Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath)
Abstract
1. Introduction
2. Results
2.1. UHPLC-HRMS Profiling
2.1.1. Phenolic Acids in E. spiculifolia Extract
2.1.2. Triterpene Acids in E. spiculifolia Extract
2.1.3. Flavonoids in E. spiculifolia Extract
2.2. Cytotoxicity Activity
3. Materials and Methods
3.1. Plant Material
3.2. Sample Extraction
3.3. Chemicals
3.4. UHPLC-HRMS
3.5. Semi-Quantitative Relative Approach
3.6. Cell Lines
3.7. MTT Colorimetric Assay
3.8. Statistical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Available online: https://www.worldfloraonline.org (accessed on 10 September 2024).
- Fagúndez, J.; Izco, J. Seed Morphology and Systematics of the European Species of Erica L. Sect. Gypsocallis Salisb. (Ericaceae). Plant Biosyst.—Int. J. Deal. All Asp. Plant Biol. 2011, 145, 182–190. [Google Scholar] [CrossRef]
- Pavlovic, R.D.; Doslov-Kokorus, Z.; Lakusic, B.; Kovacevic, N. Arbutin Content and Antioxidant Activity of Some Ericaceae Species. Pharmazie 2009, 64, 656–659. [Google Scholar] [CrossRef] [PubMed]
- Dragićević, A.; Matejić, J.; Kovačević, N.; Dobrić, S.; Pavlović, D. Antioxidative and Anti-Inflammatory Study on the Ethanolic Extract of the Root of Bruckentalia spiculifolia (Salisb.) Reichb. Biol. Nyssana 2024, 15, 37–45. [Google Scholar] [CrossRef]
- Pavlović, D.R.; Tasić-Kostov, M.; Marčetić, M.; Lakušić, B.; Kitić, D.; Savić, S.; Kovačević, N. Evaluation of in Vivo Effects on Surfactant-Irritated Human Skin, Antioxidant Properties and Phenolic Composition of Five Ericaceae Species Extracts. Riv. Ital. Delle Sostanze Grasse 2013, 90, 255–264. [Google Scholar]
- Gevrenova, R.; Szakiel, A.; Pączkowski, C.; Zengin, G.; Kurt-Celep, I.; Stefanova, A.; Zheleva-Dimitrova, D. Erica Spiculifolia Salisb. (Balkan Heath): A Focus on Metabolic Profiling and Antioxidant and Enzyme Inhibitory Properties. Plants 2025, 14, 1648. [Google Scholar] [CrossRef]
- Mitic, V.D.; Ilic, M.D.; Stankov-Jovanovic, V.P.; Stojanovic, G.S.; Dimitrijevic, M.V. Essential Oil Composition of Erica spiculifolia Salisb—First Report. Nat. Prod. Res. 2018, 32, 222–224. [Google Scholar] [CrossRef]
- Martín-Cordero, C.; Reyes, M.; Ayuso, M.J.; Toro, V. Cytotoxic Triterpenoids from Erica Andevalensis. Z. Naturforschung C 2001, 56, 45–48. [Google Scholar] [CrossRef]
- Khwaza, V.; Oyedeji, O.O.; Aderibigbe, B.A. Ursolic Acid-Based Derivatives as Potential Anti-Cancer Agents: An Update. Int. J. Mol. Sci. 2020, 21, 5920. [Google Scholar] [CrossRef]
- Caleja, C.; Finimundy, T.C.; Pereira, C.; Barros, L.; Calhelha, R.C.; Sokovic, M.; Ivanov, M.; Carvalho, A.M.; Rosa, E.; Ferreira, I.C.F.R. Challenges of Traditional Herbal Teas: Plant Infusions and Their Mixtures with Bioactive Properties. Food Funct. 2019, 10, 5939–5951. [Google Scholar] [CrossRef]
- Veličković, V.; Đurović, S.; Radojković, M.; Cvetanović, A.; Švarc-Gajić, J.; Vujić, J.; Trifunović, S.; Mašković, P.Z. Application of Conventional and Non-Conventional Extraction Approaches for Extraction of Erica Carnea L.: Chemical Profile and Biological Activity of Obtained Extracts. J. Supercrit. Fluids 2017, 128, 331–337. [Google Scholar] [CrossRef]
- Adu-Amankwaah, F.; Tapfuma, K.I.; Hussan, R.H.; Tshililo, N.; Baatjies, L.; Masiphephethu, M.V.; Mabasa, L.; Mavumengwana, V. Cytotoxic Activity of Cape Fynbos against Triple-Negative Breast Cancer Cell Line. South Afr. J. Bot. 2022, 150, 702–710. [Google Scholar] [CrossRef]
- Wahle, K.W.J.; Brown, I.; Rotondo, D.; Heys, S.D. Plant Phenolics in the Prevention and Treatment of Cancer. In Bio-Farms for Nutraceuticals; Giardi, M.T., Rea, G., Berra, B., Eds.; Advances in Experimental Medicine and Biology; Springer: Boston, MA, USA, 2010; Volume 698, pp. 36–51. ISBN 978-1-4419-7346-7. [Google Scholar]
- Mir, S.A.; Dar, A.; Hamid, L.; Nisar, N.; Malik, J.A.; Ali, T.; Bader, G.N. Flavonoids as Promising Molecules in the Cancer Therapy: An Insight. Curr. Res. Pharmacol. Drug Discov. 2024, 6, 100167. [Google Scholar] [CrossRef] [PubMed]
