Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,742)

Search Parameters:
Keywords = active constituents

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4166 KB  
Review
Artemisia frigida Willd.: Advances in Traditional Uses, Phytochemical Constituents, Extraction and Separation Methods, and Pharmacological Activities
by Wei Tian, Mengjie Zhang, Tongcun Zhang, Xianglong Li, Haiying Zhang and Xiumei Li
Separations 2025, 12(10), 280; https://doi.org/10.3390/separations12100280 (registering DOI) - 11 Oct 2025
Abstract
Artemisia frigida Willd. (A. frigida), a traditional medicinal herb widely distributed in northern China, Mongolia, and Siberia, has garnered increasing scientific interest due to its diverse phytochemical profile and extensive pharmacological potential. Modern studies have identified a wide range of bioactive [...] Read more.
Artemisia frigida Willd. (A. frigida), a traditional medicinal herb widely distributed in northern China, Mongolia, and Siberia, has garnered increasing scientific interest due to its diverse phytochemical profile and extensive pharmacological potential. Modern studies have identified a wide range of bioactive compounds in A. frigida, including flavonoids, sesquiterpene lactones and phenolic acids. These compounds exhibit various biological activities, such as antioxidant, anti-inflammatory, anticancer, and antimicrobial effects. This review systematically summarizes the research progress on the chemical constituents of A. frigida and their extraction and separation methods, including solvent extraction, ultrasonic-assisted extraction, macroporous resin adsorption, and chromatography-based techniques. By integrating traditional knowledge with modern pharmacological evidence, this review provides a scientific foundation for the further development and utilization of A. frigida in functional food, pharmaceuticals, and ethnomedicine. Full article
17 pages, 4029 KB  
Article
Exploring the Mechanisms of n-Butanol Extract from Tibetan Medicine Biebersteinia heterostemon in Improving Type 2 Diabetes Based on Network Pharmacology and Cellular Experiments
by Shengwen Chen, Mengting Zeng, Xiuxiu Shen and Benyin Zhang
Int. J. Mol. Sci. 2025, 26(20), 9866; https://doi.org/10.3390/ijms26209866 - 10 Oct 2025
Abstract
An integrative approach combining network pharmacology, molecular docking, and cellular assays was used to elucidate the potential mechanisms by which the n-butanol extract of Biebersteinia heterostemon ameliorates type 2 diabetes mellitus (T2DM). Chemical constituents of the n-butanol extract were identified via [...] Read more.
An integrative approach combining network pharmacology, molecular docking, and cellular assays was used to elucidate the potential mechanisms by which the n-butanol extract of Biebersteinia heterostemon ameliorates type 2 diabetes mellitus (T2DM). Chemical constituents of the n-butanol extract were identified via ultra-high-performance liquid chromatography coupled with Q-Exactive Orbitrap mass spectrometry. Active compounds and T2DM-related targets were retrieved from public databases, and intersecting targets were identified. Protein–protein interaction (PPI) networks were constructed using the STRING database, while Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed via the DAVID database. A comprehensive “drug–compound–target–disease–pathway” network was established, and molecular docking was conducted to evaluate binding affinities of key compounds to core targets. Functional validation was performed in insulin-resistant cell models. Network pharmacology analysis identified 37 active constituents within the extract and 222 overlapping targets associated with T2DM. GO enrichment indicated involvement in protein phosphorylation, MAPK cascade activation, and negative regulation of apoptosis. Key signaling pathways included PI3K/AKT and lipid and atherosclerosis pathways. Molecular docking revealed strong binding affinities (binding energies ≤ −9.3 kcal·mol−1) between core compounds—such as cheilanthifoline, glabridin, acetylcorynoline, skullcapflavone II, liquiritigenin, and dinatin—and pivotal targets including GAPDH, AKT1, TNF, SRC, EGFR, and PPARγ. In vitro experiments demonstrated that the extract significantly enhanced glucose uptake and glycogen synthesis in insulin-resistant cells, while suppressing oxidative stress and the expression of pro-inflammatory mediators such as TNF-α, MMP9, and IL-6. Collectively, B. heterostemon shows potential as an effective intervention for T2DM by targeting key molecular pathways, improving insulin sensitivity, and mitigating oxidative stress and inflammation in insulin-resistant cells. Full article
Show Figures

