Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,296)

Search Parameters:
Keywords = acid-base extraction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1635 KB  
Article
Characterization of Pectin Extracted from the Peel of Dragon Fruit (Selenicereus cf. guatemalensis ‘Queen Purple’)
by Victoria Carpio-Rivas, Rosendo Balois-Morales, Verónica Alhelí Ochoa-Jiménez, Juan Esteban Bello-Lara, Julio César Tafolla-Arellano and Guillermo Berumen-Varela
Polysaccharides 2025, 6(4), 98; https://doi.org/10.3390/polysaccharides6040098 (registering DOI) - 3 Nov 2025
Abstract
The dragon fruit (Selenicereus sp.) peel is a viable plant source for the extraction of polysaccharides such as pectin, the demand for which has increased significantly in the food and pharmaceutical industries. In Nayarit, Mexico, the Queen Purple variety of dragon fruit [...] Read more.
The dragon fruit (Selenicereus sp.) peel is a viable plant source for the extraction of polysaccharides such as pectin, the demand for which has increased significantly in the food and pharmaceutical industries. In Nayarit, Mexico, the Queen Purple variety of dragon fruit (Selenicereus cf. guatemalensis) is commonly cultivated. The peel is typically discarded, while only the pulp is utilized for direct consumption or processed into derivative products. The objective of this study was to characterize the properties of pectin extracted from the peel of dragon fruit (Selenicereus cf. guatemalensis ‘Queen Purple’). The yield, molecular weight, anhydrouronic acid content, betalain content, antioxidant capacity, and phenolic compounds were determined using gravimetric, volumetric, spectrophotometric, and colorimetric techniques, among others. Furthermore, the functional groups and degree of esterification of the pectin were identified using Fourier-transform infrared spectroscopy. The pectin presented a yield of 12.8%, esterification degree of 49.85%, molecular weight of 645 kDa, anhydrouronic acid, phenolic acid and betalain content of 98.27%, 195.7 mg EAG/100 gDW and 4.26 mg/100 gDW respectively and an antioxidant capacity of 149.6, 192.76 and 20.5 mg EAA/100 gDW by the DPPH, ABTS and FRAP methods respectively, classified as high-purity, low-methoxyl, intermediate-molecular-weight, with an important betalain content and antioxidant capacity. Based on these findings, the extracted pectin complies with the Food and Agriculture Organization specifications and shows promise as a functional ingredient in the food industry. Full article
Show Figures

Graphical abstract

20 pages, 3081 KB  
Article
Production of Prodigiosin by Serratia marcescens 11E Using Cheese Whey-Based Medium: Optimizing Sustainable Pigment Production and Waste Valorization
by Samantha Lizbeth Pérez-Jiménez, Francisco Javier Aranda-Valdés, Gabriela Elizabeth Quintanilla-Villanueva, Donato Luna-Moreno, José Manuel Rodríguez-Delgado, Iris Cristina Arvizu-De León, Alma Gómez-Loredo, Edgar Allan Blanco-Gámez, Juan Francisco Villarreal-Chiu and Melissa Marlene Rodríguez-Delgado
Colorants 2025, 4(4), 33; https://doi.org/10.3390/colorants4040033 - 3 Nov 2025
Abstract
This research investigates the biosynthesis optimization of the red pigment prodigiosin produced by Serratia marcescens 11E through submerged fermentation utilizing an alternative cheese whey-based medium, focusing on process parameters and antimicrobial properties. Four types of whey sourced from a local dairy industry were [...] Read more.
This research investigates the biosynthesis optimization of the red pigment prodigiosin produced by Serratia marcescens 11E through submerged fermentation utilizing an alternative cheese whey-based medium, focusing on process parameters and antimicrobial properties. Four types of whey sourced from a local dairy industry were characterized, and the fermentation conditions were optimized using Plackett–Burman and central composite design methodologies, yielding up to 1.43 g/L of prodigiosin under optimal conditions, 25 °C, 200 rpm, pH 7, and 48 h of dark incubation, with whey serving as the sole carbon source. Normalization to biomass yielded 110 mg of prodigiosin per gram of dried cell weight (post-optimization), enabling meaningful comparison with prior studies. Pigment extraction was performed with acidic methanol, and identity was confirmed by UV–Vis spectrophotometry and Fourier transform infrared spectroscopy (FTIR). The antimicrobial activity of the purified pigment was also evaluated. Although cheese whey has significant nutritional value, nearly half of the global production is discarded due to high treatment costs. This study demonstrates that whey can be repurposed as a sustainable and economical fermentation medium for pigment production, which is compatible with dairy plants. This makes it a promising solution to address the underutilization of whey by cheese local producers in Mexico. Prodigiosin has diverse industrial applications, including antimicrobial, insecticidal, and antioxidant properties. These findings highlight the potential for dairy waste valorization in a circular bioeconomy, reducing environmental impacts and promoting the creation of valuable bioproducts. Full article
Show Figures

