Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = acrylated epoxidized soybean oil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2419 KB  
Article
Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
by Giovanna Colucci, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo and Massimo Messori
J. Compos. Sci. 2025, 9(9), 479; https://doi.org/10.3390/jcs9090479 - 3 Sep 2025
Viewed by 1003
Abstract
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization [...] Read more.
Bio-based polymeric composites were prepared by dispersing different amounts of olive pit (OP) powder within an acrylate epoxidized soybean oil (AESO) photocurable resin using tetrahydrofurfuryl acrylate (THFA) as diluent and (2,4,6-trimethylbenzoyl), phosphine oxide (BAPO) as photo-initiator, and they were photocured by Vat Photopolymerization (VP) using a Liquid Crystal Display (LCD) 3D printer. Formulation viscosity was studied because of its important role in a VP process able to influence the printability of the final parts. Different 3D printed architectures were successfully realized with good resolution and accuracy, high level of detail, and flexibility. The effect of OP addition was investigated by thermal (TGA and DSC), morphological (SEM and PSD), viscoelastic (DMA), and mechanical (tensile testing) characterization. The filler led to an increase in the Tg, storage modulus, and tensile properties, underlining the stiffening effect induced by the OP particles onto the polymeric starting resin. This underlines the possibility to apply these bio-based composites in many application fields by valorizing agro-wastes, developing more sustainable materials, and taking advantages of VP 3D printing, such as low costs, minimal wastage, and customized geometry. Biocompatibility tests were also successfully carried out. The results clearly indicate that the AESO-based composites promote cell adhesion and viability. Full article
(This article belongs to the Special Issue Sustainable Polymer Composites: Waste Reutilization and Valorization)
Show Figures

Graphical abstract

18 pages, 4169 KB  
Article
Sustainable Thermoelectric Composites: A Study of Bi2Te3-Filled Biobased Resin
by Luca Ferretti, Pietro Russo, Jessica Passaro, Francesca Nanni, Saverio D’Ascoli, Francesco Fabbrocino and Mario Bragaglia
Materials 2025, 18(15), 3453; https://doi.org/10.3390/ma18153453 - 23 Jul 2025
Cited by 2 | Viewed by 941
Abstract
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus [...] Read more.
In this work, bio-based thermoelectric composites were developed using acrylated epoxidized soybean oil (AESO) as the polymer matrix and bismuth telluride (Bi2Te3) as the thermoelectric filler. The materials were formulated for both UV-curing and thermal-curing processes, with a focus on Digital Light Processing (DLP) 3D printing. Although UV curing proved ineffective at high filler concentrations due to the light opacity of Bi2Te3, thermal curing enabled the fabrication of stable, homogeneously dispersed composites. The samples were thoroughly characterized through rheology, FTIR, TGA, XRD, SEM, and density measurements. Thermoelectric performance was assessed under a 70 °C temperature gradient, with Seebeck coefficients reaching up to 51 µV/K. Accelerated chemical degradation studies in basic media confirmed the degradability of the matrix. The results demonstrate the feasibility of combining additive manufacturing with sustainable materials for low-power thermoelectric energy harvesting applications. Full article
Show Figures