Figure 1

19 pages, 2617 KB  
Review
Insights into the Therapeutic Use of Kalanchoe pinnata Supplement in Diabetes Mellitus
by Felix Omoruyi, Lauren Tatina, Lizette Rios, Dewayne Stennett and Jean Sparks
Pharmaceuticals 2025, 18(10), 1518; https://doi.org/10.3390/ph18101518 - 10 Oct 2025
Abstract
Kalanchoe pinnata, commonly known as the “miracle plant” or “life plant”, is a succulent species traditionally used for various health conditions. Recent research investigations have intensified interest in this species due to its diverse repertoire of bioactive constituents, including flavonoids, alkaloids, triterpenes, [...] Read more.
Kalanchoe pinnata, commonly known as the “miracle plant” or “life plant”, is a succulent species traditionally used for various health conditions. Recent research investigations have intensified interest in this species due to its diverse repertoire of bioactive constituents, including flavonoids, alkaloids, triterpenes, and glycosides. These compounds have been associated with multiple therapeutic effects, notably antioxidant, anti-inflammatory, and antidiabetic activities. Although several studies have highlighted the positive effects of the extracts of K. pinnata on key factors contributing to the pathophysiology and complications of diabetes mellitus, a systematic overview focusing on the use of these extracts and their bioactive constituents in the management of the disease is lacking. This literature review summarizes the phytochemical composition, traditional uses, and recent scientific data supporting the antidiabetic potential of K. pinnata, with a particular focus on its effects on glycemic control, as well as inflammatory and oxidative homeostasis, toxicity, safety, and potential clinical implications. The phytochemical constituents discussed include quercetin, kaempferol, apigenin, epigallocatechin gallate (EGCG), avicularin, and bufadienolides, along with a presentation of representative structures. The review also covers the potential mechanisms of action in diabetes mellitus. The survey of available literature highlights the effects of K. pinnata on indices of diabetes mellitus, including enhancing insulin sensitivity, mitigating oxidative stress and inflammation, lowering blood glucose levels, and the potential adverse effects. These results point to the promising prospect for K. pinnata use in the management of diabetes mellitus and its associated complications, while underscoring the need for more rigorous investigations, including well-controlled clinical trials. Full article
(This article belongs to the Special Issue Natural Products in Diabetes Mellitus: 2nd Edition)
Show Figures

Figure 1

19 pages, 8788 KB  
Article
Source Analysis of Groundwater Chemical Components in the Middle Reaches of the Dawen River Based on Unsupervised Machine Learning and PMF Source Analysis
by Xinqi Wang, Zhenhua Zhao, Hongyan An, Lin Han, Mingming Li, Zihao Wang, Xinfeng Wang and Zheming Shi
Water 2025, 17(20), 2924; https://doi.org/10.3390/w17202924 - 10 Oct 2025
Abstract
Groundwater chemical composition often exhibits complex characteristics under the combined influence of anthropogenic activities and natural geological conditions. Accurately distinguishing between human-derived and naturally occurring constituents is crucial for formulating effective pollution control strategies and ensuring sustainable groundwater resource management. However, conventional hydrogeochemical [...] Read more.
Groundwater chemical composition often exhibits complex characteristics under the combined influence of anthropogenic activities and natural geological conditions. Accurately distinguishing between human-derived and naturally occurring constituents is crucial for formulating effective pollution control strategies and ensuring sustainable groundwater resource management. However, conventional hydrogeochemical analytical methods often face challenges in quantitatively differentiating these overlapping influences. In this study, 66 groundwater samples were collected from the midstream section of the Dawen River Basin, an area subject to significant anthropogenic pressure. An integrated approach combining hydrogeochemical analysis, Self-Organizing Map (SOM) clustering, and Positive Matrix Factorization (PMF) receptor modeling was employed to identify sources of chemical constituents and quantify the proportional contributions of various factors. The results indicate that: (1) The predominant groundwater types in the study area were Cl·SO4·Ca. (2) SOM clustering classified the groundwater samples into five distinct groups, each reflecting a dominant influence: (i) natural geological processes—samples distributed within the central geological mining area; (ii) agricultural activities—samples located in intensively cultivated zones along both banks of the Dawen River; (iii) hydrogeochemical evolution—samples concentrated in areas with impermeable surfaces on the eastern and western sides of the study region; (iv) mining operations—samples predominantly found in industrial zones at the periphery; (v) domestic wastewater discharge—samples scattered relatively uniformly throughout the area. (3) PMF results demonstrated that natural geological conditions constituted the largest contribution (29.0%), followed by agricultural activities (26.8%), consistent with the region’s extensive farming practices. Additional contributions arose from water–rock interactions (23.9%), mining operations (13.6%), and domestic wastewater (6.7%). This study establishes a methodological framework for quantitatively assessing natural and anthropogenic impacts on groundwater quality, thereby providing a scientific basis for the development of protection measures and sustainable management strategies for regional groundwater resources. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

