers 2026, 18(2), 238; https://doi.org/10.3390/polym18020238 - 16 Jan 2026
Abstract
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on [...] Read more.
This study addresses the critical need for advanced biomedical materials that possess both potent antimicrobial properties and high biocompatibility to prevent device-related infections and promote healing. To this end, we demonstrate the successful development and comprehensive characterization of functional composite materials based on a photopolymerizable acrylate resin modified with laser-ablated copper nanoparticles (Cu NPs). The synthesized Cu NPs exhibited a monomodal size distribution with a peak at 47 nm, a high zeta potential of −33 mV, and a spherical morphology. Incorporation of Cu NPs into the polymer matrix via Masked Stereolithography (MSLA) enabled the fabrication of complex structures that maintained high surface quality and optical transparency after polishing. Modification of photopolymer resin with Cu NPs significantly increased the strength of the resulting products and caused dose-dependent formation of reactive oxygen species (ROS). The resulting composite materials exhibited strong antibacterial activity against E. coli. Crucially, despite their potent antimicrobial efficacy, the materials showed no cytotoxicity towards human fibroblast cultures. These results highlight the potential of these composites for a new generation of biomedical applications, such as implantable devices and wound coatings, which combine programmable antimicrobial activity with high biocompatibility. Full article
Show Figures

Figure 1

22 pages, 2580 KB  
Article
Variation in Soil Microbial Carbon Utilization Patterns Along a Forest Successional Series in a Degraded Wetland of the Sanjiang Plain
by Zhaorui Liu, Wenmiao Pu, Kaiquan Zhang, Rongze Luo, Xin Sui and Mai-He Li
Diversity 2026, 18(1), 48; https://doi.org/10.3390/d18010048 - 16 Jan 2026
Abstract
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and [...] Read more.
The Sanjiang Plain hosts the largest freshwater wetland in Northeastern China and plays a critical role in regional climate stability. However, climate change and human activities have degraded the wetland, forming a successional gradient from the original flooded wetland to dry shrub and forest vegetation with a lower ground water level. This degradation has altered soil microbial structure and functions, reducing ecological and socio-economic benefits. Along this successional gradient, we used Biolog-ECO plates combined with soil enzyme assays (catalase, urease, sucrase, and acid phosphatase) to assess the dynamics of microbial carbon metabolic activity, measured by average well color development (AWCD). The results showed a systematic decline in AWCD values with advancing succession, revealing a pronounced reduction in overall microbial metabolic activity during wetland degradation. This trend correlated with loss of soil moisture, organic carbon, and nitrogen nutrients. Microbial communities in early successional wetland stages (i.e., original natural wetland and wetland edge) preferred labile carbon sources (e.g., carbohydrates, amino acids), while forested stages favored relatively more structural (e.g., polymers, phenolic compounds). These findings indicate that vegetation succession regulates microbial carbon metabolism by modifying soil physicochemical properties, providing insights for wetland restoration. Full article
(This article belongs to the Special Issue Microbial Diversity in Different Environments)
Show Figures

Figure 1

21 pages, 4861 KB  
Article
Synthesis and Characterization of ITO Films via Forced Hydrolysis for Surface Functionalization of PET Sheets
by Silvia del Carmen Madrigal-Diaz, Laura Cristel Rodríguez-López, Isaura Victoria Fernández-Orozco, Saúl García-López, Cecilia del Carmen Díaz-Reyes, Claudio Martínez-Pacheco, José Luis Cervantes-López, Ibis Ricárdez-Vargas and Laura Lorena Díaz-Flores
Coatings 2026, 16(1), 120; https://doi.org/10.3390/coatings16010120 - 16 Jan 2026
Abstract
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a [...] Read more.
Transparent conductive oxides (TCOs), such as indium tin oxide (ITO), are essential for flexible electronics; however, conventional vacuum-based deposition is costly and thermally aggressive for polymers. This study investigated the surface functionalization of PET substrates with ITO thin film-based forced hydrolysis as a low-cost, reproducible alternative. SnO2 nanoparticles were synthesized by forced hydrolysis at 180 °C for 3 h and 6 h, yielding crystalline nanoparticles with a cassiterite phase and an average crystallite size of 20.34 nm. The process showed high reproducibility, enabling consistent structural properties without complex equipment or high-temperature treatments. The SnO2 sample obtained at 3 h was incorporated into commercial In2O3 to form a mixed In–Sn–O oxide, which was subsequently deposited onto PET substrates by spin coating onto UV-activated PET. The resulting 1.1 µm ITO films demonstrated good adhesion (4B according to ASTM D3359), a low resistivity of 1.27 × 10−6 Ω·m, and an average optical transmittance of 80% in the visible range. Although their resistivity is higher than vacuum-processed films, this route provides a superior balance of mechanical robustness, featuring a hardness of (H) of 3.8 GPa and an elastic modulus (E) of 110 GPa. These results highlight forced hydrolysis as a reproducible route for producing ITO/PET thin films. The thickness was strategically optimized to act as a structural buffer, preventing crack propagation during bending. Forced hydrolysis-driven PET sheet functionalization is an effective route for producing durable ITO/PET electrodes that are suitable for flexible sensors and solar cells. Full article
(This article belongs to the Special Issue Recent Advances in Surface Functionalisation, 2nd Edition)
Show Figures

