Insights into the Therapeutic Use of Kalanchoe pinnata Supplement in Diabetes Mellitus
Abstract
1. Introduction
2. K. pinnata Phytochemical Constituents’ Role in Diabetes Mellitus
3. Antidiabetic Potentials of K. pinnata
4. Effect of K. pinnata on Antioxidant Activities in Diabetes Mellitus
5. Anti-Inflammatory Potentials of K. pinnata in Diabetes Mellitus Management
6. Potential Mechanism of K. pinnata Therapy in Diabetes Mellitus
7. Organ Protection Properties of K. pinnata in Diabetes Mellitus
8. Toxicity and Safety of K. pinnata
9. Potential Clinical Implications of K. pinnata Therapy
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Diabetes. 2023. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 29 January 2024).
- International Diabetes Federation (IDF). Diabetes Atlas, Diabetes Around the World. 2021. Available online: https://www.diabetesatlas.org (accessed on 29 January 2024).
- Balwan, W.K.; Saba, N.; Zargar, J.I. Burden of diabetes and role of medicinal plants in its treatment. Saudi J. Med. Pharm. Sci. 2022, 8, 355–361. [Google Scholar] [CrossRef]
- Okwu, D.E.; Nnamdi, F.U. Two novel flavonoids from Bryophyllum pinnatum and their antimicrobial activity. J. Chem. Pharm. Res. 2011, 3, 1–10. [Google Scholar]
- Taylor, L. Kalanchoe pinnata. The Tropical Plant Database. Available online: http://www.rain-tree.com/coirama.htm (accessed on 27 September 2024).
- Mehata, M.S. Green synthesis of silver nanoparticles using Kalanchoe pinnata leaves (life plant) and their antibacterial and photocatalytic activities. Chem. Phys. Lett. 2021, 778, 138760. [Google Scholar] [CrossRef]
- Harlalka, G.V.; Patil, C.R.; Patil, M.R. Protective effect of Kalanchoe pinnata pers. (Crassulaceae) on gentamicin-induced nephrotoxicity in rats. Indian. J. Pharmacol. 2007, 39, 201–205. [Google Scholar] [CrossRef]
- Biswas, S.K.; Chowdhury, A.; Das, J.; Hosen, S.Z.; Uddin, R.; Rahaman, M.S. A review of the traditional medicinal uses of Kalanchoe pinnata (Crassulaceae). Int. J. Pharm. Pharmacol. 2021, 10, 1–5. [Google Scholar]
- Dogra, P.; Sharma, K.; Bharti, J.; Kumar, N.; Kumar, D. Kalanchoe pinnata is a Miraculous Plant: A Review. J. Biomed. Allied Res. 2022, 4, 1–10. [Google Scholar] [CrossRef]
- Phatak, R.S.; Hendre, A.S. Total antioxidant capacity (TAC) of fresh leaves of Kalanchoe pinnata. J. Pharmacogn. Phytochem. 2014, 2, 32–35. [Google Scholar]
- Ferreira, R.T.; Coutinho, M.A.; Malvar, D.D.; Costa, E.A.; Florentino, I.F.; Costa, S.S.; Vanderlinde, F.A. Mechanisms underlying the antinociceptive, anti-edematogenic, and anti-inflammatory activity of the main flavonoid from Kalanchoe pinnata. Evid.-Based Complement. Altern. Med. 2014, 2014, 429256. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, G.P.; Clemente, R.C.; Rosini Silva, Á.A.; Pastore, G.M.; de Melo Porcari, A.; Sawaya, A.C. Chemical Profiling and Antioxidant Activity of Extracts from Kalanchoe Medicinal Species: Intraspecific Sources of Variation in Kalanchoe crenata and K. pinnata. Rev. Bras. Farmacogn. 2024, 34, 818–830. [Google Scholar] [CrossRef]
- Siddiqui, S.; Faizi, S.; Siddiqui, B.S.; Sultana, N. Triterpenoids and phenanthrenes from leaves of Bryophyllum pinnatum. Phytochemistry 1989, 28, 2433–2438. [Google Scholar] [CrossRef]