Figure 1

21 pages, 4191 KB  
Article
Classifying Protein-DNA/RNA Interactions Using Interpolation-Based Encoding and Highlighting Physicochemical Properties via Machine Learning
by Jesús Guadalupe Cabello-Lima, Patricio Adrián Zapata-Morín and Juan Horacio Espinoza-Rodríguez
Information 2025, 16(11), 947; https://doi.org/10.3390/info16110947 - 1 Nov 2025
Viewed by 33
Abstract
Protein–DNA and protein–RNA interactions are central to gene regulation and genetic disease, yet experimental identification remains costly and complex. Machine learning (ML) offers an efficient alternative, though challenges persist in representing protein sequences due to residue variability, dimensionality issues, and the risk of [...] Read more.
Protein–DNA and protein–RNA interactions are central to gene regulation and genetic disease, yet experimental identification remains costly and complex. Machine learning (ML) offers an efficient alternative, though challenges persist in representing protein sequences due to residue variability, dimensionality issues, and the risk of losing biological context. Traditional approaches such as k-mer counting or neural network encodings provide standardized sequence representations but often demand high computational resources and may obscure functional information. To address these limitations, a novel encoding method based on interpolation of physicochemical properties (PCPs) is introduced. Discrete PCPs values are transformed into continuous functions using logarithmic enhancement, highlighting residues that contribute most to nucleic acid interactions while preserving biological relevance across variable sequence lengths. Statistical features extracted from the resulting spectra via Tsfresh are then used for binary classification of DNA- and RNA-binding proteins. Six classifiers were evaluated, and the proposed method achieved up to 99% accuracy, precision, recall, and F1 score when amino acid highlighting was applied, compared with 66% without highlighting. Benchmarking against k-mer and neural network approaches confirmed superior efficiency and reliability, underscoring the potential of this method for protein interaction prediction. Our framework may be extended to multiclass problems and applied to the study of protein variants, offering a scalable tool for broader protein interaction prediction. Full article
(This article belongs to the Special Issue Applications of Deep Learning in Bioinformatics and Image Processing)
Show Figures

Figure 1

20 pages, 2403 KB  
Article
Marine-Derived Mycosporine-like Amino Acids from Nori Seaweed: Sustainable Bioactive Ingredients for Skincare and Pharmaceuticals
by Manuela Gallego-Villada, Tatiana Muñoz-Castiblanco, Juan C. Mejía-Giraldo, Luis M. Díaz-Sánchez, Marianny Y. Combariza and Miguel Angel Puertas-Mejía
Phycology 2025, 5(4), 64; https://doi.org/10.3390/phycology5040064 - 1 Nov 2025
Viewed by 87
Abstract
Mycosporine-like amino acids (MAAs) are multifunctional, UV-absorbing and antioxidant metabolites produced by marine algae, offering promising applications in biotechnology and dermocosmetic sciences. In this study, MAAs were sustainably extracted from nori seaweed (Porphyra spp.) using an ultrasound-assisted aqueous method, an eco-friendly approach [...] Read more.
Mycosporine-like amino acids (MAAs) are multifunctional, UV-absorbing and antioxidant metabolites produced by marine algae, offering promising applications in biotechnology and dermocosmetic sciences. In this study, MAAs were sustainably extracted from nori seaweed (Porphyra spp.) using an ultrasound-assisted aqueous method, an eco-friendly approach that ensures efficiency and industrial scalability. Chromatographic enrichment followed by MALDI-TOF mass spectrometry confirmed the presence of bioactive compounds, including porphyra-334, palythine, and myc-ornithine. The enriched fraction exhibited potent antioxidant activity (low IC50 in DPPH and ABTS assays) and significant anti-elastase effects, highlighting its potential as a natural anti-aging agent. To optimize delivery, MAAs were incorporated into a stable water-in-oil nanoemulsion, which maintained droplet sizes below 400 nm and a low polydispersity index (PDI < 0.2) for up to four months. A randomized, double-blind clinical study in 20 volunteers further demonstrated that the MAA-based nanoemulsion significantly improved skin hydration (+53.6%) and reduced transepidermal water loss (TEWL), confirming its humectant and barrier-strengthening efficacy. These findings position Porphyra spp. as a sustainable marine resource for producing MAAs, and demonstrate their practical potential as natural, multifunctional ingredients in eco-conscious cosmetic and pharmaceutical formulations. Full article
(This article belongs to the Special Issue Development of Algal Biotechnology)
Show Figures