Figure 1

25 pages, 6689 KB  
Article
Reversible Joining Technology for Polyolefins Using Electromagnetic Energy and Homologous Hot-Melt Adhesives Containing Metallic and Ferrite Additives
by Romeo Cristian Ciobanu, Mihaela Aradoaei, George Andrei Ursan, Alina Ruxandra Caramitu, Virgil Marinescu and Rolland Luigi Eva
Polymers 2026, 18(2), 228; https://doi.org/10.3390/polym18020228 - 15 Jan 2026
Abstract
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly [...] Read more.
This research examined the development and testing of hot-melt adhesives incorporating metallic (Al and Fe powders averaging 800 nm) and ferrite additives, designed for reversible bonding technology of polyolefins through electromagnetic energy. The experimental models with Al displayed smooth particles that were fairly evenly distributed within the polymer matrix. Experimental models with Fe suggested that Fe nanopowders are more difficult to disperse within the polymer matrix, frequently resulting in agglomeration. For ferrite powder, there were fewer agglomerations noticed, and the dispersion was more uniform compared to similar composites containing Fe particles. Regarding water absorption, the extent of swelling was greater in the composites that included Al. Because of toluene’s affinity for the matrices, the swelling measurements stayed elevated even with reduced exposure times, and the composites with ferrite showed the lowest swelling compared to those with metallic particles. A remarkable evolution of the dielectric loss factor peak shifting towards higher frequencies with rising temperatures was observed, which is particularly important when the materials are exposed to thermal activation through electromagnetic energy. The reversible bonding experiments were performed on polyolefin samples which were connected longitudinally by overlapping at the ends; specialized hot-melts were employed, using electromagnetic energy at 2.45 GHz, with power levels between 140 and 850 × 103 W/kg and an exposure duration of up to 2 min. The feasibility of bonding polyolefins using homologous hot-melts that include metallic/ferrite elements was verified. Composites with both matrices showed that the hot-melts with Al displayed the highest mechanical tensile strength values, but also had a relatively greater elongation. All created hot-melts were suitable for reversible adhesion of similar polyolefins, with the one based on HDPE and Fe considered the most efficient for bonding HDPE, and the one based on PP and Al for PP bonding. When bonding dissimilar polyolefins, it seems that the technique is only effective with hot-melts that include Al. According to the reversible bonding diagrams for specific substrates and hot-melt combinations, and considering the optimization of energy consumption in relation to productivity, the most cost-effective way is to utilize 850 × 103 W/kg power with a maximum exposure time of 1 min. Full article
(This article belongs to the Special Issue Polymer Joining Techniques: Innovations, Challenges, and Applications)
Show Figures