- Sumner, L.W.; Amberg, A.; Barrett, D.; Beale, M.H.; Beger, R.; Daykin, C.A.; Fan, T.W.-M.; Fiehn, O.; Goodacre, R.; Griffin, J.L.; et al. Proposed Minimum Reporting Standards for Chemical Analysis: Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). Metabolomics 2007, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Gevrenova, R.; Zheleva-Dimitrova, D.; Balabanova, V.; Voynikov, Y.; Sinan, K.I.; Mahomoodally, M.F.; Zengin, G. Integrated Phytochemistry, Bio-Functional Potential and Multivariate Analysis of Tanacetum macrophyllum (Waldst. & Kit.) Sch.Bip. and Telekia speciosa (Schreb.) Baumg. (Asteraceae). Ind. Crops Prod. 2020, 155, 112817. [Google Scholar] [CrossRef]
- Gevrenova, R.; Zengin, G.; Sinan, K.I.; Zheleva-Dimitrova, D.; Balabanova, V.; Kolmayer, M.; Voynikov, Y.; Joubert, O. An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary). Plants 2022, 12, 22. [Google Scholar] [CrossRef]
- Clifford, M.N.; Wu, W.; Kirkpatrick, J.; Kuhnert, N. Profiling the Chlorogenic Acids and Other Caffeic Acid Derivatives of Herbal Chrysanthemum by LC−MSn. J. Agric. Food Chem. 2007, 55, 929–936. [Google Scholar] [CrossRef]
- De Vijlder, T.; Valkenborg, D.; Lemière, F.; Romijn, E.P.; Laukens, K.; Cuyckens, F. A Tutorial in Small Molecule Identification via Electrospray Ionization-mass Spectrometry: The Practical Art of Structural Elucidation. Mass Spectrom. Rev. 2018, 37, 607–629. [Google Scholar] [CrossRef]
- Wolfender, J.-L.; Marti, G.; Thomas, A.; Bertrand, S. Current Approaches and Challenges for the Metabolite Profiling of Complex Natural Extracts. J. Chromatogr. A 2015, 1382, 136–164. [Google Scholar] [CrossRef]
- Li, S.; Wan, C.; He, L.; Yan, Z.; Wang, K.; Yuan, M.; Zhang, Z. Rapid Identification and Quantitative Analysis of Chemical Constituents of Gentiana Veitchiorum by UHPLC-PDA-QTOF-MS. Rev. Bras. Farmacogn. 2017, 27, 188–194. [Google Scholar] [CrossRef]
- Gevrenova, R.; Bardarov, K.; Bouguet-Bonnet, S.; Voynikov, Y.; Balabanova, V.; Zheleva-Dimitrova, D.; Henry, M. A New Liquid Chromatography-High Resolution Orbitrap Mass Spectrometry-Based Strategy to Characterize Glucuronide Oleanane-Type Triterpenoid Carboxylic Acid 3, 28-O-Bidesmosides (GOTCAB) Saponins.A Case Study of Gypsophila glomerata Pall Ex M. B. (Caryophyllaceae). J. Pharm. Biomed. Anal. 2018, 159, 567–581. [Google Scholar] [CrossRef]
- Sandjo, L.P.; Nascimento, M.V.P.D.S.; Da Silva, L.A.L.; Munhoz, A.C.M.; Pollo, L.A.E.; Biavatti, M.W.; Ngadjui, B.T.; Opatz, T.; Fröde, T.S. ESI-MS2 and Anti-inflammatory Studies of Cyclopropanic Triterpenes. UPLC-ESI-MS and MS2 Search of Related Metabolites from Donella ubanguiensis. Phytochem. Anal. 2017, 28, 27–41. [Google Scholar] [CrossRef]
- Sun, X.; Xue, S.; Cui, Y.; Li, M.; Chen, S.; Yue, J.; Gao, Z. Characterization and Identification of Chemical Constituents in Corni Fructus and Effect of Storage Using UHPLC-LTQ-Orbitrap-MS. Food Res. Int. 2023, 164, 112330. [Google Scholar] [CrossRef]
- Ngoc, P.H.; An, T.C.; Hiep, N.T.; Nhu, T.P.H.; Hung, L.N.; Trung, N.Q.; Minh, B.Q.; Van Trung, P. UHPLC-Q-TOF-MS/MS-guided Dereplication to Study Chemical Constituents of Hedera Nepalensis Leaves in Northern Vietnam. J. Anal. Sci. Technol. 2023, 14, 14. [Google Scholar] [CrossRef]
- Ayatollahi, A.M.; Ghanadian, M.; Afsharypour, S.; Abdella, O.M.; Mirzai, M.; Askari, G. Pentacyclic Triterpenes in Euphorbia microsciadia with Their T-Cell Proliferation Activity. Iran J. Pharm. Res. 2011, 10, 287–294. [Google Scholar] [PubMed]
- Chen, Q.; Zhang, Y.; Zhang, W.; Chen, Z. Identification and Quantification of Oleanolic Acid and Ursolic Acid in Chinese Herbs by Liquid Chromatography-Ion Trap Mass Spectrometry: Oleanolic Acid and Ursolic Acid LC-ESI-MS. Biomed. Chromatogr. 2011, 25, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Maciel, L.L.F.; Silva, M.B.; Moreira, R.O.; Cardoso, A.P.; Fernandes, C.; Horn, A.; De Aquino Almeida, J.C.; Kanashiro, M.M. In Vitro and In Vivo Relevant Antineoplastic Activity of Platinum(II) Complexes toward Triple-Negative MDA-MB-231 Breast Cancer Cell Line. Pharmaceutics 2022, 14, 2013. [Google Scholar] [CrossRef] [PubMed]