Figure 1

23 pages, 2274 KB  
Article
Quality Management and Sustainability in the Design of Active Biocomposites: Evaluation of Double-Layer Protein–Polysaccharide Complexes Enriched with Plant Extracts
by Nikola Nowak-Nazarkiewicz, Wiktoria Grzebieniarz, Joanna Tkaczewska, Agnieszka Cholewa-Wójcik, Michał Kopeć, Krzysztof Gondek, Hanna Derechowska and Ewelina Jamróz
Molecules 2025, 30(21), 4259; https://doi.org/10.3390/molecules30214259 - 31 Oct 2025
Viewed by 66
Abstract
Despite promising results, biocomposite research still requires elaboration, particularly with regard to functional properties and applications. In this study, multilayer biocomposites based on gelatin, κ-carrageenan and carboxymethylcellulose were enriched with sage or blackberry extracts. The films were characterized based on their physicochemical traits [...] Read more.
Despite promising results, biocomposite research still requires elaboration, particularly with regard to functional properties and applications. In this study, multilayer biocomposites based on gelatin, κ-carrageenan and carboxymethylcellulose were enriched with sage or blackberry extracts. The films were characterized based on their physicochemical traits and bioactivity for application as active packaging and environmental biodegradation. FTIR confirmed extract integration and strong matrix interactions, while UV-VIS analysis showed efficient UV blocking. Water properties remained acceptable (WVTR ≈ 550 g/m2 × d); solubility decreased for BB (41.73% vs. 53.45% control). Mechanical testing indicated a plasticizing effect: elongation increased (20.00% control; 35.35% BB; 39.29% SAGE), while tensile strength and Young’s modulus decreased. Antioxidant capacity rose (FRAP: 0.38 control, 1.97 BB, 4.48 SAGE µTrolox/mg; DPPH: 6.38% control, 85.68% BB, 78.25% SAGE; MCA: none). During refrigerated storage, antimicrobial effects were most evident on days 6–9. Lipid oxidation peaked for BB (0.92 mg MDA/kg, day 9), while pH was more stable with SAGE. Biodegradation and phytotoxicity confirmed environmental safety and compostability, with increased humic acid carbon in vermicompost. Overall, the results confirm the relevance of modifying biopolymers using green chemistry and highlight their importance for quality management, food safety and sustainable circular economy strategies. Full article
Show Figures

Graphical abstract

14 pages, 2946 KB  
Article
Cosmeceutical Potential of Mitragyna speciosa (Kratom): Anti-Adipogenic and Antioxidant Properties of Extracts and Mitragynine
by Sudthiworarak Kaewchompoo, Prapapan Temkitthawon, Kalyarut Phumlek, Neti Waranuch, Ngamrayu Ngamdokmai and Kornkanok Ingkaninan
Molecules 2025, 30(21), 4256; https://doi.org/10.3390/molecules30214256 - 31 Oct 2025
Viewed by 87
Abstract
Kratom (Mitragyna speciosa (Korth.) Havil.) is a medicinal plant containing bioactive alkaloids, notably mitragynine and 7-hydroxymitragynine, which are psychoactive compounds with analgesic and stimulant properties. Due to safety concerns, the use of Kratom leaves and mitragynine in oral pharmaceutical products is restricted. [...] Read more.
Kratom (Mitragyna speciosa (Korth.) Havil.) is a medicinal plant containing bioactive alkaloids, notably mitragynine and 7-hydroxymitragynine, which are psychoactive compounds with analgesic and stimulant properties. Due to safety concerns, the use of Kratom leaves and mitragynine in oral pharmaceutical products is restricted. Therefore, their potential as topical cosmeceutical agents merits further exploration. This study aimed to investigate the antioxidant and anti-adipogenic activities of Kratom ethanolic (Et-MS) and alkaloid-rich (Alk-MS) extracts, as well as purified mitragynine, to determine whether mitragynine is the major bioactive compound responsible for lipid reduction in 3T3-L1 adipocytes. The antioxidant properties were assessed using DPPH, ABTS, and FRAP assays, yielding EC50 values of 0.06 mg/mL, 0.29 mg/mL, and 55 g Fe2+/100 g for Et-MS, respectively. In comparison, ascorbic acid (positive control) showed a DPPH EC50 value of 0.002 mg/mL. Both Alk-MS and mitragynine significantly inhibited lipid accumulation in 3T3-L1 adipocytes by up to 50–70% at non-cytotoxic concentrations (≤25 µg/mL), as determined by Oil Red O staining. These findings provide preliminary in vitro evidence that phenolic constituents contribute to antioxidant capacity, while mitragynine is the principal anti-adipogenic constituent in Kratom extracts. Collectively, the results support the potential for further development of Kratom-derived extracts and mitragynine as plant-based candidates for topical or cosmeceutical applications targeting subcutaneous fat and oxidative skin damage. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