Figure 1

28 pages, 1711 KB  
Review
Advanced Biomaterials for Craniofacial Tissue Regeneration: From Fundamental Mechanism to Translational Applications—A Scoping Review
by Żaneta Anna Mierzejewska, Valentina Veselinović, Nataša Trtić, Saša Marin, Jan Borys and Bożena Antonowicz
J. Funct. Biomater. 2026, 17(1), 44; https://doi.org/10.3390/jfb17010044 - 15 Jan 2026
Abstract
Recent advances in biomaterials, immunomodulation, stem cell therapy, and biofabrication are reshaping maxillofacial surgery, shifting reconstruction paradigms toward biologically integrated and patient-specific tissue regeneration. This review provides a comprehensive synthesis of current and emerging strategies for bone and soft-tissue regeneration in the craniofacial [...] Read more.
Recent advances in biomaterials, immunomodulation, stem cell therapy, and biofabrication are reshaping maxillofacial surgery, shifting reconstruction paradigms toward biologically integrated and patient-specific tissue regeneration. This review provides a comprehensive synthesis of current and emerging strategies for bone and soft-tissue regeneration in the craniofacial region, with particular emphasis on bioactive ceramics, biodegradable polymers, hybrid composites, and stimuli-responsive smart materials. We further examine translational technologies such as extracellular vesicles, decellularized extracellular matrices, organoids, and 3D bioprinting, highlighting key challenges such as bioink standardization, perfusion limitations, and regulatory classification. Maxillofacial surgery is positioned for a paradigm shift toward personalized, biologically active, and clinically scalable regenerative solutions. Full article
(This article belongs to the Special Issue Functional Biomaterial for Bone Regeneration (2nd Edition))
Show Figures

Figure 1

31 pages, 1648 KB  
Review
Beyond the Solvent: Engineering Ionic Liquids for Biomedical Applications—Advances, Challenges, and Future Directions
by Amal A. M. Elgharbawy, Najihah Mohd Noor, Nor Azrini Nadiha Azmi and Beauty Suestining Diyah Dewanti
Molecules 2026, 31(2), 305; https://doi.org/10.3390/molecules31020305 - 15 Jan 2026
Abstract
Ionic liquids (ILs) have emerged as multifunctional compounds with low volatility, high thermal stability, and tunable solvation capabilities, making them highly promising for biomedical applications. First explored in the late 1990s and early 2000s for enhancing the thermal stability of enzymes, antimicrobial agents, [...] Read more.
Ionic liquids (ILs) have emerged as multifunctional compounds with low volatility, high thermal stability, and tunable solvation capabilities, making them highly promising for biomedical applications. First explored in the late 1990s and early 2000s for enhancing the thermal stability of enzymes, antimicrobial agents, and controlled release systems, ILs have since gained significant attention in drug delivery, antimicrobial treatments, medical imaging, and biosensing. This review examines the diverse functions of ILs in contemporary therapeutics and diagnostics, highlighting their transformative capabilities in improving drug solubility, bioavailability, transdermal permeability, and pathogen inactivation. In drug delivery, ILs improve solubility of bioactive compounds, with several IL formulations achieving substantial solubility enhancements for poorly soluble drugs. Bio-ILs, in particular, show promise in enhancing drug delivery systems, such as improving transdermal permeability. ILs also exhibit significant antimicrobial and antiviral activity, offering new avenues for combating resistant pathogens. Despite their broad potential, challenges such as cytotoxicity, long-term metabolic effects, and the stability of ILs in physiological conditions persist. While much research has focused on their physicochemical properties, biological activity and in vivo studies are still underexplored. The future directions for ILs in biomedical applications include the development of bioengineered ILs and hybrid ILs, combining functional components like nanoparticles and polymers to create multifunctional materials. These ILs, derived from renewable resources, show great promise in personalized medicine and clinical applications. Further research is necessary to evaluate their pharmacokinetics, biodistribution, and long-term safety to fully realize their biomedical potential. This study emphasizes the potential of ILs to transform therapeutic and diagnostic technologies by highlighting present shortcomings and offering pathways for clinical translation, while also debating the need for continuous research to fully utilize their biomedical capabilities. Full article
Show Figures