- Milliana, A.; Sari, R.A.; Miranda, S.A.; Mutiah, R. Evaluation of Anticancer Activity and Mechanism of Action of Myricetin on HeLa, T47D, and Vero Cells: Comparative Analysis with Cisplatin and Doxorubicin. Biomed. Pharmacol. J. 2025, 18, 835–847. [Google Scholar] [CrossRef]
- Tronina, T.; Bartmańska, A.; Popłoński, J.; Rychlicka, M.; Sordon, S.; Filip-Psurska, B.; Milczarek, M.; Wietrzyk, J.; Huszcza, E. Prenylated Flavonoids with Selective Toxicity against Human Cancers. Int. J. Mol. Sci. 2023, 24, 7408. [Google Scholar] [CrossRef]
- Jaganathan, S.K. Events Associated with Apoptotic Effect of P-Coumaric Acid in HCT-15 Colon Cancer Cells. World J. Gastroenterol. 2013, 19, 7726. [Google Scholar] [CrossRef]
- Mariadoss, A.V.A.; Saravanakumar, K.; Sathiyaseelan, A.; Karthikkumar, V.; Wang, M.-H. Smart Drug Delivery of P-Coumaric Acid Loaded Aptamer Conjugated Starch Nanoparticles for Effective Triple-Negative Breast Cancer Therapy. Int. J. Biol. Macromol. 2022, 195, 22–29. [Google Scholar] [CrossRef]
- Fási, L.; Gonda, T.; Tóth, N.; Vass, M.; Gyovai, A.; Nagy, V.; Ocsovszki, I.; Zupkó, I.; Kúsz, N.; Nové, M.; et al. Preparation of Dearomatized p-Coumaric Acid Derivatives as DNA Damage Response Inhibitors with Potent In Vitro Antitumor Effect. ChemMedChem 2024, 19, e202300675. [Google Scholar] [CrossRef] [PubMed]
- Tehami, W.; Nani, A.; Khan, N.A.; Hichami, A. New Insights into the Anticancer Effects of p -Coumaric Acid: Focus on Colorectal Cancer. Dose-Response 2023, 21, 15593258221150704. [Google Scholar] [CrossRef] [PubMed]
- Sen, A.; Atmaca, P.; Terzioglu, G.; Arslan, S. Anticarcinogenic Effect and Carcinogenic Potential of the Dietary Phenolic Acid: O-Coumaric Acid. Nat. Prod. Commun. 2013, 8, 1934578X1300800922. [Google Scholar] [CrossRef]
- Yan, S.; Huang, C.; Wu, S.; Yin, M. Oleanolic Acid and Ursolic Acid Induce Apoptosis in Four Human Liver Cancer Cell Lines. Toxicol. Vitr. 2010, 24, 842–848. [Google Scholar] [CrossRef]
- Shyu, M.-H.; Kao, T.-C.; Yen, G.-C. Oleanolic Acid and Ursolic Acid Induce Apoptosis in HuH7 Human Hepatocellular Carcinoma Cells through a Mitochondrial-Dependent Pathway and Downregulation of XIAP. J. Agric. Food Chem. 2010, 58, 6110–6118. [Google Scholar] [CrossRef]
- Wu, L.; Pu, Q.; Chen, X.; He, K. Inhibiting Effect of Oleanolic Acid on Ovarian Carcinomas IGROV1 and Breast Cancer Cell Line MDA-MB-231: Inhibiting Effect of Oleanolic Acid on Ovarian Carcinomas IGROV1 and Breast Cancer Cell Line MDA-MB-231. Chin. J. Appplied Environ. Biol. 2010, 16, 202–204. [Google Scholar] [CrossRef]
- Lúcio, K.A.; Rocha, G.D.G.; Monção-Ribeiro, L.C.; Fernandes, J.; Takiya, C.M.; Gattass, C.R. Oleanolic Acid Initiates Apoptosis in Non-Small Cell Lung Cancer Cell Lines and Reduces Metastasis of a B16F10 Melanoma Model In Vivo. PLoS ONE 2011, 6, e28596. [Google Scholar] [CrossRef]
- Kassi, E.; Sourlingas, T.G.; Spiliotaki, M.; Papoutsi, Z.; Pratsinis, H.; Aligiannis, N.; Moutsatsou, P. Ursolic Acid Triggers Apoptosis and Bcl-2 Downregulation in MCF-7 Breast Cancer Cells. Cancer Investig. 2009, 27, 723–733. [Google Scholar] [CrossRef]
- Kim, K.H.; Seo, H.S.; Choi, H.S.; Choi, I.; Shin, Y.C.; Ko, S.-G. Induction of Apoptotic Cell Death by Ursolic Acid through Mitochondrial Death Pathway and Extrinsic Death Receptor Pathway in MDA-MB-231 Cells. Arch. Pharm. Res. 2011, 34, 1363–1372. [Google Scholar] [CrossRef]
- Wang, J.; Ren, T.; Xi, T. Ursolic Acid Induces Apoptosis by Suppressing the Expression of FoxM1 in MCF-7 Human Breast Cancer Cells. Med. Oncol. 2012, 29, 10–15. [Google Scholar] [CrossRef]
