Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Organic Solar Cells
2.3. Characterizations
3. Results and Discussion
3.1. Ternary Blend Solar Cells
3.2. Optical Characteristics of Ternary Blend Solar Cells
3.3. Current–Voltage (I-V) Characteristics of Ternary Blend Solar Cells
3.4. Morphological Characteristics of Ternary Blend Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yu, G.; Gao, J.; Hummelen, J.C.; Wudl, F.; Heeger, A.J. Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270, 1789–1791. [Google Scholar] [CrossRef]
- Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. [Google Scholar] [CrossRef]
- Heeger, A.J. 25th anniversary article: Bulk heterojunction solar cells: Understanding the mechanism of operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, D.; Yang, L.; Allam, O.; Gao, Y.; Su, Y.; Xu, M.; Mo, S.; Wu, Q.; Wang, Z. Mechanically robust and stretchable organic solar cells plasticized by small-molecule acceptors. Science 2025, 387, 381–387. [Google Scholar] [CrossRef]
- Sun, Y.; Welch, G.C.; Leong, W.L.; Takacs, C.J.; Bazan, G.C.; Heeger, A.J. Solution-processed small-molecule solar cells with 6.7% efficiency. Nat. Mater. 2012, 11, 44–48. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, M.; Zhou, Z.; Zhong, W.; Hao, T.; Xu, S.; Zeng, R.; Zhuang, J.; Xue, X.; Jing, H. Progress of organic photovoltaics towards 20% efficiency. Nat. Rev. Electr. Eng. 2024, 1, 581–596. [Google Scholar] [CrossRef]
- Tamayo, A.B.; Dang, X.-D.; Walker, B.; Seo, J.; Kent, T.; Nguyen, T.-Q. A low band gap, solution processable oligothiophene with a dialkylated diketopyrrolopyrrole chromophore for use in bulk heterojunction solar cells. Appl. Phys. Lett. 2009, 94, 103301. [Google Scholar] [CrossRef]
- Wei, G.; Wang, S.; Renshaw, K.; Thompson, M.E.; Forrest, S.R. Solution-processed squaraine bulk heterojunction photovoltaic cells. ACS Nano 2010, 4, 1927–1934. [Google Scholar] [CrossRef]
- Li, Z.; He, G.; Wan, X.; Liu, Y.; Zhou, J.; Long, G.; Zuo, Y.; Zhang, M.; Chen, Y. Solution processable rhodanine-based small molecule organic photovoltaic cells with a power conversion efficiency of 6.1%. Adv. Energy Mater. 2012, 2, 74–77. [Google Scholar] [CrossRef]
- Hong, S.; Jeong, H.; Kang, H.; Sohn, S. Improving the Charge Extraction of Organic Photovoltaics by Controlling the PCBM Overlayer/Active-Layer Interface. J. Korean Inst. Electr. Electron. Mater. 2024, 37, 451–456. [Google Scholar]
- Sawatzki-Park, M.; Wang, S.-J.; Kleemann, H.; Leo, K. Highly ordered small molecule organic semiconductor thin-films enabling complex, high-performance multi-junction devices. Chem. Rev. 2023, 123, 8232–8250. [Google Scholar] [CrossRef] [PubMed]
- Page, Z.A.; Liu, Y.; Duzhko, V.V.; Russell, T.P.; Emrick, T. Fulleropyrrolidine interlayers: Tailoring electrodes to raise organic solar cell efficiency. Science 2014, 346, 441–444. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Gann, E.; Thomsen, L.; Dong, C.; Cheng, Y.B.; McNeill, C.R. Unraveling the morphology of high efficiency polymer solar cells based on the donor polymer PBDTTT-EFT. Adv. Energy Mater. 2015, 5, 1401259. [Google Scholar] [CrossRef]
- Kyaw, A.K.K.; Wang, D.H.; Luo, C.; Cao, Y.; Nguyen, T.Q.; Bazan, G.C.; Heeger, A.J. Effects of Solvent Additives on Morphology, Charge Generation, Transport, and Recombination in Solution-Processed Small-Molecule Solar Cells. Adv. Energy Mater. 2014, 4, 1301469. [Google Scholar] [CrossRef]
- Xu, X.; Kyaw, A.K.K.; Peng, B.; Du, Q.; Hong, L.; Demir, H.V.; Wong, T.K.; Xiong, Q.; Sun, X.W. Enhanced efficiency of solution-processed small-molecule solar cells upon incorporation of gold nanospheres and nanorods into organic layers. Chem. Commun. 2014, 50, 4451–4454. [Google Scholar] [CrossRef]