Graphical abstract

14 pages, 3537 KB  
Article
Electrostatic Patterning of Nanofibrous Microcapsules for Three-Dimensional Cell Culture
by Masashi Ikeuchi, Yoshinori Inoue, Ryosuke Tane, Daisuke Ishikawa, Chihiro Aoyama, Yoshitaka Miyamoto and Koji Ikuta
J. Funct. Biomater. 2026, 17(1), 42; https://doi.org/10.3390/jfb17010042 - 15 Jan 2026
Abstract
Three-dimensional biomaterial scaffolds with controlled geometry and surface nanoarchitecture are essential for advancing polymer processing strategies in tissue engineering. Conventional electrospinning generates nanofibrous structures but has limited ability to reproduce defined three-dimensional shapes or achieve high pattern fidelity. This study aimed to develop [...] Read more.
Three-dimensional biomaterial scaffolds with controlled geometry and surface nanoarchitecture are essential for advancing polymer processing strategies in tissue engineering. Conventional electrospinning generates nanofibrous structures but has limited ability to reproduce defined three-dimensional shapes or achieve high pattern fidelity. This study aimed to develop a scalable processing method for producing biodegradable scaffolds with precisely controlled microstructure and geometry using phase separation–assisted electrospray. Poly (lactic acid) microcapsules with tunable diameters and porous nanofibrous surfaces were fabricated under controlled humidity and deposited onto conductive molds to obtain two- and three-dimensional scaffold shapes. The manufacturing process required only simple electrospray equipment and static molds, without mechanically complex collectors or moving stages. The resulting scaffolds replicated mold features with resolutions down to 200 μm and achieved thickness up to 600 μm. The nanofibrous microcapsule surfaces supported strong adhesion and metabolic activity of HepG2 cells, while cellular penetration into deeper scaffold regions remained limited to approximately 80 μm. These findings indicate that electrospray-mediated microcapsule deposition is a practical polymer-processing approach that integrates nanofibrous surface formation with mold-defined shaping, offering a reproducible and scalable method for fabricating structurally precise and biologically compatible three-dimensional scaffolds. Full article
(This article belongs to the Special Issue Advanced Technologies for Processing Functional Biomaterials)
Show Figures

Figure 1

13 pages, 2867 KB  
Article
Facile Fabrication of Moderate Sensitivity SERS Substrate Using Cu-Plasma Polymer Fluorocarbon Nanocomposite Thin Film
by Sejin Cho, Sung Hyun Kim, Joowon Lee and Sang-Jin Lee
Coatings 2026, 16(1), 108; https://doi.org/10.3390/coatings16010108 - 13 Jan 2026
Viewed by 142
Abstract
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders [...] Read more.
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders (5:60–80:35–15 wt%) offers the advantage of the simple fabrication of moderate-sensitivity SERS substrates with a single cathode compared to co-sputtering. X-ray photoelectron spectroscopy (XPS) revealed that the film surface was partially composed of metallic Cu with Cu-F bonds and Cu–O bonds, confirming the coexistence of the conducting and plasmon-active domains. UV-VIS spectroscopy revealed a distinct absorption peak at approximately 680 nm, indicating the excitation of localized surface plasmon resonances in the Cu nanoclusters embedded in the plasma polymer fluorocarbon (PPFC) matrix. Atomic force microscopy and grazing incidence small-angle X-ray scattering analyses confirmed that the Cu nanoparticles were uniformly distributed with interparticle distances of 20–35 nm. The Cu-PPFC nanocomposite film with the highest Cu content (80 wt%) exhibited a Raman enhancement factor of 2.18 × 104 for rhodamine 6G, demonstrating its potential as a moderate-sensitivity SERS substrate. Finite-difference time-domain (FDTD) simulations confirmed the strong electromagnetic field localization at the Cu-Cu nanogaps separated by the PPFC matrix, corroborating the experimentally observed SERS enhancement. These results suggest that a Cu-PPFC nanocomposite film, easily fabricated using a composite target, provides an efficient and scalable route for fabricating reproducible, inexpensive, and moderate-sensitivity SERS substrates suitable for practical sensing applications. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