21 pages, 1936 KB  
Article
Domestication Cultivation and Nutritional Analysis of Hericium coralloides
by Yun Li, Jiarong Cai, Xiaomin Li, Xin Hu, Junli Zhang, Xiaoping Wu and Junsheng Fu
J. Fungi 2025, 11(11), 785; https://doi.org/10.3390/jof11110785 - 31 Oct 2025
Viewed by 173
Abstract
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was [...] Read more.
Hericium coralloides is a valuable medicinal and edible mushroom renowned for its unique bioactive compounds. This study focuses on the isolation of a wild strain (SH001) exhibiting promising cultivation potential and health promoting properties. A wild fungal strain from the Tibetan Plateau was isolated and identified as a novel H. coralloides based on its morphological and molecular characteristics. The optimal growth conditions were found to be 30 °C, pH 7.0, fructose as the preferred carbon source, and yeast extract as the optimal nitrogen source. Nutritional analysis revealed that the fruiting bodies were rich in protein (15.4 g/100 g dry weight), dietary fiber (34.7 g/100 g dry weight), and minerals, while being low in fat (3.5 g/100 g dry weight). The most abundant amino acids were glutamic acid, followed by aspartic acid. The polysaccharides exhibited significant antioxidant activity, with ABTS+ scavenging comparable to that of Vitamin C (Vc), achieving a clearance rate of 96.95% at concentrations between 0.25–5.00 mg/mL. At a concentration of 5 mg/mL, the DPPH and OH radical scavenging activities reached their peak (83.77% and 67.31%, respectively), along with the highest iron ion reducing capacity (FRAP value: 4.43 mmol/L. Polysaccharides also exhibited notable anticancer activity, inhibiting HepG2 liver cancer cells and MDA-MB-468 breast cancer cells, with IC50 values of 3.896 mg/mL and 2.561 mg/mL, respectively. This study demonstrates that wild H. coralloides can be successfully cultivated in vitro. In conclusion, the fruiting bodies possess substantial nutritional value, and the polysaccharides extracted from them show promising antioxidant and anticancer activities, particularly against HepG2 liver cancer cells and MDA-MB-468 breast cancer cells. Full article
(This article belongs to the Special Issue Research Progress on Edible Fungi)
Show Figures

Figure 1

20 pages, 3302 KB  
Article
Quantitative Analysis of Chlorogenic Acid, Rutin, and Isoquercitrin in Extracts of Cudrania tricuspidata Leaves Using HPLC-DAD
by Ju-Yeong Kang, Hye-Ryeong Noh, Youngdae Yoone and Bong-Gyu Kim
Separations 2025, 12(11), 298; https://doi.org/10.3390/separations12110298 - 31 Oct 2025
Viewed by 55
Abstract
A high-performance liquid chromatography (HPLC) method using a diode array detector (DAD) was developed and validated for the simultaneous quantification of chlorogenic acid, rutin, and isoquercitrin, which are key bioactive compounds in Cudrania tricuspidata leaves. The method demonstrated excellent specificity, precision, and accuracy [...] Read more.
A high-performance liquid chromatography (HPLC) method using a diode array detector (DAD) was developed and validated for the simultaneous quantification of chlorogenic acid, rutin, and isoquercitrin, which are key bioactive compounds in Cudrania tricuspidata leaves. The method demonstrated excellent specificity, precision, and accuracy in accordance with the guidelines of the International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). Calibration curves showed outstanding linearity (r2 > 0.99), with recovery rates of 101.63%, 101.81%, and 102.18% for chlorogenic acid, rutin, and isoquercitrin, respectively. The limits of detection (LOD) were 0.286, 0.411, and 0.201 μg/mL, and the limits of quantification (LOQ) were 1.246, 0.866, and 0.608 μg/mL for chlorogenic acid, rutin, and isoquercitrin, respectively. Additionally, response surface methodology (RSM) based on a Box–Behnken design was employed to optimize the extraction conditions of the three marker compounds. The second-order regression models showed high coefficients of determination (r2) and significant ANOVA results (p < 0.05). RSM analysis revealed that extraction temperature and ethanol concentration exerted the most significant effects on the extraction yields, while extraction time played a supportive role. The optimal conditions (70 °C, 40% ethanol, 120 min) significantly enhanced compound recovery while reducing solvent and energy consumption, thereby contributing to the development of efficient and sustainable extraction processes. Collectively, the validated HPLC-DAD method and the optimized extraction strategy developed in this study provide a reliable framework for the quality standardization and industrial application of C. tricuspidata leaf extracts in functional food, cosmetic, and pharmaceutical products. Full article
Show Figures