Figure 1

17 pages, 9694 KB  
Article
Novel Soybean Oil-Based 3D Printed Resin Membrane Used for Guided Bone Regeneration in Calvaria Bone Critical-Size Defects: A Microtomographic and Histologic Study in Rats
by Eduardo Pires Godoy, Letícia Gabriela Artioli, Daniele Botticelli, Fabrizio Nicoletti, Leonardo Dassatti, Mario Bragaglia, Francesca Nanni, Samuel Porfirio Xavier and Erick Ricardo Silva
Appl. Sci. 2025, 15(4), 2184; https://doi.org/10.3390/app15042184 - 18 Feb 2025
Cited by 1 | Viewed by 1143
Abstract
Background: Osseointegrated implants are essential for rehabilitating edentulous patients, but critical bone defects remain challenging. Guided bone regeneration (GBR) with barrier membranes is an effective approach. This study evaluated a 3D printed membrane made from acrylated epoxidized soybean oil (AESO) combined with a [...] Read more.
Background: Osseointegrated implants are essential for rehabilitating edentulous patients, but critical bone defects remain challenging. Guided bone regeneration (GBR) with barrier membranes is an effective approach. This study evaluated a 3D printed membrane made from acrylated epoxidized soybean oil (AESO) combined with a xenogeneic graft for GBR in critical-size defects. Methods: Forty-eight male Sprague Dawley rats (150 g) were assigned to four groups: a negative control group (NC, blood clot only), a positive control group (PC, biomaterial without membrane), a negative test group (NT, blood clot with membrane), and a positive test group (PT, biomaterial with membrane). Results: The PT group showed the highest bone volume and superior bone maturation compared to the other groups. Bone quality parameters (Tb.N, Tb.Th) indicated enhanced maturation in the groups using the membrane. A histological analysis confirmed centripetal bone formation. Conclusion: The AESO-based membrane provided mechanical support and controlled resorption, addressing collagen membrane limitations. Its combination with the GTO® graft material enhanced osteoconduction, bone formation, and bone quality, highlighting its potential for complex bone defect reconstructions. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

17 pages, 6646 KB  
Article
A Co-Blended and Compounded Photosensitive Resin with Improved Mechanical Properties and Thermal Stability for Nail Polish Application
by Zhihong Chen, Shengsen Wang, Shengyue Feng, Yingzi Huang, Yang Hu and Zhuohong Yang
Polymers 2025, 17(1), 40; https://doi.org/10.3390/polym17010040 - 27 Dec 2024
Cited by 3 | Viewed by 1386
Abstract
UV-curable bio-based resins are widely used in the UV curing field. However, the current UV-curable bio-based resins for the application of nail polish still have the problems of too high viscosity and insufficiently excellent mechanical properties. In this study, a soybean oil-based acrylate [...] Read more.
UV-curable bio-based resins are widely used in the UV curing field. However, the current UV-curable bio-based resins for the application of nail polish still have the problems of too high viscosity and insufficiently excellent mechanical properties. In this study, a soybean oil-based acrylate photosensitive resin is synthesized by using epoxidized soybean oil as a raw material and reacting it with acrylic acid. The results show that the viscosity of soybean oil-based acrylate can achieve 8.31 Pa∙s, and the UV-cured film prepared by soybean oil-based acrylate and anhydride derivatives can obtain a tensile strength of 35.36 MPa and an elongation at break of 67.8%. In addition, the soybean oil-based acrylate is further reacted with isophorone diisocyanate to obtain soybean oil-based polyurethane acrylate, which can be thermally stable at 90 °C for 7 d. And then, the UV-cured film constructed by soybean oil-based polyurethane acrylate and anhydride derivatives are prepared, and the elongation at the break of the cured films can be up to 320%. This work provides a solvent-free approach by using biomass raw materials to form polyurethane acrylic resins, which have promising potential in the application of nail polish. Full article
Show Figures