- Yamagishi, T.; Haruna, M.; Yan, X.Z.; Chang, J.J.; Lee, K.H. Antitumor agents, 110. Bryophyllin B, a novel potent cytotoxic bufadienolide from Bryophyllum pinnatum. J. Nat. Prod. 1989, 52, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Pattewar, S.V. Kalanchoe pinnata: Phytochemical and Pharmacological Profile. Int. J. Phytopharm. 2012, 2, 993–1000. [Google Scholar] [CrossRef]
- Ramon, P.; Bergmann, D.; Abdulla, H.; Sparks, J.; Omoruyi, F. Bioactive Ingredients in K. pinnata Extract and Synergistic Effects of Combined K. pinnata and Metformin Preparations on Antioxidant Activities in Diabetic and Non-Diabetic Skeletal Muscle Cells. Int. J. Mol. Sci. 2023, 24, 6211. [Google Scholar] [CrossRef]
- Uchegbu, R.I.; Ahuchaogu, A.A.; Amanze, K.O.; Ibe, C.O. Chemical Constituents Analysis of the Leaves of Bryophyllum pinnatum by GC-MS. AASCIT J. Chem. 2017, 3, 19–22. [Google Scholar]
- Dhanya, R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed. Pharmacother. 2021, 146, 112560. [Google Scholar] [CrossRef]
- Ozsoy, S.; Becer, E.; Kabadayi, H.; Vatansever, H.S.; Yucecan, S. Quercetin-mediated apoptosis and Cellular Senescence in human Colon cancer. Anticancer. Agents Med. Chem. 2020, 20, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.Y.; Huang, C.J.; Huang, L.H.; Chen, I.J.; Chiu, J.P.; Hsu, C.H. Effects of Green Tea Extract on Insulin Resistance and Glucagon-Like Peptide 1 in Patients with Type 2 Diabetes and Lipid Abnormalities: A Randomized, Double-Blinded, and Placebo-Controlled Trial. PLoS ONE 2014, 9, 91163. [Google Scholar] [CrossRef]
- Williams, R.J.; Spencer, J.P.E.; Rice-Evans, C. Flavonoids: Antioxidants or signaling molecules? Free Radic. Biol. Med. 2004, 36, 838–849. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, M.; Chen, S.; Wu, Q. Avicularin inhibits cell proliferation and induces cell apoptosis in cutaneous squamous cell carcinoma. Exp. Ther. Med. 2019, 19, 1065–1071. [Google Scholar] [CrossRef]
- Lee, J.S.; Lee, A.Y.; Quilantang, N.G.; Geraldino, P.J.L.; Cho, E.J.; Lee, S. Anti-oxidant activity of avicularin and isovitexin from Lespedeza cuneate. J. Appl. Biol. Chem. 2019, 62, 143–147. [Google Scholar] [CrossRef]
- Agüero-Hernández, A.L.; Rosales-López, C.; Herrera, C.; Vargas-Picado, A.; Muñoz, R.; Abdelnour-Esquivel, A. Hypoglycemic effect of Kalanchoe pinnata (Lam.) Pers. Leaf Extract. Pharmacogn. J. 2020, 12, 557–561. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Z.; Zhao, X.; Xie, H.; Du, L.; Gao, H.; Xie, C. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review. Front. Endocrinol. 2022, 13, 990299. [Google Scholar] [CrossRef]
- de-Araújo, E.; Guerra, G.; Araújo, D.; de Araújo, A.; Fernandes, J.; Júnior, R.D.A.; da Silva, V.; de Carvalho, T.; Ferreira, L.; Zucolotto, S. Gastroprotective and Antioxidant Activity of Kalanchoe brasiliensis and Kalanchoe pinnata Leaf Juices against Indomethacin and Ethanol-Induced Gastric Lesions in Rats. Int. J. Mol. Sci. 2018, 19, 1265. [Google Scholar] [CrossRef]