Figure 1

23 pages, 3747 KB  
Article
Sustainable Strategies for Sunburn Mitigation in Gala Apple Orchards: Effects on Yield, Fruit Quality, and Plant Physiology
by Margarida Rodrigues, Luísa Carvalho, Marta Gonçalves, Susana Ferreira and Miguel Leão de Sousa
Appl. Sci. 2025, 15(21), 11644; https://doi.org/10.3390/app152111644 - 31 Oct 2025
Viewed by 73
Abstract
Fruit sunburn is a major abiotic stress limiting apple production worldwide, with losses potentially reaching 50% due to climate change-driven heat events. This study aimed to evaluate sustainable strategies to mitigate or reduce sunburn on ‘Gala Galaxy Selecta’ apple trees. Field trials conducted [...] Read more.
Fruit sunburn is a major abiotic stress limiting apple production worldwide, with losses potentially reaching 50% due to climate change-driven heat events. This study aimed to evaluate sustainable strategies to mitigate or reduce sunburn on ‘Gala Galaxy Selecta’ apple trees. Field trials conducted in summer 2021 compared eight treatments: silicon-based application (Eckosil®), foliar fertilization with algae extracts, macro- and micronutrients, and amino acids, increased irrigation (+35% ETc), mineral particle films (Surround®, Vegepron Sun®, Agrowhite®, Sunstop®), and an untreated control. Randomized block designs with replicates were used. Agronomic parameters, including particle film coverage, trunk cross-sectional area, yield, and fruit quality (color, sunburn incidence, firmness, soluble solids content, dry matter, starch), were measured at harvest. Physiological responses, such as net photosynthesis, maximum quantum yield of Photosystem II, specific leaf area, fruit surface temperature, photoprotective pigments, antioxidants, and heat shock protein gene expression, were also assessed. Foliar fertilization, Agrowhite®, and water reinforcement produced the highest yield per trunk cross-sectional area, with increased soluble solids content and enhanced red pigmentation. Surround® minimized sunburn incidence but reduced photosynthetic activity, as did Vegepron Sun®. Agrowhite® balanced sunburn protection with maintenance of fruit quality and physiological function. These findings provide practical guidance for growers to select effective treatments, balancing sunburn mitigation, fruit quality, and tree physiological performance, while offering researchers insights into integrating agronomic and physiological strategies for climate-resilient apple production. Full article
Show Figures

Figure 1

18 pages, 2106 KB  
Article
Insights into Thai and Foreign Hemp Seed Oil and Extracts’ GC/MS Data Re-Analysis Through Learning Algorithms and Anti-Aging Properties
by Suthinee Sangkanu, Thanet Pitakbut, Sathianpong Phoopha, Jiraporn Khanansuk, Kasemsiri Chandarajoti and Sukanya Dej-adisai
Foods 2025, 14(21), 3739; https://doi.org/10.3390/foods14213739 - 31 Oct 2025
Viewed by 102
Abstract
This study successfully established a novel discriminative model that distinguishes between Thai and foreign hemp seed extracts based on gas chromatography/mass spectrometry (GC/MS) metabolic profiling combined with machine learning algorithms such as hierarchy clustering analysis (HCA), principal component analysis (PCA), and partial least [...] Read more.
This study successfully established a novel discriminative model that distinguishes between Thai and foreign hemp seed extracts based on gas chromatography/mass spectrometry (GC/MS) metabolic profiling combined with machine learning algorithms such as hierarchy clustering analysis (HCA), principal component analysis (PCA), and partial least square-discriminant analysis (PLS-DA). The findings highlighted significant metabolic features, such as vitamin E, clionasterol, and linoleic acid, related with anti-aging properties via elastase inhibition. Our biological validation experiment revealed that the individual compound at 2 mg/mL exhibited a moderate elastase inhibitory activity, 40.97 ± 1.80% inhibition (n = 3). However, a binary combination among these metabolites at 1 mg/mL of each compound demonstrated a synergistic effect against elastase activities up to 89.76 ± 1.20% inhibition (n = 3), showing 119% improvement. Molecular docking experiments aligned with biological results, showing strong binding affinities and enhanced inhibitory effects in all combinations. This integrated approach provided insights into the bioactive compounds responsible for anti-aging effects and established a dependable framework for quality control and standardization of hemp seed-based skincare products. Additionally, the developed models enable effective discrimination between Thai and foreign strains, which is valuable for sourcing and product consistency. Overall, this research advances our understanding of hemp seed phytochemicals and their functional potential, paving the way for optimized natural anti-aging formulations and targeted functional foods. Full article
Show Figures