20 pages, 3945 KB  
Article
Ozone-Assisted Green Upgrading of Lactuca sativa Oil: Characterization and Bioactivity for Clean-Label Functional Applications
by Abdulrahman S. Bazaid, Sulaiman A. Alsalamah, Waleed Hakami, Mohammed Ibrahim Alghonaim, Amro Duhduh and Husam Qanash
Foods 2025, 14(20), 3458; https://doi.org/10.3390/foods14203458 - 10 Oct 2025
Viewed by 16
Abstract
Ozonation is an emergent green technology that modifies the chemical composition and bioactivity of natural oils, creating new opportunities for functional and biomedical use. In this study, the chemical changes and in vitro activities of lettuce (Lactuca sativa) oil before and [...] Read more.
Ozonation is an emergent green technology that modifies the chemical composition and bioactivity of natural oils, creating new opportunities for functional and biomedical use. In this study, the chemical changes and in vitro activities of lettuce (Lactuca sativa) oil before and after ozonation were evaluated. Gas chromatography–mass spectrometry (GC–MS) revealed an increase in both the number and diversity of constituents in ozonated oil, with (Z)-13-docosenamide and trans-13-octadecenoic acid as predominant components. Fourier-transform infrared (FTIR) spectra showed overall similarity between native and ozonated oils, but with three additional characteristic bands in the ozonated sample. Bioassays demonstrated that ozonation enhanced anti-Helicobacter pylori activity (inhibition zone 21.3 ± 0.3 mm), supported bactericidal effects, and improved antibiofilm and antihemolytic properties. The antioxidant capacity of ozonated oil was modestly increased (IC50 = 3.95 ± 0.4 µg/mL), while butyrylcholinesterase inhibition was more markedly enhanced (IC50 = 2.58 ± 0.6 µg/mL), compared to that of the non-ozonated oil (IC50 = 6.14 ± 0.3 µg/mL and IC50 = 4.38 ± 0.4 µg/mL, respectively). Molecular docking suggested strong interactions of major ozonation-derived compounds with human BuChE and H. pylori urease, providing mechanistic support for the observed activities. Overall, these results indicate that ozonation modestly but consistently enhances the biological potential of lettuce oil through compositional shifts, highlighting its promise for development as a safe functional food ingredient with possible biomedical applications. Full article
Show Figures

Figure 1

16 pages, 3548 KB  
Article
Identification and Functional Analysis of Two UGT84 Glycosyltransferases in Flavonoid Biosynthesis of Carthamus tinctorius
by Chaoxiang Ren, Jinxin Guo, Siyu Liu, Bin Xian, Yuhang Li, Changyan Yang, Cheng Peng, Jin Pei and Jiang Chen
Plants 2025, 14(19), 3112; https://doi.org/10.3390/plants14193112 - 9 Oct 2025
Viewed by 107
Abstract
Safflower (Carthamus tinctorius L.) is a multipurpose economic crop. Flavonoid glycosides are its key bioactive constituents, and several glycosyltransferases involved in their biosynthesis have been identified. The glycosyltransferase 84 subfamily represents a specialized branch with diverse functions, involved not only in catalyzing [...] Read more.
Safflower (Carthamus tinctorius L.) is a multipurpose economic crop. Flavonoid glycosides are its key bioactive constituents, and several glycosyltransferases involved in their biosynthesis have been identified. The glycosyltransferase 84 subfamily represents a specialized branch with diverse functions, involved not only in catalyzing flavonoid glycosylation but also in the biosynthesis of auxins, tannins, and other compounds. However, this subfamily remains poorly characterized in safflower. In this study, two UGT84 subfamily genes, UGT84A28 and UGT84B3, were screened based on expression patterns and phylogenetic evolution analysis. Recombinant proteins were induced and purified using prokaryotic expression systems. Functional characterization was subsequently conducted through enzymatic assays in vitro and transient expression in tobacco leaves. Molecular docking was employed to investigate the binding modes of UGTs with UDP-glucose. The results indicated that both UGTs demonstrated glycosylation activity at the flavonoid 7-OH position. Notably, when luteolin was employed as the aglycone, both enzymes also exhibited 3′-O-glycosylation activity. Combined with amino acid sequence alignment, we propose that residues A351/T343 and G263/F254, which affect spatial conformation and hydrogen bonding ability, may be one of the reasons for the functional differences between these two enzymes. These findings provide new insights into the catalytic diversity of glycosyltransferases. Full article
(This article belongs to the Special Issue Advances in Plant Molecular Biology and Gene Function)
Show Figures

