Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Photocurable Formulations
2.3. Three-Dimensional Printing of Unfilled and Filled Samples
2.4. Characterization
2.5. Biocompatibility Evaluation
3. Results
3.1. Olive Pit Powder Characterization
3.2. AESO-Based Photocurable Formulations
3.3. Three-Dimensional Printing Process via LCD
3.4. Insoluble Fraction
3.5. Morphology of AESO-Based 3D Printed Samples
3.6. Thermal and Viscoelastic Properties of AESO-Based 3D Printed Samples
3.7. Biocompatibility of AESO-Based 3D Printed Samples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russo, G.; Beritognolo, I.; Bufacchi, M.; Stanzione, V.; Pisanelli, A.; Ciolfi, M.; Lauteri, M.; Brush, S.B. Advances in biocultural geography of olive tree (Olea europaea L.) landscapes by merging biological and historical assays. Sci. Rep. 2020, 10, 7673. [Google Scholar] [CrossRef]
- Valvez, S.; Maceiras, A.; Santos, P.; Reis, P.N.B. Olive Stones as Filler for Polymer-Based Composites: A Review. Materials 2021, 14, 845. [Google Scholar] [CrossRef]
- García Martín, J.F.; Cuevas, M.; Feng, C.H.; Mateos, P.Á.; García, M.T.; Sánchez, S. Energetic valorisation of olive biomass: Olive-tree pruning, olive stones and pomaces. Processes 2020, 8, 511. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pimentel, F.B.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P. Olive by-products for functional and food applications: Challenging opportunities to face environmental constraints. Innov. Food Sci. Emerg. Technol. 2016, 35, 139–148. [Google Scholar] [CrossRef]
- Rodríguez, G.; Lama, A.; Rodríguez, R.; Jiménez, A.; Guillén, R.; Fernández-Bolaños, J. Olive stone an attractive source of bioactive and valuable compounds. Bioresour. Technol. 2008, 99, 5261–5269. [Google Scholar] [CrossRef]
- Sánchez-Borrego, F.J.; de Hoyos-Limón, T.J.B.; García-Martín, J.F.; Álvarez-Mateos, P. Production of Bio-Oils and Biochars from Olive Stones: Application of Biochars to the Esterification of Oleic Acid. Plants 2022, 11, 70. [Google Scholar] [CrossRef]
- Ortega, F.; Versino, F.; López, O.V.; García, M.A. Biobased composites from agro-industrial wastes and by-products. Emergent Mater. 2022, 5, 873–921. [Google Scholar] [CrossRef]
- D’Eusanio, V.; Marchetti, A.; Pastorelli, S.; Silvestri, M.; Bertacchini, L.; Tassi, L. Exploring Olive Pit Powder as a Filler for Enhanced Thermal Insulation in Epoxy Mortars to Increase Sustainability in Building Construction. AppliedChem 2024, 4, 192–211. [Google Scholar] [CrossRef]
- Calovi, M.; Rossi, S. Functional Olive Pit Powders: The Role of the Bio-Based Filler in Reducing the Water Uptake Phenomena of the Waterborne Paint. Coatings 2023, 13, 442. [Google Scholar] [CrossRef]
- Vandamme, E.J. Agro-industrial residue utilization for industrial biotechnology products. In Biotechnology for Agro-Industrial Residues Utilisation; Springer: Berlin/Heidelberg, Germany, 2009; pp. 3–11. [Google Scholar]
- Gullon, P.; Gullon, B.; Astray, G.; Carpena, M.; Fraga-Corral, M.; Prieto, M.A.; Simal-Gandara, J. Valorization of by-products from olive oil industry and added-value applications for innovative functional foods. Food Res. Int. 2020, 137, 109683. [Google Scholar] [CrossRef]
- Jurado-Contreras, S.; Navas-Martos, F.J.; Rodríguez-Liébana, J.A.; Moya, A.J.; La Rubia, M.D. Manufacture and Characterization of Recycled Polypropylene and Olive Pits Biocomposites. Polymers 2022, 14, 4206. [Google Scholar] [CrossRef]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefin. 2019, 9, 775–802. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kaczala, F.; Hogland, W.; Marques, M.; Paraskeva, C.; Papadakis, V.; Sillanpää, M. Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control—A review. Environ. Sci. Pollut. Res. 2014, 21, 268–298. [Google Scholar] [CrossRef]