- Hu, D.; Tang, H.; Karuthedath, S.; Chen, Q.; Chen, S.; Khan, J.I.; Liu, H.; Yang, Q.; Gorenflot, J.; Petoukhoff, C.E. A volatile solid additive enables oligothiophene all-small-molecule organic solar cells with excellent commercial viability. Adv. Funct. Mater. 2023, 33, 2211873. [Google Scholar] [CrossRef]
- Huang, Y.; Wen, W.; Mukherjee, S.; Ade, H.; Kramer, E.J.; Bazan, G.C. High-Molecular-Weight Insulating Polymers Can Improve the Performance of Molecular Solar Cells. Adv. Mater. 2014, 26, 4168–4172. [Google Scholar] [CrossRef]
- Perez, L.A.; Chou, K.W.; Love, J.A.; Van Der Poll, T.S.; Smilgies, D.M.; Nguyen, T.Q.; Kramer, E.J.; Amassian, A.; Bazan, G.C. Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 2013, 25, 6380–6384. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.-C.; Hong, Z.; Gao, J.; Yang, Y.; Zhou, H.; Dou, L.; Li, G.; Yang, Y. Solution-processed small-molecule solar cells: Breaking the 10% power conversion efficiency. Sci. Rep. 2013, 3, 3356. [Google Scholar] [CrossRef]
- Gupta, V.; Kyaw, A.K.K.; Wang, D.H.; Chand, S.; Bazan, G.C.; Heeger, A.J. Barium: An efficient cathode layer for bulk-heterojunction solar cells. Sci. Rep. 2013, 3, 1965. [Google Scholar] [CrossRef]
- Lee, B.H.; Coughlin, J.; Kim, G.; Bazan, G.C.; Lee, K. Efficient solution-processed small-molecule solar cells with titanium suboxide as an electric adhesive layer. Appl. Phys. Lett. 2014, 104, 213305. [Google Scholar] [CrossRef]
- Kyaw, A.K.K.; Wang, D.H.; Gupta, V.; Leong, W.L.; Ke, L.; Bazan, G.C.; Heeger, A.J. Intensity dependence of current–voltage characteristics and recombination in high-efficiency solution-processed small-molecule solar cells. ACS Nano 2013, 7, 4569–4577. [Google Scholar] [CrossRef] [PubMed]
- Kyaw, A.K.K.; Wang, D.H.; Wynands, D.; Zhang, J.; Nguyen, T.-Q.; Bazan, G.C.; Heeger, A.J. Improved light harvesting and improved efficiency by insertion of an optical spacer (ZnO) in solution-processed small-molecule solar cells. Nano Lett. 2013, 13, 3796–3801. [Google Scholar] [CrossRef] [PubMed]
- Riede, M.; Uhrich, C.; Widmer, J.; Timmreck, R.; Wynands, D.; Schwartz, G.; Gnehr, W.M.; Hildebrandt, D.; Weiss, A.; Hwang, J. Efficient organic tandem solar cells based on small molecules. Adv. Funct. Mater. 2011, 21, 3019–3028. [Google Scholar] [CrossRef]
- Kyaw, A.K.K.; Wang, D.H.; Gupta, V.; Zhang, J.; Chand, S.; Bazan, G.C.; Heeger, A.J. Efficient solution-processed small-molecule solar cells with inverted structure. Adv. Mater. 2013, 25, 2397–2402. [Google Scholar] [CrossRef]
- Ameri, T.; Khoram, P.; Min, J.; Brabec, C.J. Organic ternary solar cells: A review. Adv. Mater. 2013, 25, 4245–4266. [Google Scholar] [CrossRef]
- Lu, L.; Xu, T.; Chen, W.; Landry, E.S.; Yu, L. Ternary blend polymer solar cells with enhanced power conversion efficiency. Nat. Photonics 2014, 8, 716–722. [Google Scholar] [CrossRef]
- Lu, L.; Chen, W.; Xu, T.; Yu, L. High-performance ternary blend polymer solar cells involving both energy transfer and hole relay processes. Nat. Commun. 2015, 6, 7327. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, W.; Dou, L.; Chang, W.-H.; Duan, H.-S.; Bob, B.; Li, G.; Yang, Y. High-performance multiple-donor bulk heterojunction solar cells. Nat. Photonics 2015, 9, 190–198. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, D.; Lu, K.; Zhang, J.; Xia, B.; Zhao, Y.; Fang, J.; Wei, Z. Synergistic effect of polymer and small molecules for high-performance ternary organic solar cells. Adv. Mater. 2014, 27, 1071–1076. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, X.; Sun, R.; Xu, L.-Y.; Chen, Z.; Zhang, M.; Zhu, H.; Min, J. All-small-molecule organic solar cells with 18.1% efficiency and enhanced stability enabled by improving light harvesting and nanoscale microstructure. Joule 2023, 7, 2845–2858. [Google Scholar] [CrossRef]