- Palacz-Wrobel, M.; Borkowska, P.; Paul-Samojedny, M.; Kowalczyk, M.; Fila-Danilow, A.; Suchanek-Raif, R.; Kowalski, J. Effect of apigenin, kaempferol and resveratrol on the gene expression and protein secretion of tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10) in RAW-264.7 macrophages. Biomed. Pharmacother. 2017, 93, 1205–1212. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.C.; Chang, W.T.; Lee, M.S.; Chen, H.Y.; Chen, Y.H.; Lin, C.C.; Lin, M.K. Three bufadienolides induce cell death in the human lung cancer cell line CL1-5 mainly through autophagy. Bioorg Med. Chem. Lett. 2021, 31, 127715. [Google Scholar] [CrossRef]
- Halayal, R.Y.; Bagewadi, Z.K.; Aldabaan, N.A.; Shaikh, I.A.; Khan, A.A. Exploring the therapeutic mechanism of potential phytocompounds from Kalanchoe pinnata in the treatment of diabetes mellitus by integrating network pharmacology, molecular docking and simulation approach. Saudi Pharm. J. 2024, 32, 102026. [Google Scholar] [CrossRef]
- Singh, R.P.; Pattnaik, A.K. Scientific insights into hyperlipidemia mitigation: A profound examination of isolated bioactive fractions of Kalanchoe pinnata (Lam.) leaves and their therapeutic implications using in vitro, in vivo, and in silico study from the characterized compounds using HPTLC MS/MS analysis. Pharmacogn. Mag. 2024, 20, 863–876. [Google Scholar]
- Menon, N.; Sparks, J.; Omoruyi, F. Hypoglycemic and Hypocholesterolemic Activities of the Aqueous Preparation of Kalanchoe pinnata Leaves in Streptozotocin-induced Diabetic Rats. Asian Pac. J. Trop. Biomed. 2015, 5, 3–9. [Google Scholar] [CrossRef]
- Matthew, S.; Singh, D.; Jaiswal, S.; Jayakar, M.K.B.; Bhowmik, D. Antidiabetic activity of Kalanchoe pinnata (Lam.) Pers. in alloxan-induced diabetic rats. J. Chem. Pharm. Sci. 2013, 6, 1–7. [Google Scholar]
- Ojewole, J.A.O. Antinociceptive, anti-inflammatory and antidiabetic effects of Bryophyllum pinnatum (Crassulaceae) leaf aqueous extract. J. Ethnopharmacol. 2005, 99, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.B.; Dongare, V.R.; Kulkarni, C.R.; Joglekar, M.M.; Arvindekar, A.U. Antidiabetic activity of Kalanchoe pinnata in streptozotocin-induced diabetic rats by glucose-independent insulin secretagogue action. Pharm. Biol. 2013, 51, 1411–1418. [Google Scholar] [CrossRef]
- Ramon, P.; Sparks, J.; Omoruyi, F. Effect of Combined K. pinnata and Metformin Preparation on Inflammatory Cytokines in Normal and Diabetic Skeletal Muscle Cells. J. Med. Food. 2021, 24, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Benjamin, B. Screening methods for the evaluation of anti-hyperlipidemic drugs. In Introduction to Basics of Pharmacology and Toxicology; Lakshmanan, M., Shewade, D.G., Raj, G.M., Eds.; Springer: Singapore, 2022; pp. 363–369. [Google Scholar]
- Kader, M.A.; Rahman, M.M.; Mahmud, S.; Khan, M.S.; Mukta, S.; Zohora, F.T. A comparative study on the anti-hyperlipidemic and antibacterial potency of the shoot and flower extracts of Melastoma malabathricum Linn’s. Clin. Phytosci. 2023, 9, 5. [Google Scholar] [CrossRef]
- Singh, R.; Nain, S. Anti-hyperlipidemic activity of ethanolic and aqueous extracts of Asparagus racemosus and Chlorophytum borivilianum leaves in albino rats. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2023, 93, 431–441. [Google Scholar] [CrossRef]
- Goyal, P.; Jain, N.; Panwar, N.S.; Singh, G.K.; Nagori, B.P. Investigation of hypoglycemic and antidiabetic activities of ethanol extracts of Kalanchoe pinnata leaves in streptozocin-induced diabetic rats. Int. J. Pharm. Toxicol. Sci. 2013, 3, 9–18. [Google Scholar]