Figure 1

14 pages, 1929 KB  
Article
Targeted Enrichment and Characterization of Diester Diterpenoid Alkaloids in Aconitum Herbs Using Gas–Liquid Microextraction Coupled with High-Resolution Mass Spectrometry
by Yijun Wang, Ceyu Miao, Junxian Wu, Yutong Hua, Xiang Li, Liping Kang and Zidong Qiu
Molecules 2025, 30(19), 4029; https://doi.org/10.3390/molecules30194029 - 9 Oct 2025
Viewed by 63
Abstract
Diterpenoid diester alkaloids (DDAs) are the primary toxic constituents in aconite herbs, while also being the key pharmacologically active components. Consequently, establishing rapid enrichment and highly sensitive analytical methods for DDAs is of critical importance. Herein, we developed and constructed a gas–liquid microextraction [...] Read more.
Diterpenoid diester alkaloids (DDAs) are the primary toxic constituents in aconite herbs, while also being the key pharmacologically active components. Consequently, establishing rapid enrichment and highly sensitive analytical methods for DDAs is of critical importance. Herein, we developed and constructed a gas–liquid microextraction (GLME) device, which enables the rapid and selective enrichment of DDAs from complex matrices. The enriched extract can be directly analyzed by high-resolution Orbitrap mass spectrometry without requiring any further pretreatment. A comparative analysis of six commonly used Aconitum herbs medicines and their processed derivatives was conducted. Notably, GLME enhanced the mass spectrometric signals of DDAs by 3–4 orders of magnitude, facilitating the identification of 27 alkaloids, including 3 potential new compounds (15-Ethyl-13-deoxyanhydroaconitine, 13-Hydroxy-15-ethylanhydroaconitine and 8-eicosapentaenoic-benzoylmesaconine). It was found that among the tested samples, the DDAs response intensity of raw Caowu was the highest, and the DDA signals decreased significantly after processing. This result chemically validates the detoxification efficacy of traditional methods. The proposed GLME-MS strategy has the advantages of being green, economical, easy to operate, and highly selective (>1000-fold), which provides a technical reference for the rapid detection, safety assessment, and quality control of Aconitum herbs. Full article
(This article belongs to the Section Analytical Chemistry)
Show Figures

Figure 1

17 pages, 1659 KB  
Review
Beyond the Cup: Coffee Extracts as Modulators of Periodontal Inflammation and Bone Remodeling
by Janvi Mody, Deamah Aleisa, Harshal Modh, Purnima Sainani, Serge Dibart and Weiyuan Ma
Curr. Issues Mol. Biol. 2025, 47(10), 827; https://doi.org/10.3390/cimb47100827 - 8 Oct 2025
Viewed by 201
Abstract
Alveolar bone loss is a defining feature of periodontitis and a principal cause of tooth loss worldwide. Driven by a dysregulated host immune response to chronic bacterial infection, periodontitis initiates a cascade of inflammatory events that lead to an imbalance in bone remodeling, [...] Read more.
Alveolar bone loss is a defining feature of periodontitis and a principal cause of tooth loss worldwide. Driven by a dysregulated host immune response to chronic bacterial infection, periodontitis initiates a cascade of inflammatory events that lead to an imbalance in bone remodeling, favoring osteoclastic activity. While conventional periodontal therapies aim to control infection and inflammation, they often fall short in preserving bone integrity. As a result, interest has grown in adjunctive strategies targeting molecular pathways involved in bone metabolism. Among potential candidates, coffee, a globally consumed beverage often perceived as detrimental to health, has gained attention for its complex array of bioactive compounds, including caffeine, chlorogenic acids, and polyphenols. These compounds have demonstrated anti-inflammatory, antioxidant, and osteo-modulatory effects in various biological contexts. Despite coffee’s reputation as a potential health risk, its complex composition presents a paradox, necessitating an investigation into how its bioactive constituents may mitigate periodontal tissue destruction. The novelty of this short review lies in its integration of in vitro, animal, and epidemiologic evidence to delineate the dose- and context-dependent effects of coffee polyphenols, particularly chlorogenic and ferulic acids, on periodontal inflammation and alveolar bone remodeling, with special emphasis on osteoclast-related mechanisms that have not been synthesized previously. Caffeine can influence osteoblast and osteoclast activity in a dose-dependent manner, while chlorogenic acids (CGA) and polyphenols exert radical-scavenging and cytokine-suppressing activity that may reduce inflammatory bone loss. However, their efficacy is influenced by coffee species, cultivation, roasting, and extraction methods. This review evaluates current evidence and proposes directions for optimizing coffee-based formulations to support alveolar bone preservation in periodontitis. Full article
Show Figures