- Zhao, C.; Yin, S.; Dong, Y.; Guo, X.; Fan, L.; Ye, M.; Hu, H. Autophagy-Dependent EIF2AK3 Activation Compromises Ursolic Acid-Induced Apoptosis through Upregulation of MCL1 in MCF-7 Human Breast Cancer Cells. Autophagy 2013, 9, 196–207. [Google Scholar] [CrossRef]
- Luo, J.; Hu, Y.-L.; Wang, H. Ursolic Acid Inhibits Breast Cancer Growth by Inhibiting Proliferation, Inducing Autophagy and Apoptosis, and Suppressing Inflammatory Responses via the PI3K/AKT and NF-κB Signaling Pathways in Vitro. Exp. Ther. Med. 2017, 14, 3623–3631. [Google Scholar] [CrossRef]
- Chan, E.W.C.; Soon, C.Y.; Tan, J.B.L.; Wong, S.K.; Hui, Y.W. Ursolic Acid: An Overview on Its Cytotoxic Activities against Breast and Colorectal Cancer Cells. J. Integr. Med. 2019, 17, 155–160. [Google Scholar] [CrossRef]
- Xavier, C.P.R.; Lima, C.F.; Preto, A.; Seruca, R.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Luteolin, Quercetin and Ursolic Acid Are Potent Inhibitors of Proliferation and Inducers of Apoptosis in Both KRAS and BRAF Mutated Human Colorectal Cancer Cells. Cancer Lett. 2009, 281, 162–170. [Google Scholar] [CrossRef]
- Shan, J.; Xuan, Y.; Zheng, S.; Dong, Q.; Zhang, S. Ursolic Acid Inhibits Proliferation and Induces Apoptosis of HT-29 Colon Cancer Cells by Inhibiting the EGFR/MAPK Pathway. J. Zhejiang Univ. Sci. B 2009, 10, 668–674. [Google Scholar] [CrossRef]
- Nam, H.; Kim, M.-M. Ursolic Acid Induces Apoptosis of SW480 Cells via P53 Activation. Food Chem. Toxicol. 2013, 62, 579–583. [Google Scholar] [CrossRef]
- Shan, J.; Xuan, Y.; Ruan, S.; Sun, M. Proliferation-Inhibiting and Apoptosis-Inducing Effects of Ursolic Acid and Oleanolic Acid on Multi-Drug Resistance Cancer Cells in Vitro. Chin. J. Integr. Med. 2011, 17, 607–611. [Google Scholar] [CrossRef]
- Günther, A.; Zalewski, P.; Sip, S.; Ruszkowski, P.; Bednarczyk-Cwynar, B. Oleanolic Acid Dimers with Potential Application in Medicine—Design, Synthesis, Physico-Chemical Characteristics, Cytotoxic and Antioxidant Activity. Int. J. Mol. Sci. 2024, 25, 6989. [Google Scholar] [CrossRef]
- Choi, K.-C.; Lee, Y.-H.; Jung, M.G.; Kwon, S.H.; Kim, M.-J.; Jun, W.J.; Lee, J.; Lee, J.M.; Yoon, H.-G. Gallic Acid Suppresses Lipopolysaccharide-Induced Nuclear Factor-κB Signaling by Preventing RelA Acetylation in A549 Lung Cancer Cells. Mol. Cancer Res. 2009, 7, 2011–2021. [Google Scholar] [CrossRef]
- García-Rivera, D.; Delgado, R.; Bougarne, N.; Haegeman, G.; Vanden Berghe, W. Gallic Acid Indanone and Mangiferin Xanthone Are Strong Determinants of Immunosuppressive Anti-Tumour Effects of Mangifera Indica L. Bark in MDA-MB231 Breast Cancer Cells. Cancer Lett. 2011, 305, 21–31. [Google Scholar] [CrossRef]
- Bai, J.; Zhang, Y.; Tang, C.; Hou, Y.; Ai, X.; Chen, X.; Zhang, Y.; Wang, X.; Meng, X. Gallic Acid: Pharmacological Activities and Molecular Mechanisms Involved in Inflammation-Related Diseases. Biomed. Pharmacother. 2021, 133, 110985. [Google Scholar] [CrossRef] [PubMed]
- Cadena-Iñiguez, J.; Santiago-Osorio, E.; Sánchez-Flores, N.; Salazar-Aguilar, S.; Soto-Hernández, R.M.; Riviello-Flores, M.D.L.L.; Macías-Zaragoza, V.M.; Aguiñiga-Sánchez, I. The Cancer-Protective Potential of Protocatechuic Acid: A Narrative Review. Molecules 2024, 29, 1439. [Google Scholar] [CrossRef]
- Sharma, N.; Sharma, A.; Bhatia, G.; Landi, M.; Brestic, M.; Singh, B.; Singh, J.; Kaur, S.; Bhardwaj, R. Isolation of Phytochemicals from Bauhinia Variegata L. Bark and Their In Vitro Antioxidant and Cytotoxic Potential. Antioxidants 2019, 8, 492. [Google Scholar] [CrossRef]
- Ibrahim, I.M.; Abdelmalek, D.H.; Elfiky, A.A. GRP78: A Cell’s Response to Stress. Life Sci. 2019, 226, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chauhan, S.; Tripathi, V. Quinic Acid Attenuates Oral Cancer Cell Proliferation by Downregulating Cyclin D1 Expression and Akt Signaling. Pharmacogn. Mag. 2018, 14, 14. [Google Scholar] [CrossRef]
№ | Identified/Tentatively Annotated Compound | Molecular Formula | Exact Mass [M-H]− | Fragmentation Pattern in (-) ESI-MS/MS | tR (min) | Δ ppm | Level of Confidence [15] | Relative Content [%] |