Figure 1

21 pages, 7089 KB  
Article
3D-Printed Acrylated Soybean Oil Scaffolds with Vitrimeric Properties Reinforced by Tellurium-Doped Bioactive Glass
by Matteo Bergoglio, Matthias Kriehuber, Bernhard Sölle, Elisabeth Rossegger, Sandra Schlögl, Ziba Najmi, Andrea Cochis, Federica Ferla, Marta Miola, Enrica Vernè and Marco Sangermano
Polymers 2024, 16(24), 3614; https://doi.org/10.3390/polym16243614 - 23 Dec 2024
Cited by 7 | Viewed by 1724
Abstract
In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial [...] Read more.
In this study, we present novel, vitrimeric and biobased scaffolds that are designed for hard tissue applications, composed of acrylated, epoxidized soybean oil (AESO) and reinforced with bioactive glass that is Tellurium doped (BG-Te) and BG-Te silanized, to tune the mechanical and antibacterial properties. The manufacture’s method consisted of a DLP 3D-printing method, enabling precise resolution and the possibility to manufacture a hollow and complex structure. The resin formulation was optimized with a biobased, reactive diluent to adjust the viscosity for an optimal 3D-printing process. The in vitro biological evaluation of the 3D-printed scaffolds, combined with BG-Te and BG-Te-Sil, showed that the sample’s surfaces remained safe for hBMSCs’ attachment and proliferation. The number of S. aureus that adhered to the BG-Te was 87% and 54% lower than on the pristine (control) and BG-Te-Sil, respectively, with the eradication of microbiofilm aggregates. This work highlights the effect of the vitrimeric polymer matrix and doped, bioactive glass in manufacturing biocompatible, biobased, and antibacterial scaffold used in hard tissue application. Full article
(This article belongs to the Special Issue New Advances in Bio-Based Polymers)
Show Figures

Figure 1

13 pages, 2306 KB  
Article
From Fossil to Bio-Based AESO–TiO2 Microcomposite for Engineering Applications
by Cristian-Dragos Varganici, Liliana Rosu, Dan Rosu and Mihai Asandulesa
Polymers 2024, 16(23), 3363; https://doi.org/10.3390/polym16233363 - 29 Nov 2024
Cited by 1 | Viewed by 1166
Abstract
Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different [...] Read more.
Environmental issues and the reduction of fossil fuel resources will lead to the partial or total substitution of petroleum-based materials with natural, raw, renewable ones. One expanding domain is the obtaining of engineering materials from vegetable oils for sustainable, eco-friendly polymers for different applications. Herein, the authors propose a simplified and green synthesis pathway for a thermally curable, acrylated and epoxidized soybean oil matrix formulation containing only epoxidized soybean oil, acrylic acid, a reactive diluent (5%) and just 0.15 mL of catalyst. The small amount of reactive diluent significantly reduced the initial system viscosity while eliminating the need for adding solvent, hardener, activator, etc. Both the thermally cured composite with a 2% TiO2 microparticle filler and its pristine matrix were comparably characterized in terms of structural, thermal, morphological, dielectric and wettability by Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetry, scanning electron microscopy, broadband dielectric spectrometry and contact angle measurements. The 2% filler in the composite generated superior thermal stability via lower mass loss (48.89% vs. 57.14%) and higher degradation temperatures (395 °C vs. 387 °C), increased the glass transition temperature from −20 °C to −10 °C, rendered the microcomposite hydrophobic by increasing the contact angle from 88° to 96° and enhanced dielectric properties compared to the pristine matrix. All investigations recommend the microcomposite for protective coatings, capacitors, sensors and electronic circuits. This study brings new contributions to green chemistry and sustainable materials. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

19 pages, 3927 KB  
Article
Novel Determination of Functional Groups in Partially Acrylated Epoxidized Soybean Oil
by Olga Gómez-de-Miranda-Jiménez-de-Aberasturi, Javier Calvo, Ingemar Svensson, Noelia Blanco, Leire Lorenzo and Raquel Rodriguez
Molecules 2024, 29(19), 4582; https://doi.org/10.3390/molecules29194582 - 26 Sep 2024
Cited by 5 | Viewed by 1822
Abstract
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties [...] Read more.
The acrylation degree of vegetable oils plays a relevant role in determining the mechanical properties of the resulting polymers. Both epoxide and acrylate functionalities participate in polymerization reactions, producing various types of chemical bonds in the polymer network, which contribute to specific properties such as molecular size distribution, crosslinking degree, and glass transition temperature (Tg). The accurate identification of epoxide and acrylated groups in triglyceride molecules helps to predict their behavior during the polymerization process. A methodology based on analytical spectrometric techniques, such as direct infusion, mass spectrometry with electrospray ionization, and ultra-high-performance liquid chromatography, is used in combination with FTIR and 1H NMR to characterize the epoxy and acrylic functionalities in the fatty chains with different numbers of carbon atoms of partially acrylated triglycerides obtained by a non-catalytic reaction. Full article
Show Figures