Figure 1

33 pages, 2345 KB  
Article
Formulation and Testing of Alginate Microbeads Containing Salvia officinalis Extract and Prebiotics
by Krisztina Bodnár, Pálma Fehér, Zoltán Ujhelyi, Ádám Haimhoffer, Boglárka Papp, Dávid Sinka, Csongor Freytag, Eszter Fidrus, Krisztina Szarka, Gábor Kardos, Fruzsina Nacsa, Ildikó Bácskay and Liza Józsa
Pharmaceutics 2025, 17(10), 1308; https://doi.org/10.3390/pharmaceutics17101308 - 8 Oct 2025
Viewed by 274
Abstract
Background/Objectives: This study aimed to develop an advanced oral delivery platform for Salvia officinalis (S. officinalis) extract by co-encapsulating it with inulin and pectin in alginate-based microbeads, formulated via ionic gelation. Methods: The microbeads were comprehensively characterized, including the [...] Read more.
Background/Objectives: This study aimed to develop an advanced oral delivery platform for Salvia officinalis (S. officinalis) extract by co-encapsulating it with inulin and pectin in alginate-based microbeads, formulated via ionic gelation. Methods: The microbeads were comprehensively characterized, including the assessment of morphology, particle size, encapsulation efficiency, swelling behavior, in vitro dissolution, and enzymatic stability, and Caco-2 cell-based assays for cytocompatibility, permeability, and transepithelial electrical resistance. Antioxidant capacity and anti-inflammatory effects were also evaluated. Results: The resulting microbeads (~275 µm) achieved > 90% encapsulation efficiency and exhibited pronounced swelling (~90%). The release of S. officinalis constituents displayed pH sensitivity, with sustained release in simulated intestinal fluid, alongside significant enhancement of enzymatic stability. Encapsulation led to markedly improved permeability of bioactive compounds across Caco-2 monolayers, attributable to reversible modulation of tight junctions. Encapsulated extract retained potent antioxidant activity and significantly reduced pro-inflammatory cytokines. The formulation, across various concentrations, further promoted the growth and viability of Lactobacillus strains. Conclusions: Collectively, these findings demonstrate that alginate–inulin–pectin microbeads provide a multifunctional system for stabilizing S. officinalis extract, enabling controlled release, enhanced intestinal absorption, and maintained bioefficacy. Importantly, the formulation also promoted Lactobacillus viability, indicating a prebiotic effect and offering considerable potential for improved oral therapeutic applications. Full article
(This article belongs to the Special Issue Natural Bioactive Compounds in Micro- and Nanocarriers)
Show Figures