- Abchir, O.; Yamari, I.; Nour, H.; Daoui, O.; Elkhattabi, S.; Errougui, A.; Chtita, S. Structure-based Virtual Screening, ADMET analysis, and molecular dynamics simulation of Moroccan natural compounds as candidates α-amylase inhibitors. ChemistrySelect 2023, 8, e202301092. [Google Scholar] [CrossRef]
- Menon, N.; Sparks, J.; Omoruyi, F.O. Oxidative Stress Parameters and Erythrocyte Membrane Adenosine Triphosphatase Activities in Streptozotocin-induced Diabetic Rats Administered Aqueous Preparation of Kalanchoe pinnata Leaves. Pharmacogn. Res. 2016, 8, 85–88. [Google Scholar]
- Hansen, B.F.; Danielsen, G.M.; Drejer, K.; Sørensen, A.R.; Wiberg, F.C.; Klein, H.H.; Lundemose, A.G. Sustained signaling from the insulin receptor after stimulation with insulin analogues exhibiting increased mitogenic potency. Biochem. J. 1996, 315, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B. Teaching the basics of redox biology to medical and graduate students: Oxidants, antioxidants and disease mechanisms. Redox Biol. 2013, 1, 244–257. [Google Scholar] [CrossRef]
- Phung, C.D.; Ezieme, J.A.; Turrens, J.F. Hydrogen peroxide metabolism in skeletal muscle mitochondria. Arch. Biochem. Biophys. 1994, 315, 479–482. [Google Scholar] [CrossRef]
- Saeed, K.; Chughtai, M.F.J.; Khaliq, A.; Liaqat, A.; Mehmood, T.; Khalid, M.Z.; Kasongo, E.L.M. Impact of extraction techniques and process optimization on antioxidant and antibacterial potential of Kalanchoe pinnata leaf extract. Int. J. Food Prop. 2024, 27, 909–926. [Google Scholar] [CrossRef]
- Tajudin, N.J.; Ismail, I.N. Antimicrobial Activity of Kalanchoe pinnata: A review. MJoSHT 2022, 8, 31–37. [Google Scholar] [CrossRef]
- Al-Jumaili, M.H.; Siddique, F.; Abul Qais, F.; Hashem, H.E.; Chtita, S.; Rani, A.; Uzair, M.; Almzaien, K.A. Analysis and prediction pathways of natural products and their cytotoxicity against HeLa cell line protein using docking, molecular dynamics and ADMET. JBSD 2023, 41, 765–777. [Google Scholar] [CrossRef]
- de-Araujo, E.R.D.; Felix-Silva, J.; Xavier-Santos, J.B.; Fernandes, J.M.; Guerra, G.C.B.; de Araujo, A.A.; de Souza Araújo, D.F.; de Santis Ferreira, L.; da Silva Júnior, A.A.; de Freitas Fernandes-Pedrosa, M.; et al. Local anti-inflammatory activity: Topical formulation containing Kalanchoe brasiliensis and Kalanchoe pinnata leaf aqueous extract. Biomed. Pharmacother. 2019, 113, 108721. [Google Scholar] [CrossRef]
- Hamim, S.I.; Roney, M.; Uddin, M.N.; Issahaku, A.R.; Chhando, K.S.; Aluwi, M.F.; Omar, N.A. Investigating the potential compounds of Kalanchoe pinnata plant for the treatment of Inflammation utilizing molecular docking and molecular dynamic simulation approach. Silico Res. Biomed. 2025, 1, 100007. [Google Scholar] [CrossRef]
- Steinbacher, P.; Eckl, P. Impact of oxidative stress on exercising skeletal muscle. Biomolecules 2015, 5, 356–377. [Google Scholar] [CrossRef]