---|---|---|---|---|---|---|---|---|
Hydroxybenzoic, hydroxycinnamic acids, and phenolic glycosides | ||||||||
1. | gallic acid-hexoside 1 | C13H16O10 | 331.0670 | 331.0670 (100), 313.0548 (0.4), 211.0242 (2.2), 169.0131 (15.1), 151.0024 (27.9), 125.0230 (24.6), 107.0123 (6.8) | 0.73 | −0.060 | 2 | 0.5 |
2. | citric/isocitric acid | C6H8O7 | 191.0197 | 191.0188 (11.0), 173.0079 (2.0), 154.9975 (0.7), 147.0288 (0.7), 129.0179 (6.5), 111.0072 (100) | 0.91 | −4.847 | 2 | 1.0 |
3. | gallic acid-hexoside 2 | C13H16O10 | 331.0670 | 331.0669 (100), 313.0540 (0.4), 211.0241 (1.6), 169.0131 (21.3), 151.0023 (34.1), 125.0230 (28.7), 107.0124 (8.0) | 0.97 | −0.634 | 2 | 1.0 |
4. | arbutin a | C12H16O7 | 271.0823 | 271.0833 (0.9), 151.0388 (6.5), 113.0229 (5.8), 109.0233 (2.2), 108.0202 (100), 85.0279 (8.1), 71.0122 (12.5), 59.0122 (0.5) | 0.98 | 3.630 | 1 | 0.05 |
5. | arbutin-formic acid adduct | C13H18O9 | 317.0878 | 317.0887 (1.5), 271.0824 (48.3), 151.0387 (9.0), 113.0228 (9.9), 109.0282 (7.2), 108.0202 (100), 59.0125 (1.8) | 0.98 | 2.664 | 1 | - |
6. | gallic acid a | C7H6O5 | 169.0142 | 169.0131 (80.4), 151.0024 (100), 125.0229 (22.3), 107.0123 (16.4), 83.0122 (29.1), 65.0016 (13.1) | 1.15 | −6.665 | 1 | 0.04 |
7. | protocatechuic acid-O-hexoside 1 | C13H16O9 | 315.0727 | 315.0725 (3.3), 153.0180 (100), 125.3009 (0.1), 109.0280 (52.0), 108.0201 (93.1) | 1.19 | 1.031 | 2 | 0.3 |
8. | gallic acid-hexoside 3 | C13H16O10 | 331.0670 | 331.0670 (100), 313.0563 (5.7), 211.0242 (2.2), 169.0118 (4.5), 168.0052 (29.4), 125.0231 (30.1), 107.0125 (0.5) | 1.21 | −0.241 | 2 | 0.3 |
9. | hydroxybenzoic acid-O-hexoside 1 | C13H16O8 | 299.0778 | 299.0753 (0.3), 137.0230 (100), 93.0330 (68.5) | 1.28 | −3.881 | 2 | 0.3 |
10. | protocatechuic acid-O-hexoside 2 | C13H16O9 | 315.0727 | 315.0722 (100), 153.0182 (27.4), 152.0102 (59.6), 123.0076 (2.5), 109.0286 (11.9), 108.0201 (90.8) | 1.67 | 0.047 | 2 | 1.1 |
11. | protocatechuic acid a | C7H6O4 | 153.0181 | 153.0181 (19.2), 109.0280 (100), 91.0173 (0.8), 81.0329 (1.5) | 2.03 | −8.182 | 1 | 1.0 |
12. | hydroxybenzoyl-O-hexose | C13H16O8 | 299.0778 | 299.0771 (100), 239.0557 (18.4), 209.0446 (5.4), 179.0340 (40.6), 137.0231 (84.3), 119.0336 (13.7), 93.0330 (19.4), 85.0280 (6.9), | 2.05 | −0.504 | 2 | 0.19 |
13. | protocatechuic acid-O-hexoside 3 | C13H16O9 | 315.0727 | 315.0731 (35.4), 153.0544 (100), 123.0437 (54.6), 109.0280 (25.4) | 2.12 | 2.872 | 2 | 0.04 |
14. | vanillic acid-O-hexoside | C14H18O9 | 329.0875 | 329.0876 (2.0),167.0338 (100), 152.0102 (21.4), 123.0437 (15.0), 108.0202 (35.0) | 2.12 | −0.654 | 2 | 0.006 |
15. | syringic acid-O-hexoside | C15H20O10 | 359.0985 | 359.0982 (9.2), 239.0554 (0.4), 197.0446 (100), 182.0210 (18.3), 166.9973 (7.4), 153.0544 (14.4), 138.0309 (24.6) | 2.26 | 1.671 | 2 | 0.09 |
16. | protocatechuic acid-O-pentoside | C12H14O8 | 285.0616 | 285.0616 (7.3), 153.0180 (100), 123.0438 (0.7), 109.0279 (48.2) | 2.43 | 0.208 | 2 | 0.07 |
17. | caffeic acid-O-hexoside 1 | C15H18O9 | 341.0871 | 341.0872 (5.0), 179.0339 (100), 135.0437 (58.5), 107.0487 (0.7) | 2.42 | −1.628 | 2 | 0.1 |
18. | p-hydroxyphenylacetic acid a | C8H8O3 | 151.0401 | 151.0388 (7.9), 136.0153 (10.1), 123.436 (67.1), 107.0487 (69.1) | 2.49 | −8.259 | 1 | 0.1 |
19. | 4-hydroxybenzoic acid a | C7H6O3 | 137.0230 | 137.0230 (100), 119.0124 (1.8), 108.0201 (7.4), 93.0330 (3.4), 65.0379 (0.5) | 2.84 | −10.052 | 1 | 1.0 |
20. | 3-hydroxybenzoic acid a | C7H6O3 | 137.0230 | 137.0230 (100), 109.0280 (15.7), 93.0330 (19.4), 65.0379 (0.8) | 2.90 | −11,585 | 1 | 0.9 |
21. | hydroxybenzoic acid-O-hexoside 2 | C13H16O8 | 299.0778 | 299.0772 (2.1), 137.0230 (100), 93.0330 (48.3), 85.0280 (0.8) | 2.99 | 0.102 | 2 | 0.1 |
22. | caffeic acid-O-hexoside 2 | C15H18O9 | 341.0871 | 341.0875 (32.3), 281.0680 (1.0), 251.0557 (0.6), 221.0453 (0.3), 179.0338 (100), 135.0437 (64.8), 107.0487 (0.4) | 3.09 | −0.895 | 2 | 0.08 |