Figure 1

17 pages, 2692 KB  
Article
Chemical Composition and Biological Activities of the Essential Oils from Different Parts of Rosa bracteata J.C.Wendl
by Shiyu Song, Yifang Chen, Hongrui Chen, Qinglei Han and Pengxiang Lai
Molecules 2025, 30(19), 4021; https://doi.org/10.3390/molecules30194021 - 8 Oct 2025
Viewed by 265
Abstract
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, [...] Read more.
Rosa bracteata J.C.Wendl. is a thorny, clump-forming or trailing perennial evergreen shrub native to China. The current analysis was designed to explore the chemical constituents and determine the in vitro antimicrobial, cytotoxic, and antioxidant properties of the essential oils (EOs) of the stems, leaves, and flowers of Rosa bracteata for the first time. The chemical composition of the essential oils obtained through hydro-distillation was characterized by means of gas chromatography–mass spectrometry (GC–MS) and gas chromatography with a flame ionization detector (GC–FID). Thirty-seven, thirty-six, and forty-two constituents were identified from leaf oil (LEO), stem oil (SEO), and flower oil (FEO), representing 96.3%, 95.9%, and 97.4% of the total oil constituents, respectively. The LEO was mainly composed of 1-pentadecene, α-cadinol, and hexadecanoic acid. However, the main identified components of SEO were (E)-nerolidol, phytol, and benzyl benzoate, and the main components of the flower oil were ethyl octanoate, octanoic acid, and α-cadinol. All of the EOs exhibited antibacterial activities against both Gram-positive and Gram-negative bacteria with MIC values ranging from 40.00 to 640.00 μg/mL. In addition, the checkerboard method demonstrates potent synergistic effects of Rosa bracteata EOs when combined with commercial antibiotics (chloramphenicol and streptomycin). In the MTT test, SEO (IC50: 37.91 ± 2.10 to 51.15 ± 6.42 μg/mL) showed stronger cytotoxic activity against four cancer cell lines (MCF-7, A549, HepG2, and HCT-116) during the incubation time of 48 h in comparison to the EOs isolated from the other plant parts. Overall, these findings reveal the chemical composition and significant bioactivity of R. bracteata EOs for the first time, suggesting their potential as promising natural agents for therapeutic applications, especially in combination therapies to combat antibiotic resistance. Full article
(This article belongs to the Special Issue Chemical Composition and Biological Evaluation of Essential Oils)
Show Figures

Graphical abstract

15 pages, 2394 KB  
Article
Lychee Seed Extract Targets Proliferation, Differentiation, and Cell Cycle Proteins to Suppress Human Colorectal Tumor Growth in Xenograft Models
by Szu-Nian Yang, Yi-Ping Chang, Oscar C. Y. Yang, Chi-Sheng Wu, Chiu-Chen Huang, Jia-Feng Chang, Chia-Ming Liang, Shun-Tai Dai, Lung Chen and Chih-Ping Hsu
Int. J. Mol. Sci. 2025, 26(19), 9786; https://doi.org/10.3390/ijms26199786 - 8 Oct 2025
Viewed by 206
Abstract
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by [...] Read more.
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by colorimetric assays and HPLC to quantify the phytochemical composition. Nude mice bearing HT-29 or SW480 xenografts were orally administered LCSE (0.1 or 0.6 g/kg) daily for 14 days. Tumor volume was measured, and immunohistochemistry was used to assess EGFR, p21, p53, Ki-67, CEA, CK20, CDX2, and Bax expression. Phytochemical profiling demonstrated LCSE contains abundant phenolics and flavonoids, with gallic acid as a predominant constituent, underscoring the potential bioactive properties. LCSE significantly inhibited tumor growth in HT-29 xenografts and dose-dependently reduced EGFR, p21, p53, cell cycle proteins and proliferation/differentiation markers. In SW480 tumors, inhibitory effects were evident primarily at the higher dose, with limited reduction in p53 expression. Bax levels remained unchanged in both models, indicating a non-apoptotic mechanism. No systemic toxicity was observed in treated mice. LCSE exhibits dose-dependent anti-tumor activity in CRC xenografts, likely mediated through suppression of proliferation and modulation of key regulatory proteins rather than apoptosis. These findings support LCSE as a safe, multi-target botanical candidate for CRC intervention and justify further mechanistic and translational studies. Full article
Show Figures