- Haraldsen, G.; Kvale, D.; Lien, B.; Farstad, I.N.; Brandtzaeg, P. Cytokine-regulated expression of E-selectin, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human microvascular endothelial cells. J. Immunol. 1996, 156, 2558–2563. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Luo, C.; Li, X.; Zhou, Y.; He, H. The anti-inflammatory effect of kaempferol on early atherosclerosis in high cholesterol fed rabbits. Lipids Health Dis. 2013, 12, 115. [Google Scholar] [CrossRef]
- Lowenstein, C.; Matsushita, K. The acute phase response and atherosclerosis. Drug Discov. Today Dis. Mech. 2004, 1, 17–22. [Google Scholar] [CrossRef]
- Hernández-Caballero, M.E.; Sierra-Ramírez, J.A.; Villalobos-Valencia, R.; Seseña-Méndez, E. Potential of Kalanchoe pinnata as a Cancer Treatment Adjuvant and an Epigenetic Regulator. Molecules 2022, 27, 6425. [Google Scholar] [CrossRef] [PubMed]
- Oufir, M.; Seiler, C.; Gerodetti, M.; Gerber, J.; Fürer, K.; Mennet-von Eiff, M.; Elsas, S.M.; Brenneisen, R.; von Mandach, U.; Hamburger, M.; et al. Quantification of bufadienolides in Bryophyllum pinnatum leaves and manufactured products by UHPLC-ESIMS/MS. Planta Medica 2015, 81, 1190–1197. [Google Scholar] [CrossRef]
- Stefanowicz-Hajduk, J.; Hering, A.; Gucwa, M.; Hałasa, R.; Soluch, A.; Kowalczyk, M.; Stochmal, A.; Ochocka, R. Biological activities of leaf extracts from selected Kalanchoe species and their relationship with bufadienolides content. Pharm. Biol. 2020, 58, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Yadav, N.P.; Dixit, V.K. Hepatoprotective activity of leaves of Kalanchoe pinnata Pers. J. Ethnopharmacol. 2003, 86, 197–202. [Google Scholar] [CrossRef]
- Bigoniya, P.; Sohgaura, A.K.; Shrivastava, B. Antilithiatic effect of C. dactylon, E. officinalis, K. pinnata, and B. nutans ethyl acetate fraction on glyoxylate-induced nephrolithiasis. FJPS 2021, 7, 79. [Google Scholar] [CrossRef]
- Priya, F.J.; Leemarose, A.; Vidhya, S.; Arputharaj, A.; Akshana, S.; Fathima, U.R. A New Frontier Drug Development in Nanomedicine and Its Anti-urolithiatic Activity of Kalanchoe pinnata. Orient. J. Chem. 2021, 37, 444–449. [Google Scholar] [CrossRef]
- Ranaweera, S.; Weerasinghe, S.; Tarannum, F.; Walters, K.B. Inhibition and dissolution of calcium oxalate crystals and kidney stones by the extract of Kalanchoe pinnata. J. Med. Plants Res. 2023, 17, 201–217. [Google Scholar] [CrossRef]
- Ehi-Omosun, M.B.; Etunim, S.C. Effects of Aqueous Leaf Extract of Kalanchoe pinnata on Bifenthrin-Induced Injury in the Lungs of the Adult Wistar Rat. JASEM 2023, 27, 1159–1164. [Google Scholar]
- Martins Fernandes Pereira, K.; de Carvalho, A.C.; Fernandes, B.H.V.; Grecco, S.D.S.; Rodrigues, E.; Fernandes, M.J.D.S.; de Carvalho, L.R.S.; Nakamura, M.U.; Guo, S.; Hernández, R.B. Systems toxicology studies reveal important insights about chronic exposure of zebrafish to Kalanchoe pinnata (Lam.) Pers leaf—KPL: Implications for medicinal use. J. Ethnopharmacol. 2025, 338, 119044. [Google Scholar] [CrossRef]
- Kolodziejczyk-Czepas, J.; Stochmal, A. Bufadienolides of Kalanchoe species: An overview of chemical structure, biological activity and prospects for pharmacological use. Phytochem. Rev. 2017, 16, 1155–1171. [Google Scholar] [CrossRef] [PubMed]
- Saravanan, V.; Murugan, S.S.; Navaneetha Krishnan, K.R.; Mohana, N.; Sakthive, K.; Sathya, T.N. Toxicological assessment of ethanolic leaves extract of Kalanchoe pinnata in rats. Indian. J. Forensic. Med. Toxicol. 2021, 15, 615–622. [Google Scholar] [CrossRef]