Figure 1

16 pages, 4686 KB  
Article
Fully Bio-Based Polymer Composites: Preparation, Characterization, and LCD 3D Printing
by Giovanna Colucci, Francesca Sacchi, Federica Bondioli and Massimo Messori
Polymers 2024, 16(9), 1272; https://doi.org/10.3390/polym16091272 - 2 May 2024
Cited by 12 | Viewed by 3318
Abstract
The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) [...] Read more.
The present work aimed to prepare novel bio-based composites by adding fillers coming from agro-wastes to an acrylate epoxidized soybean oil (AESO) resin, using liquid crystal display (LCD) 3D printing. Different photocurable formulations were prepared by varying the reactive diluents, iso-bornyl methacrylate (IBOMA) and tetrahydrofurfuryl acrylate (THFA). Then, two fillers derived from different industrial wastes, corn (GTF) and wine (WPL-CF) by-products, were added to the AESO-based formulations to develop polymer composites with improved properties. The printability by LCD of the photocurable formulations was widely studied. Bio-based objects with different geometries were realized, showing printing accuracy, layer adhesion, and accurate details. The thermo-mechanical and mechanical properties of the 3D-printed composites were tested by TGA, DMA, and tensile tests. The results revealed that the agro-wastes’ addition led to a remarkable increase in the elastic modulus, tensile strength, and glass transition temperature in the glassy state for the systems containing IBOMA and for flexible structures in the rubbery region for systems containing THFA. AESO-based polymers demonstrated tunable properties, varying from rigid to flexible, in the presence of different diluents and biofillers. This finding paves the way for the use of this kind of composite in applications, such as biomedical for the realization of prostheses. Full article
(This article belongs to the Special Issue Latest Advances in Photopolymerization)
Show Figures

Figure 1

20 pages, 4159 KB  
Article
Improving the 3D Printability and Mechanical Performance of Biorenewable Soybean Oil-Based Photocurable Resins
by Marius Bodor, Aurora Lasagabáster-Latorre, Goretti Arias-Ferreiro, María Sonia Dopico-García and María-José Abad
Polymers 2024, 16(7), 977; https://doi.org/10.3390/polym16070977 - 3 Apr 2024
Cited by 15 | Viewed by 3459
Abstract
The general requirement of replacing petroleum-derived plastics with renewable resources is particularly challenging for new technologies such as the additive manufacturing of photocurable resins. In this work, the influence of mono- and bifunctional reactive diluents on the printability and performance of resins based [...] Read more.
The general requirement of replacing petroleum-derived plastics with renewable resources is particularly challenging for new technologies such as the additive manufacturing of photocurable resins. In this work, the influence of mono- and bifunctional reactive diluents on the printability and performance of resins based on acrylated epoxidized soybean oil (AESO) was explored. Polyethylene glycol di(meth)acrylates of different molecular weights were selected as diluents based on the viscosity and mechanical properties of their binary mixtures with AESO. Ternary mixtures containing 60% AESO, polyethylene glycol diacrylate (PEGDA) and polyethyleneglycol dimethacrylate (PEG200DMA) further improved the mechanical properties, water resistance and printability of the resin. Specifically, the terpolymer AESO/PEG575/PEG200DMA 60/20/20 (wt.%) improved the modulus (16% increase), tensile strength (63% increase) and %deformation at the break (21% increase), with respect to pure AESO. The enhancement of the printability provided by the reactive diluents was proven by Jacobs working curves and the improved accuracy of printed patterns. The proposed formulation, with a biorenewable carbon content of 67%, can be used as the matrix of innovative resins with unrestricted applicability in the electronics and biomedical fields. However, much effort must be done to increase the array of bio-based raw materials. Full article
Show Figures