Figure 1

22 pages, 2507 KB  
Article
Analysis of Process Intensification Impact on Circular Economy in Levulinic Acid Purification Schemes
by Tania Itzel Serrano-Arévalo, Heriberto Alcocer-García, César Ramírez-Márquez and José María Ponce-Ortega
Processes 2025, 13(11), 3496; https://doi.org/10.3390/pr13113496 - 30 Oct 2025
Viewed by 286
Abstract
This study presents a comprehensive evaluation of levulinic acid purification schemes from a circular economy perspective, integrating resource-based indicators with economic and environmental metrics. Twelve alternatives, ranging from conventional distillation sequences to intensified hybrid systems, were assessed using indicators such as Relative Material [...] Read more.
This study presents a comprehensive evaluation of levulinic acid purification schemes from a circular economy perspective, integrating resource-based indicators with economic and environmental metrics. Twelve alternatives, ranging from conventional distillation sequences to intensified hybrid systems, were assessed using indicators such as Relative Material Impact, total annual cost, Eco-Indicator 99, fuel demand, and CO2 emissions. The novelty of this work lies in extending the assessment beyond purification infrastructure to include upstream systems that supply energy demand, such as fuel extraction and steam generation. The configurations considered incorporate thermal couplings, dividing wall columns, and decanters, which influence energy efficiency, process complexity, and resource depletion. Among these, the TDWS-D configuration (Thermally Coupled Double Dividing Wall Column System with Decanter) exhibits the highest values in DMR, TAC, and CO2 emissions, driven by its elevated energy demand and complex infrastructure. Conversely, the TCS2 configuration (Thermally Coupled Sequence, featuring selective heat integration between distillation columns) achieves the lowest impact across all metrics, demonstrating that selective and strategic intensification (rather than maximalist design) can yield superior sustainability outcomes. Across all scenarios, the boiler stage was identified as the main contributor to material depletion, followed by fuel extraction and purification equipment. Notably, some conventional designs proved superior to intensified ones in terms of circularity, challenging the assumption that intensification inherently guarantees sustainability. Overall, the integration of circular economy indicators enables a multidimensional evaluation framework that supports more responsible and resource-efficient process design. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

20 pages, 3233 KB  
Article
Skin Performance of Innovative NaDES-Based Gels: In Vivo Evaluation of Anti-Irritation Potential and Short-Term Efficacy
by Milica Martinović, Ivana Nešić, Vanja M. Tadić, Ana Žugić, Marija Tasić-Kostov, Slavica Blagojević and Tomislav Tosti
Gels 2025, 11(11), 869; https://doi.org/10.3390/gels11110869 - 30 Oct 2025
Viewed by 79
Abstract
Natural deep eutectic solvents (NaDES) represent novel biodegradable green extraction solvents obtained from natural metabolites such as sugars and organic acids. NaDES-based extracts have demonstrated better performance in in vitro assays compared to those obtained using conventional solvents. In this study, extracts of [...] Read more.
Natural deep eutectic solvents (NaDES) represent novel biodegradable green extraction solvents obtained from natural metabolites such as sugars and organic acids. NaDES-based extracts have demonstrated better performance in in vitro assays compared to those obtained using conventional solvents. In this study, extracts of bilberry leaves (BL), bilberry fruits (BF), and green tea leaves (TL) were prepared using the following NaDES, respectively—malic acid + glycerol (MG), citric acid + sorbitol (CS), and tartaric acid + sorbitol (TS), whose formation was confirmed via FTIR spectroscopy. With the aim to evaluate the effect of gels loaded with NaDES extracts on skin biophysical parameters 2 h prior their application, as well as their anti-irritation potential against sodium lauryl sulfate–induced irritation, an in vivo study involving human volunteers was conducted. The results indicated that all extract-loaded gels exhibited notable anti-irritation potential, reducing artificially induced irritation and improving elevated skin parameters including transepidermal water loss (TEWL), erythema index (EI), and pH. The ΔTEWL at CS–BF site was 8.20 ± 0.34, while at TS–TL was 5.63 ± 0.30. The short-term efficacy study revealed increased skin hydration across all treated sites, preservation of skin pH within physiological limits, and reduction in EI at the site treated with TS–TL gel. Further in vivo studies are planned for confirming long-term skin effects. Full article
(This article belongs to the Special Issue Designing Hydrogels for Sustained Delivery of Therapeutic Agents)
Show Figures

