ijms-logo

Journal Browser

Journal Browser

Molecular Insight into Natural Nutraceuticals for Cancer Chemoprevention

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Oncology".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 736

Special Issue Editors


E-Mail Website
Guest Editor
Division of Nephrology, Department of Internal Medicine, Taoyuan Branch of Taipei Veterans General Hospital, Taoyuan 330, Taiwan
Interests: translational medicine in chronic kidney disease, mineral and bone disorders; uremic toxins and vascular calcification; oxidant and inflammatory signaling transduction pathways; novel biomarkers and pharmaceutical targets in prediction models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Cancer remains a leading cause of morbidity and mortality worldwide, necessitating innovative approaches to prevention and treatment. In recent years, natural nutraceuticals have emerged as promising chemopreventive agents due to their structural diversity, low toxicity, and multi-target capabilities. Derived from plants, microbes, marine organisms, and other natural sources, these compounds offer a rich reservoir of bioactive molecules capable of modulating key molecular pathways involved in carcinogenesis, including inflammation, oxidative stress, apoptosis, and cell cycle regulation.

This Special Issue, "Molecular Insight into Natural Nutraceuticals for Cancer Chemoprevention", aims to showcase cutting-edge research and comprehensive reviews that elucidate the molecular mechanisms by which natural products exert anti-cancer and chemopreventive effects. We welcome submissions that explore in vitro, in vivo, or in silico studies, including work on bioavailability enhancement, structure–activity relationships, combination therapies, and novel delivery systems.

We particularly encourage interdisciplinary contributions that bridge molecular biology, pharmacology, biotechnology, and medicinal chemistry. Authors are also invited to present research on emerging technologies such as CRISPR screening, omics-based profiling, or AI-assisted drug discovery applied to natural compounds. 

Dr. Jia-Feng Chang
Prof. Dr. Chih-Hsin Tang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • natural nutraceuticals
  • cancer
  • cancer chemoprevention
  • natural compounds

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 2394 KB  
Article
Lychee Seed Extract Targets Proliferation, Differentiation, and Cell Cycle Proteins to Suppress Human Colorectal Tumor Growth in Xenograft Models
by Szu-Nian Yang, Yi-Ping Chang, Oscar C. Y. Yang, Chi-Sheng Wu, Chiu-Chen Huang, Jia-Feng Chang, Chia-Ming Liang, Shun-Tai Dai, Lung Chen and Chih-Ping Hsu
Int. J. Mol. Sci. 2025, 26(19), 9786; https://doi.org/10.3390/ijms26199786 - 8 Oct 2025
Viewed by 388
Abstract
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by [...] Read more.
Colorectal cancer (CRC) remains a leading global health challenge, and natural products are increasingly explored for their multi-targeted therapeutic potential. Litchi chinensis seed extract (LCSE) has shown promising anti-cancer activity in vitro, though its in vivo effects remain underexplored. LCSE was analyzed by colorimetric assays and HPLC to quantify the phytochemical composition. Nude mice bearing HT-29 or SW480 xenografts were orally administered LCSE (0.1 or 0.6 g/kg) daily for 14 days. Tumor volume was measured, and immunohistochemistry was used to assess EGFR, p21, p53, Ki-67, CEA, CK20, CDX2, and Bax expression. Phytochemical profiling demonstrated LCSE contains abundant phenolics and flavonoids, with gallic acid as a predominant constituent, underscoring the potential bioactive properties. LCSE significantly inhibited tumor growth in HT-29 xenografts and dose-dependently reduced EGFR, p21, p53, cell cycle proteins and proliferation/differentiation markers. In SW480 tumors, inhibitory effects were evident primarily at the higher dose, with limited reduction in p53 expression. Bax levels remained unchanged in both models, indicating a non-apoptotic mechanism. No systemic toxicity was observed in treated mice. LCSE exhibits dose-dependent anti-tumor activity in CRC xenografts, likely mediated through suppression of proliferation and modulation of key regulatory proteins rather than apoptosis. These findings support LCSE as a safe, multi-target botanical candidate for CRC intervention and justify further mechanistic and translational studies. Full article
Show Figures

Figure 1

Back to TopTop