23. | quinic acid | C7H12O6 | 191.0561 | 191.0551 (100), 173.0443 (1.6), 155.0335 (0.4), 127.0386 (3.6), 111.0436 (1.6), 93.0329 (5.8), 85.0278 (18.3) | 3.19 | −5.450 | 2 | 1.0 |
24. | coumaric acid-O-hexoside | C15H18O8 | 325.0930 | 325.0924 (10.8), 163.0388 (100), 145.0282 (6.5), 119.0487 (80.4) | 3.35 | −1.571 | 2 | 1.0 |
25. | caffeic acid a | C9H8O4 | 179.0339 | 179.0337 (22.7), 161.0131 (13.8), 135.0437 (100), 107.0123 (17.5) | 3.54 | −7.105 | 1 | 0.3 |
26. | gentisic acid a | C7H6O4 | 153.0180 | 153.0181 (59.6), 135.0074 (15.9), 125.0233 (0.5), 109.0280 (100), 91.0173 (2.5), 81.0329 (1.3) | 3.79 | −8.051 | 1 | 6.3 |
27. | O-coumaric acid a | C9H8O3 | 163.0389 | 163.0388 (9.6), 119.0487 (100), 93.0331 (1.0) | 4.55 | −7.774 | 1 | 1.8 |
28. | salicylic acid a | C7H6O3 | 137.0230 | 137.0230 (20.4), 108.0201 (3.3), 93.0330 (100), 65.0380 (0.5) | 6.25 | −10.052 | 1 | 3.9 |
Triterpene acids in (-) ESI and (+) ESI | ||||||||
№ | Identified/Tentatively Annotated Compound | Molecular Formula | Exact Mass [M-H]−/[M+H]+ | Fragmentation Pattern in (-) ESI-MS/MS and (+) ESI-MS/MS | tR (min) | Δ ppm | Level of Confidence [15] | Relative Content [%] |
29. | trihydroxy-urs/olean-en-28-oic acid 1 | C30H48O5 | 487.3429 [M-H]− | (-) ESI: 487.3426 (100), 469.3333 (0.2), 409.3123 (0.2), 397.3134 (0.8) (+) ESI: nd | 10.94 | −0.570 | 2 | 0.02 |
30. | trihydroxy-urs/olean-en-28-oic acid 2 | C30H48O5 | 487.3429 [M-H]− | (-) ESI: 487.3429 (100), 469.3320 (99.8), 425.3422 (1.1), 411.2893 (0.7), 379.3004 (0.7) (+) ESI: nd | 13.68 | −0.078 | 2 | 0.05 |
31. | trihydroxy-urs/olean-en-28-oic acid 3 | C30H48O5 | 487.3429 [M-H]− | (-) ESI: 487.3433 (43.5), 469.3303 (2.2), 453.3372 (100), 451.3215 (9.4), 441.3375 (14.6), 439.3214 (1.6), 423.3302 (2.1), 407.3337 (3.9), 405.3155 (1.9), 389.2850 (1.4) (+) ESI: nd | 15.49 | 0.743 | 2 | 0.3 |
32. | trihydroxy-urs/olean-en-28-oic acid 4 | C30H48O5 | 487.3429 [M-H]− | (-) ESI: 487.3427 (100), 469.3315 (2.7), 453.3372 (94.2), 451.3217 (12.1), 441.3378 (8.0), 439.3238 (0.7), 423.3268 (1.6), 407.3325 (8.4) (+) ESI: nd | 15.97 | −0.385 | 2 | 0.3 |
33. | ursa/olean-dien-28-oic acid 1 | C30H46O3 | 455.3520 [M+H]+ | (+) ESI: 455.3520 (100), 437.3418 (41.9), 409.4460 (86.3), 411.3617 (18.5), 391.3354 (11.6), 247.1691 (18.1), 207.1743 (6.5), 203.1796 (28.6), 201.1638 (40.4), 187.1481 (44.1), 173.1326 (15.6), 131.0856 (19.0), 119.0858 (39.6), 107.0860 (39.0), 95.0860 (48.0) (-) ESI: nd | 20.20 | −0.901 | 2 | 5.9 |
34. | ursa/olean-dien-28-oic acid 2 | C30H46O3 | 455.3520 [M+H]+ | (+) ESI: 455.3513 (100), 437.3411 (40.9), 409.3453 (18.2), 391.3357 (6.9), 247.1688 (21.4), 207.1746 (9.9), 203.1795 (21.6), 201.1637 (19.6), 187.1478 (10.1), 173.1322 (9.2), 131.0855 (8.5), 119.0858 (31.1), 107.0859 (31.1), 95.0861 (29.8) (-) ESI: nd | 20.47 | −1.366 | 2 | 4.7 |
35. | ursa/olean-dien-28-oic acid 3 | C30H46O3 | 455.3520 [M+H]+ | (+) ESI: 455.3487 (100), 437.3396 (51.8), 419.3304 (10.9), 409.3445 (2.3), 205.1586 (4.1), 203.1785 (3.5), 189.1637 (14.2), 175.1489 (7.3), 133.1012 (17.1), 119.0858 (22.9), 107.0859 (21.9), 95.0861 (22.6) (-) ESI: nd | 21.08 | −7.141 | 2 | 3.7 |
36. | ursolic acid | C30H48O3 | 457.3676 [M+H]+ | (+) ESI: 457.3672 (87.0), 439.3563 (41.3), 421.3463 (11.3), 411.3615 (100), 393.3514 (3.7), 249.1857 (1.1), 207.1778 (4.4), 189.1635 (13.6), 175.1485 (6.9), 133.1013 (20.2), 119.0858 (18.1), 107.0859 (32.1), 95.0861 (40.9) (-) ESI: nd | 21.18 | −0.502 | 2 | 3.7 |
37. | oleanolic acid | C30H48O3 | 457.3676 [M+H]+ | (+) ESI: 457.3674 (100), 439.3583 (8.3), 421.3470 (4.3), 411.3612 (3.7), 381.3155 (6.3), 203.179 (5.3), 189.164 (5.7), 175.149 (9.7), 133.1011 (13.7), 119.086 (21.7), 95.0861 (40.7) (-) ESI: nd | 21.40 | −0.485 | 1 | 1.2 |
38. | ursa/olean-dien-28-oic acid 4 | C30H46O3 | 455.3520 [M+H]+ | (+) ESI: 455.3514 (100), 437.3407 (16.4), 409.3458 (38.8), 391.3383 (2.1), 249.1846 (5.8), 205.1586 (79.6), 203.1795 (28.9), 189.1635 (12.2), 175.1477 (10.0), 133.1014 (17.7), 119.0858 (24.3), 107.0859 (23.1), 95.0861 (38.7) (-) ESI: nd | 22.07 | −0.835 | 2 | 2.6 |