- Saroia, J.; Wang, Y.; Wei, Q.; Lei, M.; Li, X.; Guo, Y.; Zhang, K. A review on 3D printed matrix polymer composites: Its potential and future challenges. Int. J. Adv. Manuf. Technol. 2020, 106, 1695–1721. [Google Scholar] [CrossRef]
- Koutsomitopoulou, A.F.; Bénézet, J.C.; Bergeret, A.; Papanicolaou, G.C. Preparation and characterization of olive pit powder as a filler to PLA-matrix bio-composites. Powder Technol. 2014, 255, 10–16. [Google Scholar] [CrossRef]
- Yoha, K.S.; Moses, J.A. 3D Printing Approach to Valorization of Agri-Food Processing Waste Streams. Foods 2023, 12, 212. [Google Scholar] [CrossRef]
- Colucci, G.; Sacchi, F.; Bondioli, F.; Messori, M. Fully Bio-Based Polymer Composites: Preparation, Characterization, and LCD 3D Printing. Polymers 2024, 16, 1272. [Google Scholar] [CrossRef]
- Colucci, G.; Sacchi, F.; Bondioli, F.; Messori, M. 3D printing of lignin-based polymeric composites obtained using liquid crystal display as a vat photopolymerization technique. Polym. Int. 2025, 74, 828–838. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mu, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Sanchez-Rexach, E.; Johnston, T.G.; Jehanno, C.; Sardon, H.; Nelson, A. Sustainable Materials and Chemical Processes for Additive Manufacturing. Chem. Mater. 2020, 32, 7105–7119. [Google Scholar] [CrossRef]
- Thakar, C.M.; Parkhe, S.S.; Jain, A.; Phasinam, K.; Murugesan, G.; Joy, R.; Ventayen, M. 3d Printing: Basic principles and applications. Mater. Today Proc. 2022, 51, 842–849. [Google Scholar] [CrossRef]
- Alammar, A.; Kois, J.C.; Revilla-León, M.; Att, W. Additive Manufacturing Technologies: Current Status and Future Perspectives. J. Prosthodont. 2022, 31, 4–12. [Google Scholar] [CrossRef] [PubMed]
- Sacchi, F.; Colucci, G.; Bondioli, F.; Sangermano, M.; Messori, M. Review: Bio-based photopolymers for additive manufacturing. J. Mater. Sci. 2025, 60, 11191–11220. [Google Scholar] [CrossRef]
- Voet, V.S.D.; Guit, J.; Loos, K. Sustainable photopolymers in 3D printing: A review on biobased, biodegradable, and recyclable alternatives. Macromol. Rapid Commun. 2021, 42, e2000475. [Google Scholar] [CrossRef]
- Skliutas, E.; Lebedevaite, M.; Kasetaite, S.; Rekštytė, S.; Lileikis, S.; Ostrauskaite, J.; Malinauskas, M. A Bio-Based Resin for a Multi-Scale Optical 3D Printing. Sci. Rep. 2020, 10, 9758. [Google Scholar] [CrossRef]
- Lastovickova, D.N.; Toulan, F.R.; Mitchell, J.R.; VanOosten, D.; Clay, A.M.; Stanzione, J.F.; Palmese, G.R.; La Scala, J.J. Resin, cure, and polymer properties of photopolymerizable resins containing bio-derived isosorbide. J. Appl. Polym. Sci. 2021, 138, 50574. [Google Scholar] [CrossRef]
- Chebotar, A.; Domnich, B.; Panchenko, Y.; Donchak, V.; Stetsyshyn, Y.; Voronov, A. Thermal behavior of polymers and copolymers based on plant oils with differing saturated and monounsaturated content. Polym. Int. 2024, 74, 255–263. [Google Scholar] [CrossRef]
- Porcarello, M.; Mendes-Felipe, C.; Lanceros-Mendez, S.; Sangermano, M. Design of acrylated epoxidized soybean oil biobased photo-curable formulations for 3D printing. Sustain. Mater. Technol. 2024, 40, e00927. [Google Scholar] [CrossRef]
- Lebedevaite, M.; Gineika, A.; Talacka, V.; Baltakys, K.; Ostrauskaite, J. Development and optical 3D printing of acrylated epoxidized soybean oil-based composites with functionalized calcium silicate hydrate filler derived from aluminium fluoride production waste. Compos. Part A 2022, 157, 106929. [Google Scholar] [CrossRef]
- ASTM D2765-84; Standard Test Methods for Determination of Gel Content and Swell Ratio of Crosslinked Ethylene Plastics. ASTM International: West Conshohocken, PA, USA, 1984.
- ISO 527-2:2025; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. International Organization for Standardization (ISO): Geneva, Switzerland, 2025.