- Bhavsar, S.; Chandel, D. Cytotoxic and genotoxic effects of Kalanchoe pinnata (Lam.) Pers. fresh leaf juice in the cultured human blood lymphocytes. Drug. Chem. Toxicol. 2022, 45, 360–366. [Google Scholar] [CrossRef]
- Ghosh, S.; Manchala, S.; Raghunath, M.; Sharma, G.; Singh, A.K.; Sinha, J.K. Role of Phytomolecules in the Treatment of Obesity: Targets, Mechanisms and Limitations. Curr. Top. Med. Chem. 2021, 21, 863–877. [Google Scholar] [CrossRef]
- Wiesmüller, L.; Ford, J.M.; Schiestl, R.H. DNA Damage, Repair, and Diseases. J. Biomed. Biotechnol. 2002, 2, 45. [Google Scholar] [CrossRef]
- Bi, Q.R.; Hou, J.J.; Qi, P.; Ma, C.H.; Shen, Y.; Feng, R.H.; Yan, B.P.; Wang, J.W.; Shi, X.J.; Zheng, Y.Y.; et al. Venenum Bufonis induces rat neuroinflammation by activiating NF-κB pathway and attenuation of BDNF. J. Ethnopharmacol. 2016, 186, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Zhang, W.; Iqbal, Z.; Li, X.; Lin, Z.; Wu, Z.; Li, Q.; Dong, H.; Zhang, X.; Gong, P.; et al. Rod-shaped mesoporous silica nanoparticles reduce bufalin cardiotoxicity and inhibit colon cancer by blocking lipophagy. Lipids Health Dis. 2024, 23, 318. [Google Scholar] [CrossRef]
- Lin, R.; Ye, Q.; He, Q.; Kim, D.S.; Chen, D.; Jin, L.; Wang, W.; Li, J. Mechanistic analysis of anti-prostate cancer and toxicity-reducing effects of bufadienolides extracts: Comparative efficacy and safety with isolated bioactive compounds. J. Ethnopharmacol. 2025, 352, 120182. [Google Scholar] [CrossRef]
- Moreno, Y.; Banuls, L.; Urban, E.; Gelbcke, M.; Dufrasne, F.; Kopp, B.; Kiss, R.; Zehl, M. Structure-activity relationship analysis of bufadienolide-induced in vitro growth inhibitory effects on mouse and human cancer cells. J. Nat. Prod. 2013, 76, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lonard, D.M.; Yu, Y.; Chow, D.C.; Palzkill, T.G.; Wang, J.; Qi, R.; Matzuk, A.J.; Song, X.; Madoux, F.; et al. Bufalin is a potent small-molecule inhibitor of the steroid receptor coactivators SRC-3 and SRC-1. Cancer Res. 2014, 74, 1506–1517. [Google Scholar] [CrossRef]
- Wang, Z.J.; Sun, L.; Heinbockel, T. Resibufogenin and cinobufagin activate central neurons through an ouabain-like action. PLoS ONE 2014, 9, e113272. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Li, B.; Li, H.; Gao, L.; Zhang, C.; Sheng, H.; Zhu, L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021, 27, 51. [Google Scholar] [CrossRef]
- Gardiner, P.; Filippelli, A.C.; Low Dog, T. Prescribing botanicals. In Integrative Medicine, 4th ed.; Rakel, D., Ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 979–985. [Google Scholar]
Reference(s) | Bioactive Compound | Mechanism of Antidiabetic Activity |
---|---|---|
Ozsoy et al., 2020 [19] | Quercetin |
|
Liu et al., 2014 [20] | EGCG |
|
Williams et al., 2004 [21] | Avicularin |
|
Agüero-Hernández et al., 2020 [24] Yang et al., 2022 [25] de-Araújo et al., 2018 [26] Palacz-Wrobel et al., 2017 [27] | Kaempferol |
|
Palacz-Wrobel et al., 2017 [27] | Apigenin |
|
Huang et al., 2021 [28] | Bufadienolides |
|
Reference | Concentration/Doses | Observed Effects | Potential Benefits/Adverse Effects | |
---|---|---|---|---|