Flavonoids in (-) ESI and (+) ESI | ||||||||
№ | Identified/Tentatively Annotated Compound | Molecular Formula | Exact Mass [M-H]− | Fragmentation Pattern in (-) ESI-MS/MS and (+) ESI-MS/MS | tR (min) | Δ ppm | Level of Confidence [15] | Relative Content [%] |
39. | (+) catechin a | C15H14O6 | 289.0718 | (-) ESI: 289.0716 (100), 245.0815 (36.6), 203.0705 (15.7), 179.0340 (9.9), 137.0230 (14.3), 123.0437 (24.5), 109.0279 (33.3) (+) ESI: 291.0859 (15.0), 273.0755 (2.1), 249.0754 (1.5), 231.0653 (0.3), 207.0651 (6.4), 165.0546 (19.9), 147.0440 (15.8), 139.0389 (100), 123.0442 (64.7) | 3.12 3.13 | −0.161 −1.287 | 1 | 6.4 |
40. | epicatechin | C15H14O6 | 289.0718 | (-) ESI: 289.0716 (100), 245.0815 (36.7), 203.0706 (16.1), 179.0340 (9.6), 137.0230 (13.3), 123.0437 (22.9), 109.0279 (34.9) (+) ESI: 291.0858 (12.0), 273.0751 (1.9), 249.0752 (1.2), 207.0651 (7.2), 165.0546 (17.6), 147.0440 (18.5), 139.0390 (100), 123.0443 (64.6) | 3.90 3.89 | −0.161 −0.163 | 2 | 11.7 |
41. | rutin a | C27H30O16 | 609.1464 | (-) ESI: 609.1457 (100), 301.0346 (31.6), 300.0273 (55.7), 271.0247 (26.1), 255.0297 (11.2), 243.0291 (5.8), 227.0350 (1.9), 211.0391 (0.5), 199.0394 (0.3), 178.9974 (3.0), 151.0025 (4.6), 107.0123 (1.9) (+) ESI: 611.1579 (2.0), 465.1022 (14.2), 303.0496 (100), 285.0383 (0.7), 257.0442 (2.1), 229.0490 (3.6), 153.0186 (2.7), 137.0233 (3.2), 165.0181 (0.7), | 5.09 5.08 | −0.686 −4.518 | 1 | 2.0 |
42. | isoquercitrin a | C21H20O12 | 463.0886 | (-) ESI: 463.0880 (100), 301.0345 (36.0), 300.0273 (74.1), 271.0246 (32.8), 255.0295 (14.7), 243.0295 (8.8), 227.0343 (2.2), 178.9976 (2.7), 151.0024 (5.8), 121.0280 (1.2), 107.0123 (2.4) (+) ESI: 465.1028 (1.6), 303.0492 (100), 285.0393 (0.5), 257.0449 (2.1), 229.0486 (3.6), 165.0180 (1.5), 153.0179 (3.7), 137.0230 (2.5) | 5.18 5.19 | −0.473 0.188 | 1 | 6.3 |
43. | quercetin O-hexuronide | C21H18O13 | 477.0675 | (-) ESI: 477.0670 (91.2), 301.0351 (100), 245.0442 (2.6), 178.9978 (12.3), 151.0028 (16.9), 121.0281 (9.1), 107.0123 (4.0) (+) ESI: nd | 5.22 | 2 | 0.06 | |
44. | hyperoside a | C21H20O12 | 463.0886 | (-) ESI: 463.0880 (100), 301.0346 (45.0), 300.0274 (75.7), 271.0247 (35.3), 255.0295 (16.5), 243.0293 (9.2), 227.0348 (2.9), 178.9976 (2.6), 151.0024 (4.9), 107.0123 (2.8) (+) ESI: 465.1029 (1.3), 303.0496 (100), 285.0387 (0.6), 257.0437 (2.3), 229.0494 (3.7), 165.0181 (1.8), 153.0183 (3.7), 137.0233 (3.6) | 5.29 5.29 | −0.538 0.403 | 1 | 6.9 |
45. | luteolin O-hexuronide | C21H18O12 | 461.0725 | (-) ESI: 461.0724 (61.2), 285.0403 (100), 257.0449 (0.4), 243.0292 (1.2), 217.0502 (1.3), 199.0388 (2.0), 175.0385 (2.8), 151.0024 (5.2), 133.0281 (8.8), 107.0124 (2.0) (+) ESI: 463.0863 (36.8), 287.0545 (100), 269.0443 (0.3), 241.0483 (0.7), 153.0182 (6.8), 135.0441 (2.3), 137.0233 (0.4) | 5.39 5.38 | −0.215 −1.668 | 2 | 0.2 |
46. | luteolin 7-O-glucoside a | C21H20O11 | 447.0933 | (-) ESI: 447.0930 (100), 285.0401 (82.1), 256.0371 (3.1), 227.0340 (1.0), 217.0509 (0.8), 199.0387 (1.8), 151.0025 (4.9), 133.0280 (3.9), 107.0122 (2.8) (+) ESI: 449.1071 (18.5), 287.0545 (100), 269.0444 (0.4), 241.0483 (0.6), 153.0181 (6.0), 137.0232 (0.5), 135.0440 (2.2) | 5.39 5.39 | −0.592 −1.532 | 1 | 0.7 |
47. | isorhamnetin 3-O-ruinoside a | C28H32O16 | 623.1618 | (-) ESI: 623.1607 (100), 315.0507 (76.7), 300.0263 (13.2), 271.0251 (26.5), 255.0293 (10.1), 243.0296 (14.3), 227.0346 (2.2), 199.0388 (4.2), 151.0029 (1.3) (+) ESI: nd | 5.81 | −1.058 | 1 | 0.1 |
48. | Quercitrin a | C21H20O11 | 447.0933 | (-) ESI: 447.0930 (100), 301.0348 (48.1), 300.0274 (49.3), 271.0246 (24.6), 255.0298 (11.8), 227.0339 (2.0), 178.9974 (3.2), 151.0025 (7.3), 121.0279 (1.9), 107.0123 (2.9) (+) ESI: 449.1075 (2.4), 303.0496 (100), 257.0446 (1.8), 229.0494 (2.8), 165.0181 (1.0), 153.0180 (2.4), 149.0241 (0.6), 137.0233 (2.8) | 5.93 5.94 | −0.592 −0.797 | 1 | 14.0 |