Graphical abstract

17 pages, 557 KB  
Article
Sustainable Valorization of Grape Pomace in Sheep Through Systemic Health, Metabolic Safety, Milk and Meat Quality
by Gabriella Guelfi, Piermario Mangili, Francesca Mercati, David Ranucci, Silvia Crotti, Muhammad Tuseef, Gianluca Veneziani, Vicente Francisco Ratto, Camilla Capaccia, Francesco Ciancabilla, Margherita Maranesi and Cecilia Dall’Aglio
Int. J. Mol. Sci. 2025, 26(21), 10578; https://doi.org/10.3390/ijms262110578 - 30 Oct 2025
Viewed by 110
Abstract
Grape pomace (GP), a by-product of winemaking, is rich in polyphenols and fiber, making it a promising and sustainable feed supplement for ruminants. This study evaluated the safety and productive impact of a 5% GP-supplemented diet (GP5) including non-lactating end-cycle (EC) ewes regularly [...] Read more.
Grape pomace (GP), a by-product of winemaking, is rich in polyphenols and fiber, making it a promising and sustainable feed supplement for ruminants. This study evaluated the safety and productive impact of a 5% GP-supplemented diet (GP5) including non-lactating end-cycle (EC) ewes regularly destined for slaughter and human consumption, and lactating (LAC) ewes, over a 30-day period. Control (CTRL) animals received a standard pellet diet with no GP inclusion. Sampling was performed at four time points (T0, T10, T20, and T30), corresponding to days 0, 10, 20, and 30 of the experimental period. The study assessed clinical status, hematology/biochemistry (T0 and T30), milk composition (T0, T10, T20, and T30), meat quality traits and oxidative stability in EC ewes (T30). Since no significant differences were observed in the CTRL animals, the effects were evaluated within the GP5 group by comparing T0 vs. T30. Meat quality was assessed by comparing EC-GP5 to CTRL at T30. The GP extract showed a high total phenolic content (254.02 ± 20.39 mg GAE/g DW). No clinical or hematological alterations were observed, and most values remained within physiological ranges. Biochemical analysis revealed significant increases in albumin, bilirubin, creatinine, and triglycerides (p < 0.05), with significant decreases in plasma urea and glucose (p < 0.05). In LAC-GP5 ewes, milk urea and lactose concentrations decreased (p < 0.05), while pH increased (p < 0.05), with no significant changes in fat or casein content. These findings are consistent with reduced ruminal propionate availability, leading to decreased hepatic gluconeogenesis and lactose synthesis, with secondary effects on nitrogen metabolism and the acid–base profile of milk. In EC-GP5 ewes, meat quality traits were unaffected, and DPPH scavenging activity did not differ from CTRL (p > 0.05). GP5 was metabolically safe, induced adaptive changes in milk composition, and had no negative effects on meat quality, supporting the valorization of grape pomace as a sustainable feed resource. This trial was designed as a metabolic safety assessment, representing a preliminary step toward future mechanistic and molecular investigations. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