Figure 1

17 pages, 677 KB  
Article
The Therapeutic Potential of Laurus nobilis L. Leaves Ethanolic Extract in Cancer Therapy
by Farah Al-Mammori, Ashraf M. A. Qasem, Deniz Al-Tawalbeh, Duaa Abuarqoub and Ali Hmedat
Molecules 2025, 30(19), 4012; https://doi.org/10.3390/molecules30194012 - 7 Oct 2025
Viewed by 363
Abstract
This study explores the anticancer, antioxidant, and phytochemical activities of Laurus nobilis L. ethanolic leaf extract. The extract demonstrated selective cytotoxicity against four human cancer cell lines, showing strong cytotoxic effect against ovarian (ES2), head and neck (SAS), and colorectal (HT-29) cancer cells, [...] Read more.
This study explores the anticancer, antioxidant, and phytochemical activities of Laurus nobilis L. ethanolic leaf extract. The extract demonstrated selective cytotoxicity against four human cancer cell lines, showing strong cytotoxic effect against ovarian (ES2), head and neck (SAS), and colorectal (HT-29) cancer cells, with IC50 values ranging from 3.8 ± 0.3 to 4.4 ± 0.6 µg/mL. Notably, it exhibited only moderate inhibition of the MDA-MB-231 breast cancer cell line (IC50 = 18.5 ± 0.8 µg/mL), possibly reflecting intrinsic differences in cell line sensitivity. Importantly, the extract showed low toxicity toward normal human fibroblasts (HDF), with an IC50 value exceeding 100 µg/mL, indicating a favorable selectivity profile. The flow cytometry analysis showed that the extract caused cell death and stopped the cell cycle in both SAS and ES2 cancer cell lines. In SAS cells, extract treatment significantly increased apoptotic cells (21.1% ± 0.3%) compared to the control (6.3% ± 0.4%), along with G2 phase accumulation, indicating G2 arrest. Similarly, in ES2 cells, apoptosis increased (16.2% ± 1.3% vs. control 8.1% ± 1.0%), and a significant cell accumulation in the S phase was observed, suggesting disruption of cell cycle progression. Antioxidant screenings showed impressive dose-dependent DPPH radical scavenging activity (25–2000 µg/mL), although less potent than ascorbic acid (2.6 µg/mL). UPLC-QTOF/MS phytochemical analysis revealed various phenolic constituents, such as flavonoids and phenolic acids, and an inferred association with the recorded bioactivities. This preliminary work indicates that L. nobilis extracts may act as natural anticancer and antioxidant agents; however, it was limited to in vitro testing with non-standardized samples, underscoring the need for further research to validate and extend these findings for future applications. Full article
(This article belongs to the Special Issue Advances in Plant-Sourced Natural Compounds as Anticancer Agents)
Show Figures

Graphical abstract

17 pages, 1533 KB  
Article
UHPLC-QTOF-ESI-MS/MS, SNAP-MS Identification, In Silico Prediction of Pharmacokinetic Properties of Constituents from the Stem Bark of Holarrhena floribunda (G. Don) T. Durand and Schinz (Apocynaceae)
by Franck Landry Djila Possi, Mc Jesus Kinyok, Joseph Eric Mbasso Tameko, Bel Youssouf G. Mountessou, Johanne Kevine Jumeta Dongmo, Mariscal Brice Tchatat Tali, Appolinaire Kene Dongmo, Fabrice Fekam Boyom, Jean Jules Kezetas Bankeu, Norbert Sewald, Jean Rodolphe Chouna and Bruno Ndjakou Lenta
Biomolecules 2025, 15(10), 1415; https://doi.org/10.3390/biom15101415 - 4 Oct 2025
Viewed by 303
Abstract
The present work reports the bioguided isolation of constituents from the ethanol extract of Holarrhena floribunda stem bark, their identification by UHPLC-ESI-QTOF-MS/MS identification, and the in silico prediction of the pharmacokinetic and toxicity parameters. The crude extract, along with its n-hexane and [...] Read more.
The present work reports the bioguided isolation of constituents from the ethanol extract of Holarrhena floribunda stem bark, their identification by UHPLC-ESI-QTOF-MS/MS identification, and the in silico prediction of the pharmacokinetic and toxicity parameters. The crude extract, along with its n-hexane and alkaloid-rich fractions, displayed moderate to good antiplasmodial activity in vitro against chloroquine-sensitive (3D7) and multidrug-resistant (Dd2) strains of Plasmodium falciparum, with IC50 values ranging from 6.54 to 43.54 µg/mL. Seventeen steroidal alkaloids (117) were identified in the most active fraction using UHPLC-ESI-QTOF-MS/MS, based on their fragmentation patterns and analysis with the Structural Similarity Network Annotation Platform for Mass Spectrometry (SNAP-MS). Furthermore, bioguided isolation of the ethanol extract yielded twenty-one compounds (3, 5, 10, 1416, 1831), whose structures were elucidated by spectroscopic methods. Among them, compounds 5, 14, and 27 showed the highest potency against the two strains of P. falciparum, with IC50 values between 25.97 and 55.78 µM. In addition, the in silico prediction of pharmacokinetic parameters and drug-likeness using the SwissADME web tool indicated that most of the evaluated compounds (1, 35, and 1416) complied with Lipinski’s rule of five. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Graphical abstract