49. | isorhamnetin 3-O-glucoside a | C22H22O12 | 477.1044 | (-) ESI: 477.1036 (100), 315.0505 (9.8), 314.0433 (32.2), 299.0186 (2.0), 271.0245 (16.8), 257.0450 (3.2), 243.0296 (11.8), 199.0398 (2.6), 178.9977 (1.1), 151.0023 (1.3) (+) ESI: nd | 6.06 | −0.501 | 1 | 0.2 |
50. | apigenin 7-O-glucoside a | C21H20O10 | 431.0983 | (-) ESI: 431.0980 (100), 269.0447 (20.1), 240.0422 (3.6), 211.0386 (1.9), 151.0022 (2.3), 117.0331 (0.9), 107.0119 (0.9) (+) ESI: 433.1122 (15.7), 271.0598 (100), 153.0181 (5.3), 121.0288 (0.4), 119.0498 (2.2) | 6.09 6.08 | −0.951 −1.647 | 1 | 0.3 |
51. | kaempferol O-deoxyhexoside | C21H20O11 | 431.0983 | (-) ESI: 431.0979 (100), 285.0400 (79.4), 255.0296 (39.2), 227.0344 (31.3), 211.0394 (2.1), 151.0017 (0.6), 135.0068 (1.0), 107.0120 (1.2) (+) ESI: 433.1137 (0.5), 287.0546 (100), 213.0534 (0.6), 165.0181 (0.6), 153.0178 (3.4), 121.0286 (2.7) | 6.61 6.61 | 1.021 1.817 | 2 | 1.8 |
52. | luteolin a | C15H10O6 | 285.0405 | (-) ESI: 285.0403 (100), 257.0475 (0.1), 241.0505 (0.6), 217.0494 (0.9), 199.0392 (2.1), 175.0389 (3.0), 151.0023 (4.0), 133.0281 (22.7), 107.0124 (4.2) (+) ESI: 287.0546 (100), 269.0441 (0.6), 241.0495 (1.1), 213.0546 (0.2), 179.0337 (0.5), 153.0182 (10.8), 137.0232 (1.1), 135.0441 (4.4) | 7.59 7.59 | −0.566 −1.444 | 1 | 1.4 |
53. | quercetin a | C15H10O7 | 301.0354 | (-) ESI: 301.0352 (100), 273.0407 (3.0), 257.0454 (1.0), 245.0451 (1.0), 229.0502 (1.0), 211.0383 (0.4), 178.9976 (21.2), 151.0024 (44.2), 121.0280 (13.6), 107.0123 (16.0) (+) ESI: 303.0496 (100), 285.0395 (1.0), 257.0442 (2.5), 229.0494 (5.4), 165.0185 (1.7), 153.0294 (6.9), 137.0234 (5.0) | 7.61 7.62 | −0.418 −1.086 | 1 | 1.9 |
54. | apigenin a | C15H10O5 | 269.0457 | (-) ESI: 269.0454 (100), 225.0548 (1.7), 201.0550 (1.2), 151.0024 (4.4), 117.0331 (15.2), 107.0123 (5.1) (+) ESI: 271.0597 (100), 253.0483 (0.2), 225.0543 (0.5), 243.0647 (0.7), 163.0392 (0.6), 153.0182 (9.1), 121.0285 (1.3), 119.0493 (4.2) | 8.58 8.58 | −0.396 −1.623 | 1 | 1.0 |
55. | kaempferol a | C15H9O7 | 285.0406 | (-) ESI: 285.0403 (100), 257.0475 (0.1), 241.0505 (0.6), 217.0494 (0.9), 199.0392 (2.1), 175.0389 (3.0), 151.0023 (4.0), 107.0124 (4.2) (+) ESI: nd | 8.84 | −0.741 | 1 | 0.08 |
Cell Line | LAMA-84 a | SILAMA-84 | HL-60 b | SIHL-60 | MDA-MB-231 c | SIMDA-MB-231 | MCF-7 d | SIMCF-7 | CASKI e | SICASKI | CCL-1 f |
---|---|---|---|---|---|---|---|---|---|---|---|
E. spiculifolia extract | 16.6 ± 2.1 | 120.5 | 105.0 ± 8.8 | 19.0 | 32.5 ± 4.6 | 61.5 | 130.1 ± 12.1 | 15.4 | 320.7 ± 16.2 | 6.2 | >2000 |
gallic acid | 6.2 (36.4 μM) | 13.7 | >500 | - | >500 | - | >500 | - | >500 | - | >500 |
oleanolic acid | 1.7 (3.7 μM) | 135.1 | >500 | - | >500 | - | >500 | - | >500 | - | >500 |
protocatechuic acid | >500 (>3244 μM) | - | >500 | - | 311 | 1.6 | >500 | - | >500 | - | >500 |
cisplatin | 11.4 ± 0.99 (37.8 ± 3.3 μM) | <1 | 2.7 ± 0.4 (8.9 ± 1.4 μM) | 2.1 | 17.2 ± 1.3 (57.1 ± 4.2 μM) | <1 | 15.5 ± 1.7 (51.6 ± 5.5 μM) | <1 | 14.6 ± 1.9 (48.6 ± 6.3 μM) | <1 | 5.6 ± 0.7 (18.7 ± 2.4 μM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gevrenova, R.; Mihaylova, R.; Bebrivenski, N.; Momekov, G.; Zheleva-Dimitrova, D. Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath). Plants 2025, 14, 3063. https://doi.org/10.3390/plants14193063
Gevrenova R, Mihaylova R, Bebrivenski N, Momekov G, Zheleva-Dimitrova D. Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath). Plants. 2025; 14(19):3063. https://doi.org/10.3390/plants14193063
Chicago/Turabian StyleGevrenova, Reneta, Rositsa Mihaylova, Nikolay Bebrivenski, Georgi Momekov, and Dimitrina Zheleva-Dimitrova. 2025. "Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath)" Plants 14, no. 19: 3063. https://doi.org/10.3390/plants14193063
APA StyleGevrenova, R., Mihaylova, R., Bebrivenski, N., Momekov, G., & Zheleva-Dimitrova, D. (2025). Insight into Cytotoxic Potential of Erica spiculifolia Salisb (Balkan Heath). Plants, 14(19), 3063. https://doi.org/10.3390/plants14193063