Figure 1

12 pages, 989 KB  
Article
Photopolymerization of Limonene Dioxide and Vegetable Oils as Biobased 3D-Printing Stereolithographic Formulation
by Mégane Clerget, Eric Gagnon and Jerome P. Claverie
Polymers 2024, 16(7), 965; https://doi.org/10.3390/polym16070965 - 2 Apr 2024
Cited by 4 | Viewed by 2324
Abstract
Epoxidized vegetable oils and limonene dioxide, a bis-epoxide derived from the terpene limonene, are photo-copolymerized to yield highly crosslinked networks with high conversion of all epoxide groups at ambient temperature. However, the slow polymerization of such biobased formulation polymerizes is not compatible for [...] Read more.
Epoxidized vegetable oils and limonene dioxide, a bis-epoxide derived from the terpene limonene, are photo-copolymerized to yield highly crosslinked networks with high conversion of all epoxide groups at ambient temperature. However, the slow polymerization of such biobased formulation polymerizes is not compatible for a use in a commercial SLA 3D printer. Adding an acrylated epoxidized vegetable oil to the bis-epoxide leads to a decrease of curing time and an increase in LDO conversion to polymer. For example, in a 60:40 wt:wt mixture of LDO and epoxidized soybean oil, the conversions of both exocyclic and endocyclic epoxide groups of LDO are ≥95%. These formulations were successfully used in SLA 3D printers, leading to generation of hard and dry complex objects using biobased formulations. Full article
(This article belongs to the Special Issue State-of-the-Art Polymer Science and Technology in Canada)
Show Figures

Graphical abstract

16 pages, 8532 KB  
Article
Thermo-Responsive Shape-Memory Dual-Cured Polymers Based on Vegetable Oils
by Rokas Petrauskas, Sigita Grauzeliene and Jolita Ostrauskaite
Materials 2024, 17(1), 24; https://doi.org/10.3390/ma17010024 - 20 Dec 2023
Cited by 1 | Viewed by 2011
Abstract
The development of thermo-responsive shape-memory polymers has attracted attention due to their ability to undergo reversible deformations based on temperature changes. Vegetable oils are confirmed to be an excellent biorenewable source of starting materials for the synthesis of polymers. Therefore, the objective of [...] Read more.
The development of thermo-responsive shape-memory polymers has attracted attention due to their ability to undergo reversible deformations based on temperature changes. Vegetable oils are confirmed to be an excellent biorenewable source of starting materials for the synthesis of polymers. Therefore, the objective of this research was to synthesize thermo-responsive shape-memory polymers based on vegetable oils by using the dual-curing technique and obtaining polymers with tailorable properties. Acrylated epoxidized soybean oil and two epoxidized vegetable oils, linseed oil and camelina oil, were chosen for dual curing with m-xylylenediamine. Rheological tests were used to analyze the curing kinetics of systems undergoing radical photopolymerization, thermal cationic polymerization, and dual-curing processes. The rheological, mechanical, and thermal characteristics of the polymers were enhanced by the second curing stage. Dual-cured vegetable oil-based polymers had shape-memory properties with a recovery ratio of 100%, making them suitable for a variety of applications, including electronics, biomedical devices, and robotics. Full article
Show Figures