55 pages, 5987 KB  
Review
Advanced Design Concepts for Shape-Memory Polymers in Biomedical Applications and Soft Robotics
by Anastasia A. Fetisova, Maria A. Surmeneva and Roman A. Surmenev
Polymers 2026, 18(2), 214; https://doi.org/10.3390/polym18020214 - 13 Jan 2026
Viewed by 308
Abstract
Shape-memory polymers (SMPs) are a class of smart materials capable of recovering their original shape from a programmed temporary shape in response to external stimuli such as heat, light, or magnetic fields. SMPs have attracted significant interest for biomedical devices and soft robotics [...] Read more.
Shape-memory polymers (SMPs) are a class of smart materials capable of recovering their original shape from a programmed temporary shape in response to external stimuli such as heat, light, or magnetic fields. SMPs have attracted significant interest for biomedical devices and soft robotics due to their large recoverable strains, programmable mechanical and thermal properties, tunable activation temperatures, responsiveness to various stimuli, low density, and ease of processing via additive manufacturing techniques, as well as demonstrated biocompatibility and potential bioresorbability. This review summarises recent progress in the fundamentals, classification, activation mechanisms, and fabrication strategies of SMPs, focusing particularly on design principles that influence performance relevant to specific applications. Both thermally and non-thermally activated SMP systems are discussed, alongside methods for controlling activation temperatures, including plasticisation, copolymerisation, and modulation of cross-linking density. The use of functional nanofillers to enhance thermal and electrical conductivity, mechanical strength, and actuation efficiency is also considered. Current manufacturing techniques are critically evaluated in terms of resolution, material compatibility, scalability, and integration potential. Biodegradable SMPs are highlighted, with discussion of degradation behaviour, biocompatibility, and demonstrations in devices such as haemostatic foams, embolic implants, and bone scaffolds. However, despite their promising potential, the widespread application of SMPs faces several challenges, including non-uniform activation, the need to balance mechanical strength with shape recovery, and limited standardisation. Addressing these issues is critical for advancing SMPs from laboratory research to clinical and industrial applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

24 pages, 11128 KB  
Article
Fibrous Polycaprolactone-Based Composite Materials with the Addition of Hardystonite: Haemostatic Potential, Antioxidant Activity, and Biocompatibility Assessment
by Anna Kaczmarek, Marcin H. Kudzin, Michał Juszczak, Katarzyna Woźniak, Paulina Król, César I. Hernández Vázquez, Zdzisława Mrozińska and Jerzy J. Chruściel
Macromol 2026, 6(1), 5; https://doi.org/10.3390/macromol6010005 - 13 Jan 2026
Viewed by 75
Abstract
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant [...] Read more.
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant potential [measured by thiobarbituric acid reactive substance (TBARS) levels], blood plasma coagulation parameters, and cyto- and genotoxicity towards PBM and Hs68 cells were assessed to determine the biochemical activity of the composites. The conducted experiments confirmed that hardystonite was successfully incorporated into the PCL matrix. No substantial changes in the fibres’ surface morphology and the structure of the composites were observed. Similarly, the specific surface area, total pore volume, and average pore size did not change significantly. The addition of hardystonite to the polymer solution resulted in a shift in zeta potential toward less negative values. With regard to plasma coagulation parameters, no significant changes were observed in the aPTT, PT, or TT, likely due to the counterbalancing effect of Zn2+ and Ca2+ ions. Furthermore, the PCL-HT composites exhibited a lowered TBARS level, suggesting antioxidant properties, which could be attributed to the presence of zinc in hardystonite. The PCL and PCL-HT composites demonstrated no cytotoxic or genotoxic effects on the tested blood or skin cell types, suggesting their safety. Full article
Show Figures