- Wang, X.; Li, Z.; Zheng, X.; Xiao, C.; Hu, T.; Liao, Y.; Yang, R. High-efficiency all-small-molecule organic solar cells based on new molecule donors with conjugated symmetric/asymmetric hybrid cyclopentyl-hexyl side chains. Adv. Funct. Mater. 2023, 33, 2300323. [Google Scholar] [CrossRef]
- Noriega, R.; Rivnay, J.; Vandewal, K.; Koch, F.P.; Stingelin, N.; Smith, P.; Toney, M.F.; Salleo, A. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 2013, 12, 1038–1044. [Google Scholar] [CrossRef] [PubMed]
- Liao, S.-H.; Jhuo, H.-J.; Cheng, Y.-S.; Chen, S.-A. Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv. Mater. 2013, 25, 4766–4771. [Google Scholar] [CrossRef]
- Deshmukh, K.D.; Qin, T.; Gallaher, J.K.; Liu, A.C.; Gann, E.; O’Donnell, K.; Thomsen, L.; Hodgkiss, J.M.; Watkins, S.E.; McNeill, C.R. Performance, morphology and photophysics of high open-circuit voltage, low band gap all-polymer solar cells. Energy Environ. Sci. 2014, 8, 332–342. [Google Scholar] [CrossRef]
- Van Der Poll, T.S.; Love, J.A.; Nguyen, T.Q.; Bazan, G.C. Non-basic high-performance molecules for solution-processed organic solar cells. Adv. Mater. 2012, 24, 3646–3649. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Fang, J.; Lu, K.; Wang, Z.; Ma, W.; Wei, Z. Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc 2015, 137, 8176–8183. [Google Scholar] [CrossRef]
- Park, H.I.; Lee, S.; Lee, J.M.; Nam, S.A.; Jeon, T.; Han, S.W.; Kim, S.O. High performance organic photovoltaics with plasmonic-coupled metal nanoparticle clusters. ACS Nano 2014, 8, 10305–10312. [Google Scholar] [CrossRef]
- Lee, J.M.; Park, J.S.; Lee, S.H.; Kim, H.; Yoo, S.; Kim, S.O. Selective electron-or hole-transport enhancement in bulk-heterojunction organic solar cells with N-or B-doped carbon nanotubes. Adv. Mater. 2011, 23, 629–633. [Google Scholar] [CrossRef]
- Brus, V.V.; Kyaw, A.K.K.; Maryanchuk, P.D.; Zhang, J. Quantifying interface states and bulk defects in high-efficiency solution-processed small-molecule solar cells by impedance and capacitance characteristics. Prog. Photovolt. 2015, 23, 1526–1535. [Google Scholar] [CrossRef]




| DTS(FBTTh2)2:PBDTTT-EFT | VOC | JSC | FF | RSA | RPA | PCE max. | PCE ave. |
|---|---|---|---|---|---|---|---|
| [V] | [mA cm2] | [%] | [Ω cm2] | [Ω cm2] | [%] | [%] | |
| 1:0 | 0.797 | 12.72 | 70.86 | 6.20 | 2153.2 | 7.99 | 7.36 |
| 0.9:0.1 | 0.795 | 15.38 | 70.85 | 5.17 | 1015.8 | 8.66 | 8.15 |
| 0.8:0.2 | 0.793 | 15.80 | 70.67 | 5.03 | 1057.2 | 8.85 | 8.34 |
| 0.7:0.3 | 0.784 | 16.06 | 72.08 | 4.55 | 908.3 | 9.08 | 8.70 |
| 0.6:0.4 | 0.778 | 16.57 | 68.02 | 5.35 | 933.2 | 8.77 | 8.15 |
| 0.5:0.5 | 0.769 | 16.39 | 62.77 | 5.98 | 553.8 | 7.91 | 7.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Nam, S.A.; Lee, J.; Lim, J. Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells. Micromachines 2026, 17, 97. https://doi.org/10.3390/mi17010097
Nam SA, Lee J, Lim J. Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells. Micromachines. 2026; 17(1):97. https://doi.org/10.3390/mi17010097
Chicago/Turabian StyleNam, Soo Ah, Jinwoo Lee, and Joonwon Lim. 2026. "Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells" Micromachines 17, no. 1: 97. https://doi.org/10.3390/mi17010097
APA StyleNam, S. A., Lee, J., & Lim, J. (2026). Enhanced Photovoltaic Performance of Ternary Small Molecule/Polymer Bulk Heterojunction Solar Cells. Micromachines, 17(1), 97. https://doi.org/10.3390/mi17010097