Graphical abstract

13 pages, 3303 KB  
Article
Hydroxyapatite-Resin Composites Produced by Vat Photopolymerization and Post-Processing via In Situ Hydrolysis of Alpha Tricalcium Phosphate
by Carolina Oliver-Urrutia, Lenka Drotárová, Sebastián Gascón-Pérez, Karel Slámečka, Simona Ravaszová, Ladislav Čelko and Edgar B. Montufar
Ceramics 2023, 6(4), 2282-2294; https://doi.org/10.3390/ceramics6040139 - 24 Nov 2023
Cited by 4 | Viewed by 3471
Abstract
Vat photopolymerization is an additive manufacturing technique that utilizes photosensitive resins to fabricate 3D polymeric objects with high precision. However, these objects often lack mechanical strength. This study investigated the strengthening of a resin based on epoxidized soybean oil acrylate, specifically designed for [...] Read more.
Vat photopolymerization is an additive manufacturing technique that utilizes photosensitive resins to fabricate 3D polymeric objects with high precision. However, these objects often lack mechanical strength. This study investigated the strengthening of a resin based on epoxidized soybean oil acrylate, specifically designed for vat photopolymerization, by the in situ formation of hydroxyapatite nanocrystals. First, a stable alpha tricalcium phosphate (α-TCP)-resin feedstock mixture was developed (~30 vol.% α-TCP), which proved suitable for fabricating monoliths as well as complex triply periodic minimal surface (gyroid, diamond, and Schwarz) porous structures through vat photopolymerization. The results demonstrated that the incorporation of α-TCP particles led to a significant mechanical improvement of the resin. Second, post-printing hydrothermal treatments were utilized to transform the α-TCP particles into hydroxyapatite crystals within the resin. It was observed that the space between hydroxyapatite crystals within the composites was occupied by the cured resin, resulting in a more compact, stronger, and mechanically more reliable material than the porous hydroxyapatite produced by the hydrolysis of α-TCP mixed with water. Moreover, water absorption during the hydrothermal treatments caused the plasticization of the cured resin. As a consequence, the hydroxyapatite-resin composites displayed slightly lower mechanical properties compared to the as-printed α-TCP-resin composite. Full article
(This article belongs to the Special Issue Innovative Research on Calcium Phosphates Based Ceramics)
Show Figures

Figure 1

13 pages, 2437 KB  
Article
Evaluation and Improvement of Bio-Based Sustainable Resin Derived from Formic-Acid-Modified Epoxidized Soybean Oil for Packaging Applications
by Abdus Sobhan, Shahab Saedi, Magdalene Hoff, Yaohua Liang and Kasiviswanathan Muthukumarappan
Polymers 2023, 15(21), 4255; https://doi.org/10.3390/polym15214255 - 29 Oct 2023
Cited by 10 | Viewed by 4544
Abstract
Bio-based epoxy resin materials have obtained significant attention in the packaging industry due to concerns about the environmental and economic impacts of traditional petroleum-based plastics. The aim of this research is to improve bio-based resins’ properties by investigating varying formic acid contents in [...] Read more.
Bio-based epoxy resin materials have obtained significant attention in the packaging industry due to concerns about the environmental and economic impacts of traditional petroleum-based plastics. The aim of this research is to improve bio-based resins’ properties by investigating varying formic acid contents in the presence of a green catalyst and characterizing their physical, chemical, and mechanical properties for further scaled-up bio-based resin production for industrial packaging applications. The crude soybean oil was epoxidized with formic acid as an oxidizing agent at varying equivalent weights of 10:1 to 10:10 of soybean oil: formic acid in the presence of hydrogen peroxide and choline chloride-oxalic acid as a bi-functional green catalyst. The effect of increasing the amount of formic acid used to epoxidize crude soybean oil was evaluated with infrared (IR) spectroscopy, rheological, and epoxy yield measurements. The results demonstrated that formic acid significantly influenced the epoxidation of soybean oil, leading to a higher conversion of carbon-carbon double bonds, with a selectivity of 98% when the ratio of soybean oil to formic acid was between 10:5 and 10:10. The bio-resin film was formulated using the improved epoxidized soybean oils—from ESO (10:2.5) to ESO (10:10)—and equal amounts of acrylic acid. The results showed that resin films led to an improvement in tensile strength (ca. 180 MPa) and thermal stability at 360 °C. Although further research is necessary, this study provides valuable insights for designing an effective epoxidation process for renewable sources and developing bio-resin materials for future packaging applications. Full article
(This article belongs to the Special Issue Biorefinery: From Wastes to Biopolymers)
Show Figures