Figure 1

15 pages, 4650 KB  
Article
Engineering Phosphorus Doping Graphitic Carbon Nitride for Efficient Visible-Light Photocatalytic Hydrogen Production
by Thi Chung Le, Truong Thanh Dang, Tahereh Mahvelati-Shamsabadi and Jin Suk Chung
Catalysts 2026, 16(1), 88; https://doi.org/10.3390/catal16010088 - 13 Jan 2026
Viewed by 169
Abstract
Modulating the electronic structure and surface properties of graphitic carbon nitride (g-C3N4) by chemically phosphorus doping is an effective strategy for improving its photocatalytic performance. However, in order to benefit from practical applications, the cost-effectiveness, efficiency, and optimization of [...] Read more.
Modulating the electronic structure and surface properties of graphitic carbon nitride (g-C3N4) by chemically phosphorus doping is an effective strategy for improving its photocatalytic performance. However, in order to benefit from practical applications, the cost-effectiveness, efficiency, and optimization of the doping level need to be investigated further. Herein, we report a structural doping of P into g-C3N4 by in situ polymerization of the mixture of dicyandiamide (DCDA) and phosphorus pentoxide (P2O5). As an alternative to previous studies that used complex organic phosphorus precursors or post-treatment strategies, this work proposed a one-pot thermal polycondensation method that is low-cost, scalable, and enables controlled phosphorus substitutions at carbon sites of the g-C3N4 heptazine structure. Most of the structural features of g-C3N4 were well retained after doping, but the electronic structures and light harvesting capacity had been effectively altered, which provided not only a much better charge separation but also an improvement in photocatalytic activity toward H2 evolution under irradiation of a simulated sunlight. The optimized sample with P-doping content of 9.35 at.% (0.5PGCN) exhibited an excellent photocatalytic performance toward H2 evolution, which is over 5 times higher than that of bulk g-C3N4. This work demonstrates a facile one-step in situ route for producing high-yield photocatalysts using low-cost commercial precursors, offering practical starting materials for studies in solar cells, polymer batteries, and photocatalytic applications. Full article
Show Figures

Graphical abstract

16 pages, 1881 KB  
Article
Sustainable Lavender Extract-Mediated Synthesis of Silver Nanoparticles and Their Use in Fabricating Antibacterial Polymer Nanocomposites
by Lívia Mačák, Oksana Velgosová, Erika Múdra, Marek Vojtko and Silvia Ondrašovičová
Nanomaterials 2026, 16(2), 98; https://doi.org/10.3390/nano16020098 - 12 Jan 2026
Viewed by 156
Abstract
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be [...] Read more.
This study focuses on the development of antibacterial polymer nanocomposites based on biologically synthesized silver nanoparticles (AgNPs) and polyvinyl alcohol (PVA) as the polymer matrix. Silver nanoparticles were produced using an aqueous extract from dried Lavandula angustifolia (lavender) leaves, which proved to be highly effective in reducing silver ions and stabilizing the resulting nanoparticles. The synthesized AgNPs were characterized by FTIR, UV-Vis, TEM, SEM, and DLS analyses. The nanoparticles were predominantly spherical, with more than 70% having diameters below 20 nm. Subsequently, AgNPs were incorporated into the PVA matrix via an ex situ approach to fabricate nanocomposite fibers and thin films. SEM analysis confirmed successful incorporation and uniform distribution of AgNPs within the polymer structures. The nanocomposites exhibited pronounced antibacterial activity against both Gram-positive (Staphylococcus aureus, Staphylococcus haemolyticus, Streptococcus uberis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria, with nanofibers demonstrating superior performance compared to thin films. These findings highlight the potential of lavender-extract-mediated AgNPs as sustainable functional fillers for the fabrication of eco-friendly antibacterial materials applicable in biomedical and food packaging fields. Full article
(This article belongs to the Special Issue Fabrication and Application of Polymer-Based Nanomaterials)
Show Figures

Graphical abstract

23 pages, 1304 KB  
Review
Inorganic Polyphosphate in Mammals: Mechanisms, Maladies, and Moving Forward
by Heala Mendelsohn Aviv, Zhiyun Yang and Zongchao Jia
Biomolecules 2026, 16(1), 127; https://doi.org/10.3390/biom16010127 - 12 Jan 2026
Viewed by 99
Abstract
Inorganic polyphosphate is highly conserved, critical, yet poorly understood polymer that regulates diverse cellular functions in mammals. Its importance is well established in coagulation, inflammation, mitochondrial function, and stress responses, though the molecular mechanisms for these effects remain only partly understood. Fundamental questions [...] Read more.
Inorganic polyphosphate is highly conserved, critical, yet poorly understood polymer that regulates diverse cellular functions in mammals. Its importance is well established in coagulation, inflammation, mitochondrial function, and stress responses, though the molecular mechanisms for these effects remain only partly understood. Fundamental questions also persist regarding its physiological concentration, chain-length distributions, and the mechanisms that regulate its behavior in specific cellular compartments. Progress is limited by the absence of a known mammalian polyphosphate-synthesizing enzyme. Despite this, recent studies have broadened the scope of polyphosphate biology, suggesting roles in protein phase separation, ATP-independent chaperone activity, metabolic regulation, and intracellular signaling. Polyphosphate modulates the mitochondrial permeability transition pore through calcium-dependent regulation and activates factor XII in coagulation. Findings have also introduced potential connections between polyphosphate and processes such as neurodegeneration, cancer, and tissue regeneration. Despite this expanding landscape, many biological effects remain difficult to interpret due to incomplete mapping of protein targets and longstanding technical limitations in detecting and quantifying polyP. This review integrates molecular protein-interaction mechanisms with compartment-specific functions and disease physiology, providing a clearer mechanistic framework while identifying key conceptual and methodological gaps and outlining priorities for advancing polyphosphate research in mammalian systems. Full article
(This article belongs to the Special Issue Polyphosphate (PolyP) in Health and Disease)
Show Figures