1. | Halayal et al., 2024 [29] | In vitro: 0.0–40 µg/mL methanolic extract on 1% starch digestion with time. | Inhibition of alpha-amylase and alpha-glucosidase enzymes. | Potential therapeutic properties of K. pinnata in diabetes management. |
2. | Singh et al., 2024 [30] | 0.5% of K. pinnata extract administered to mice for 1 week. | Reduction in lipid levels. | Mitigation of hyperlipidemia and related metabolic disorders associated with diabetes. |
3. | Menon et al., 2015 [31] | Aqueous K. pinnata leaves 0.14 g/Kg body weight administered to diabetic rats for 4 weeks. | Reduced body weight, blood glucose, cholesterol, IL-6, and increased BUN, IL-1β and TNF-α. | Management of glucose and cholesterol levels in diabetes. |
4. | Matthew et al., 2013 [32] | Ethanolic and aqueous extracts of K. pinnata stem 300 & 600 mg/Kg body weight) were administered to diabetic rats for 12 days. In vitro: 0.063% & 0.125% ethanolic and aqueous extract on 1% starch digestion with time. | Decreased blood glucose levels occurred in a dose-dependent manner. α-amylase inhibition, but the ethanolic extract was more effective. | Anti-hyperglycemic activity. |
5. | Ojewole, 2005 [33] | Aqueous leaf extract of K. pinnata was administered to diabetic rats at 25–800 mg/Kg body weight and monitored for 8 h. | Reduced blood glucose levels. | Hypoglycemic properties. |
6. | Patil et al., 2013 [34] | Dichloromethane extract of K. pinnata leaves was administered to diabetic rats for 45 days. In vitro: rat pancreatic cells treated with 10 µg/mL of K. pinnata for 1 h. | Decreased glucose, glycated hemoglobin, lipid profiles & insulin levels. Increased insulin secretion com Parable to glibenclamide 10 µg/mL. | Effective in the therapy of diabetes. |
7. | Ramon et al., 2023 [16] & Ramon et al., 2021 [35] | In vitro: Diabetic and non-diabetic skeletal muscle cells treated with combined K. pinnata and metformin preparations with combinatorial ratios varying from 5.0 mM metformin-only and 400 µg/mL of K. pinnata-only for 72 h. | Improved oxidative stress, downregulation of IL-6, and may promote inflammation. | May improve diabetes management and potential adverse effects in diabetes care. Immune-modulating activity that may promote beneficial or adverse effects. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Omoruyi, F.; Tatina, L.; Rios, L.; Stennett, D.; Sparks, J. Insights into the Therapeutic Use of Kalanchoe pinnata Supplement in Diabetes Mellitus. Pharmaceuticals 2025, 18, 1518. https://doi.org/10.3390/ph18101518
Omoruyi F, Tatina L, Rios L, Stennett D, Sparks J. Insights into the Therapeutic Use of Kalanchoe pinnata Supplement in Diabetes Mellitus. Pharmaceuticals. 2025; 18(10):1518. https://doi.org/10.3390/ph18101518
Chicago/Turabian StyleOmoruyi, Felix, Lauren Tatina, Lizette Rios, Dewayne Stennett, and Jean Sparks. 2025. "Insights into the Therapeutic Use of Kalanchoe pinnata Supplement in Diabetes Mellitus" Pharmaceuticals 18, no. 10: 1518. https://doi.org/10.3390/ph18101518
APA StyleOmoruyi, F., Tatina, L., Rios, L., Stennett, D., & Sparks, J. (2025). Insights into the Therapeutic Use of Kalanchoe pinnata Supplement in Diabetes Mellitus. Pharmaceuticals, 18(10), 1518. https://doi.org/10.3390/ph18101518