Figure 1

19 pages, 5048 KB  
Article
UV-Cured Bio-Based Acrylated Soybean Oil Scaffold Reinforced with Bioactive Glasses
by Matteo Bergoglio, Ziba Najmi, Andrea Cochis, Marta Miola, Enrica Vernè and Marco Sangermano
Polymers 2023, 15(20), 4089; https://doi.org/10.3390/polym15204089 - 14 Oct 2023
Cited by 21 | Viewed by 3698
Abstract
In this study, a bio-based acrylate resin derived from soybean oil was used in combination with a reactive diluent, isobornyl acrylate, to synthetize a composite scaffold reinforced with bioactive glass particles. The formulation contained acrylated epoxidized soybean oil (AESO), isobornyl acrylate (IBOA), a [...] Read more.
In this study, a bio-based acrylate resin derived from soybean oil was used in combination with a reactive diluent, isobornyl acrylate, to synthetize a composite scaffold reinforced with bioactive glass particles. The formulation contained acrylated epoxidized soybean oil (AESO), isobornyl acrylate (IBOA), a photo-initiator (Irgacure 819) and a bioactive glass particle. The resin showed high reactivity towards radical photopolymerisation, and the presence of the bioactive glass did not significantly affect the photocuring process. The 3D-printed samples showed different properties from the mould-polymerised samples. The glass transition temperature Tg showed an increase of 3D samples with increasing bioactive glass content, attributed to the layer-by-layer curing process that resulted in improved interaction between the bioactive glass and the polymer matrix. Scanning electron microscope analysis revealed an optimal distribution on bioactive glass within the samples. Compression tests indicated that the 3D-printed sample exhibited higher modulus compared to mould-synthetized samples, proving the enhanced mechanical behaviour of 3D-printed scaffolds. The cytocompatibility and biocompatibility of the samples were evaluated using human bone marrow mesenchymal stem cells (bMSCs). The metabolic activity and attachment of cells on the samples’ surfaces were analysed, and the results demonstrated higher metabolic activity and increased cell attachment on the surfaces containing higher bioactive glass content. The viability of the cells was further confirmed through live/dead staining and reseeding experiments. Overall, this study presents a novel approach for fabricating bioactive glass reinforced scaffolds using 3D printing technology, offering potential applications in tissue engineering. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

18 pages, 3421 KB  
Article
One-Step Method for Direct Acrylation of Vegetable Oils: A Biobased Material for 3D Printing
by Cristian Mendes-Felipe, Igor Isusi, Olga Gómez-Jiménez-Aberasturi, Soraya Prieto-Fernandez, Leire Ruiz-Rubio, Marco Sangermano and José Luis Vilas-Vilela
Polymers 2023, 15(14), 3136; https://doi.org/10.3390/polym15143136 - 24 Jul 2023
Cited by 24 | Viewed by 5920
Abstract
The substitution of fossil resources by alternatives derived from biomass is a reality that is taking on a growing relevance in the chemical and energy industries. In this sense, fats, oils, and their derived products have become indispensable inputs due to their broad [...] Read more.
The substitution of fossil resources by alternatives derived from biomass is a reality that is taking on a growing relevance in the chemical and energy industries. In this sense, fats, oils, and their derived products have become indispensable inputs due to their broad functional attributes, stable price and sustainable character. Acrylated vegetable oils are considered to be very versatile materials for very broad applications (such as in adhesives, coatings or inks) since, in the presence of photoinitiators, they can be polymerized by means of UV-initiated free radical polymerizations. The usual process for the synthesis of acrylate vegetable oils consists in reacting epoxidized oils derivatives with acrylic acid. Here, the influence of different catalysts on the activity and selectivity of the process of acrylation of epoxidized soybean oil is studied. In addition, a novel one-step method for direct acrylation of vegetable oils is also explored. This new approach advantageously uses the original vegetable resource and eliminates intermediate reactions, thus being more environmentally efficient. This study offers a simple and low-cost option for synthesizing a biomass-derived monomer and studies the potential for the 3D printing of complex structures via digital light processing (DLP) 3D printing of the thus-obtained novel sustainable formulations. Full article
(This article belongs to the Special Issue Environmentally Friendly Bio-Based Polymeric Materials)
Show Figures

Graphical abstract

Back to TopTop