21 pages, 679 KB  
Article
Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath)
by Reneta Gevrenova, Rositsa Mihaylova, Nikolay Bebrivenski, Georgi Momekov and Dimitrina Zheleva-Dimitrova
Plants 2025, 14(19), 3063; https://doi.org/10.3390/plants14193063 - 3 Oct 2025
Viewed by 312
Abstract
Erica spiculifolia Salisb. (Balkan heath) is an evergreen shrub growing in the mountain shrublands of Eastern Europe. E. spiculifolia was used as a diuretic, anti-inflammatory, and antioxidant herbal remedy. The present study aims to conduct an evaluation of the phytochemical composition and antitumor [...] Read more.
Erica spiculifolia Salisb. (Balkan heath) is an evergreen shrub growing in the mountain shrublands of Eastern Europe. E. spiculifolia was used as a diuretic, anti-inflammatory, and antioxidant herbal remedy. The present study aims to conduct an evaluation of the phytochemical composition and antitumor activity of the methanol–aqueous extract from E. spiculifolia aerial parts to explore its potential in cancer treatment. Overall, a total of 54 secondary metabolites, including 28 hydroxybenzoic, hydroxycinnamic acids, and phenolic glycosides, and 10 triterpene acids, together with 17 flavonoids, were identified or annotated in the assayed E. spiculifolia extract using liquid chromatography-high-resolution mass spectrometry. The cytotoxic activity of the extract, alongside gallic, protocatechuic, and oleanolic acids as its constituents, was screened against a panel of malignant human cell lines of different origin (LAMA-84, HL-60, MDA-MB-231, MCF-7, and CASKI). The most prominent antiproliferative effect of the studied extract (with IC50 16.6 μg/mL), matched with the highest tumor selectivity (SI > 120), was observed in the LAMA-84 myeloid cells. These findings were further supported by gallic and oleanolic acid (IC50 6.2 and 1.7 μg/mL, respectively), accounting for a more distinct cytotoxicity. The strongest selective antineoplastic activity was achieved towards the triple-negative breast carcinoma cell line MDA-MB-231, with an IC50 of 32.5 μg/mL. This study provided compelling evidence for a wide spectrum of E. spiculifolia antitumor activity, indicating its potential as a natural alternative for future therapeutic applications. Full article
(This article belongs to the Special Issue Phytochemical Profiling and Bioactive Potential of Plants)
Show Figures

Figure 1

14 pages, 3486 KB  
Article
Asiatic Acid from Centella asiatica as a Potent EGFR Tyrosine Kinase Inhibitor with Anticancer Activity in NSCLC Cells Harboring Wild-Type and T790M-Mutated EGFR
by Chaiwat Monmai, Sahachai Sabuakham, Wachirachai Pabuprapap, Waraluck Chaichompoo, Apichart Suksamrarn and Panupong Mahalapbutr
Biomolecules 2025, 15(10), 1410; https://doi.org/10.3390/biom15101410 - 3 Oct 2025
Viewed by 372
Abstract
Lung cancer is a leading cause of cancer mortality worldwide. Targeted therapies with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent a significant advance in the management of lung cancer. However, their long-term efficacy is often limited by acquired resistance, particularly [...] Read more.
Lung cancer is a leading cause of cancer mortality worldwide. Targeted therapies with epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) represent a significant advance in the management of lung cancer. However, their long-term efficacy is often limited by acquired resistance, particularly due to the T790M mutation, highlighting the need for novel EGFR-TKIs. Although compounds derived from Centella asiatica have demonstrated anticancer potential, their role in EGFR inhibition has not yet been reported. In this study, we investigated the inhibitory activity of two primary constituents, asiaticoside and asiatic acid, against wild-type and double-mutant (L858R/T790M) EGFR, as well as the anticancer effects of the more potent compound in lung cancer cells. A kinase activity assay revealed that asiatic acid potently inhibited both wild-type and double-mutant EGFR, whereas asiaticoside showed minimal inhibitory activity. Molecular docking demonstrated that asiatic acid bound to the ATP-binding pocket of both EGFR forms with binding energies superior to those of erlotinib and osimertinib. Treatment with asiatic acid significantly (i) reduced viability of A549 and H1975 cells while remaining non-toxic to BEAS-2B normal lung cells, (ii) enhanced cancer cell apoptosis, (iii) suppressed extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) signaling pathways, and (iv) inhibited EGFR activation in A549 and H1975 cells. These results suggest that asiatic acid is a promising lead compound for anticancer drug development. Full article
Show Figures

Figure 1

Back to TopTop