- Barbalinardo, M.; Biagetti, M.; Valle, F.; Cavallini, M.; Falini, G.; Montroni, D. Green Biocompatible Method for the Synthesis of Collagen/Chitin Composites to Study Their Composition and Assembly Influence on Fibroblasts Growth. Biomacromolecules 2021, 22, 3357–3365. [Google Scholar] [CrossRef]
- Marcilla, A.; García, A.N.; Pastor, M.V.; León, M.; Sánchez, A.J.; Gómez, D.M. Thermal decomposition of the different particles size fractions of almond shells and olive stones. Thermal behaviour changes due to the milling processes. Thermochim. Acta 2013, 564, 24–33. [Google Scholar] [CrossRef]
- Shogren, R.L.; Petrovic, Z.; Liu, Z.; Erhan, S.Z. Biodegradation behavior of some vegetable oil-based polymers. J. Polym. Environ. 2004, 12, 173–178. [Google Scholar] [CrossRef]
- Barkane, A.; Platnieks, O.; Jurinovs, M.; Gaidukovs, S. Thermal stability of UV cured vegetable oil epoxidized acrylate-based polymer system for 3D printing application. Polym. Degrad. Stabil. 2020, 181, 109347. [Google Scholar] [CrossRef]
- Reis, P.N.B.; Ferreira, J.A.M.; Silva, P.A.A. Mechanical Behaviour of Composites Filled by Agro-waste Materials. Fibers Polym. 2011, 12, 240–246. [Google Scholar] [CrossRef]
Sample Code | Viscosity @25 °C (mPa s) |
---|---|
AESO-THFA | 377 |
AESO-THFA+O5 | 351 |
AESO-THFA+O7.5 | 353 |
Parameter | AESO-THFA | AESO-THFA+O5 | AESO-THFA+O7.5 |
---|---|---|---|
Layer height (mm) | 0.1 | 0.1 | 0.1 |
Exposure time (s) | 18 | 18 | 18 |
Bottom exposure time (s) | 40 | 40 | 70 |
Rest time before lift (s) | 0 | 0 | 1 |
Rest time after lift (s) | 5 | 5 | 5 |
Rest time after retract (s) | 3 | 3 | 3 |
Lifting distance (mm) | 6 | 6 | 6 |
Retract distance (mm) | 6 | 8 | 8 |
Lifting speed (mm/min) | 90 | 90 | 90 |
Retract speed (mm/min) | 170 | 170 | 170 |
Sample Code | Gel (%) | Tonset (°C) | Tmax deg peak (°C) | Residue (wt.%) | Tg (°C) |
---|---|---|---|---|---|
AESO-THFA | 99.2 | 317 | 406/562 | 0 | 5 |
AESO-THFA+O5 | 99.4 | 307 | 403/572 | 1 | 11 |
AESO-THFA+O7.5 | 99.6 | 298 | 403/561 | 2 | 13 |
Sample Code | E′ a (MPa) | E″ a (MPa) | E′ b (MPa) | E″ b (MPa) | Tan δ (°C) | Young’s Modulus (MPa) | Ultimate Tensile Strength (MPa) | Elongation at Break (%) |
---|---|---|---|---|---|---|---|---|
AESO-THFA | 670 | 210 | 8 | 21 | 15 | 12.7 ± 1.0 | 0.8 ± 0.0.2 | 7.0 ± 0.0.8 |
AESO-THFA+O5 | 728 | 238 | 11 | 27 | 16 | 13.5 ± 0.5 | 0.7 ± 0.0.1 | 6.6 ± 0.0.6 |
AESO-THFA+O7.5 | 947 | 245 | 15 | 33 | 17 | 13.9 ± 0.4 | 0.7 ± 0.0.1 | 5.8 ± 0.0.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colucci, G.; Sacchi, F.; Checchi, M.; Barbalinardo, M.; Chiarini, F.; Bondioli, F.; Palumbo, C.; Messori, M. Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder. J. Compos. Sci. 2025, 9, 479. https://doi.org/10.3390/jcs9090479
Colucci G, Sacchi F, Checchi M, Barbalinardo M, Chiarini F, Bondioli F, Palumbo C, Messori M. Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder. Journal of Composites Science. 2025; 9(9):479. https://doi.org/10.3390/jcs9090479
Chicago/Turabian StyleColucci, Giovanna, Francesca Sacchi, Marta Checchi, Marianna Barbalinardo, Francesca Chiarini, Federica Bondioli, Carla Palumbo, and Massimo Messori. 2025. "Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder" Journal of Composites Science 9, no. 9: 479. https://doi.org/10.3390/jcs9090479
APA StyleColucci, G., Sacchi, F., Checchi, M., Barbalinardo, M., Chiarini, F., Bondioli, F., Palumbo, C., & Messori, M. (2025). Development and 3D Printing of AESO-Based Composites Containing Olive Pit Powder. Journal of Composites Science, 9(9), 479. https://doi.org/10.3390/jcs9090479