Figure 1

11 pages, 1794 KB  
Article
Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells
by Soo Ah Nam, Jinwoo Lee and Joonwon Lim
Micromachines 2026, 17(1), 97; https://doi.org/10.3390/mi17010097 - 12 Jan 2026
Viewed by 91
Abstract
We report a notable enhancement in the performance of small-molecule-based organic photovoltaics (OPVs) through the use of a ternary blend comprising a small-molecule donor (DTS(FBTTh2)2), a polymer donor (PBDTTT-EFT), and a fullerene acceptor (PC71BM). By optimizing the [...] Read more.
We report a notable enhancement in the performance of small-molecule-based organic photovoltaics (OPVs) through the use of a ternary blend comprising a small-molecule donor (DTS(FBTTh2)2), a polymer donor (PBDTTT-EFT), and a fullerene acceptor (PC71BM). By optimizing the composition of this ternary active layer, we achieved a significant increase in power conversion efficiency from 7.99% to 9.08%. This improvement is attributed to the broader light absorption spectrum and enhanced charge transport pathways provided by the polymeric donor. PBDTTT-EFT optimizes the nanomorphology and ordering of the bulk heterojunction films and forms a cascade energy level that enhances charge carrier mobility. Our results demonstrate that semiconducting polymer donors can effectively control light absorption, charge transport, and exciton dissociation by optimizing morphology and crystallinity. This approach offers new possibilities for advancing the performance of various optoelectronic devices through strategic use of different semiconducting polymer donors. Full article
(This article belongs to the Special Issue Organic Electronic-Based Devices for Biomedical Applications)
Show Figures

Figure 1

20 pages, 60566 KB  
Article
Lysozyme Functionalized Alginate-Chitosan Beads and Films for Different Release Applications
by Beatriz Moutinho, Natalia Pyra, Zuzanna Styrna, Maria Emilia Rosa and Maria H. L. Ribeiro
Gels 2026, 12(1), 66; https://doi.org/10.3390/gels12010066 - 11 Jan 2026
Viewed by 138
Abstract
The main goal of this work was to develop nanoparticles of lysozyme (Lys) for biological and biomedical applications. The developed biosystems were based on Lys-loaded calcium alginate 2% and chitosan 1% beads and films with different concentrations of each polymer. Encapsulation efficiency was [...] Read more.
The main goal of this work was to develop nanoparticles of lysozyme (Lys) for biological and biomedical applications. The developed biosystems were based on Lys-loaded calcium alginate 2% and chitosan 1% beads and films with different concentrations of each polymer. Encapsulation efficiency was 100%. The ratio of adsorbed Lys on the films, Lys activity, and the release profile of Lys were measured using water and buffer solution at pH similar to the environment of cancer cells, at a controlled temperature of 37 °C and a constant speed, to assess the efficacy of the encapsulation process. Lys antimicrobial activity was assessed using Micrococcus lysodeikticus. Moreover, the anti-inflammatory and antioxidant properties of the developed biosystems were also evaluated. The anti-inflammatory activity of Lys released from calcium alginate 2%-chitosan 1% beads loaded with Lys was about 99%. These findings highlight the potential of the developed beads and films for biomedical applications, particularly in antimicrobial and anti-inflammatory therapies. Full article
Show Figures

Figure 1

Back to TopTop