21 pages, 549 KB  
Article
Optimisation of a One-Step Reusable Immuno-Affinity Purification Method for the Analysis and Detection of Fumonisin Mycotoxins in Foods and Feeds
by Christian Kosisochukwu Anumudu
Toxins 2025, 17(11), 538; https://doi.org/10.3390/toxins17110538 - 30 Oct 2025
Viewed by 147
Abstract
Fumonisins are among the most prevalent mycotoxins in maize and maize-based products, posing significant food safety and public health risks due to their hepatotoxic, nephrotoxic, and potential carcinogenic effects. Given the strict regulatory limits set by the European Commission and Codex Alimentarius, the [...] Read more.
Fumonisins are among the most prevalent mycotoxins in maize and maize-based products, posing significant food safety and public health risks due to their hepatotoxic, nephrotoxic, and potential carcinogenic effects. Given the strict regulatory limits set by the European Commission and Codex Alimentarius, the development of reliable, sensitive, and matrix–robust analytical methods remain a priority for routine monitoring in both food and feed systems. In this study, a reusable immuno-affinity purification methodology for the quantitative determination of fumonisin mycotoxins (FB1, FB2 and FB3) in foods and feeds (maize matrix) was developed. A single extraction protocol using 2% formic acid in water was employed, followed by cleanup with an immuno-affinity purification column and toxin elution by methanol/PBS (1:1, v/v). Detection and quantification of the mycotoxins was achieved by a normal phase ultra-high performance liquid chromatography coupled with electrospray ionisation triple quadrupole mass spectrometry (UHPLC/ESI-MS/MS). The chromatographic mobile phase utilised was a linear gradient of methanol/water containing 0.1% formic acid. The developed method has a limit of detection of 2.5 ng/g and a limit of quantification of 5 ng/g, all well below the European commission’s guidance values of 1000 ng/g for corn destined for human consumption and 800 ng/g for maize-based breakfast cereals and snacks. While the recovery rates of the method in this study ranged from 65–70% for the three fumonisin analogues in solutions, when tested in maize matrix, recoveries were markedly lower (~30%) due to pronounced matrix suppression. Good repeatability (standard deviation <10%) was achieved for all the fumonisin analogues. The developed method, although quick and effective in solvent systems, suffered limitations to its practical usage due to matrix suppression of the extracts derived from the immuno-affinity purification column, thus significantly reducing the application of the method in measuring fumonisin mycotoxins in food and feed samples. Overall, the method was effective in quantification of fumonisin mycotoxins in solvent solutions but not in food and feed matrices, thus necessitating further optimisation for practical usage. The performance of the developed method was compared to a commercial lateral flow immunochromatographic assay which proved to be better than the developed method in the quantification of toxins in food matrices, as the commercial lateral flow immunochromatographic assay outperformed the developed method in maize matrices. These findings highlight the need for matrix-based validation and further refinement of antibody stability to ensure robust application in regulatory monitoring of fumonisins using immunoaffinity purification methods. Full article
Show Figures

Figure 1

19 pages, 2706 KB  
Article
Sustainable Grape Antioxidant Dietary Fiber Preserves Proximal Colonic Homeostasis via Hsp27 and AMPK Signaling
by Paula Ortega-Menéndez, Marina Hernández-Martín, Silvina Rosa Drago, Carlos Guillén, Jara Pérez-Jiménez, Dulcenombre Gómez-Garre, Luis Rivera, Verónica Azcutia and María Elvira López-Oliva
Int. J. Mol. Sci. 2025, 26(21), 10564; https://doi.org/10.3390/ijms262110564 - 30 Oct 2025
Viewed by 237
Abstract
The colonic epithelium renews rapidly and must balance proliferation with apoptosis to preserve barrier integrity. We investigated whether grape antioxidant dietary fiber (GADF), a grape pomace-derived dietary fiber matrix naturally rich in high molecular weight non-extractable polyphenols, modulates barrier integrity, through proliferation/cell cycle [...] Read more.
The colonic epithelium renews rapidly and must balance proliferation with apoptosis to preserve barrier integrity. We investigated whether grape antioxidant dietary fiber (GADF), a grape pomace-derived dietary fiber matrix naturally rich in high molecular weight non-extractable polyphenols, modulates barrier integrity, through proliferation/cell cycle and apoptosis. To gain mechanistic insight, we examined the role of heat-shock proteins (Hsps), and AMP-activated protein kinase (AMPK)–mTOR–lipid-metabolism signaling in healthy proximal colon. Male Wistar rats received either a cellulose-based control diet or an isoenergetic diet where cellulose was replaced with 5% GADF for four weeks. Morphometric analysis, immunohistochemistry, Western blotting, TUNEL, and caspase activity assays quantified cell cycle, apoptotic, Hsps, and metabolic pathways. GADF strengthened the epithelial barrier, increasing goblet cells, occludin, and ZO-1, while reducing crypt depth. Proliferation was suppressed, as indicated by reduced PCNA, cyclins E and D1, and higher p-p53Ser392, p21Cip1/Waf1, and p27Kip1 levels, consistent with G1 arrest. Apoptosis was attenuated, with increased mitochondrial Bcl-2/Bax and Bcl-xL/Bax ratios, lower cytosolic cytochrome c and apoptosis-inducing factor (AIF), and reduced caspase-9 and caspase-3 activities. Hsp27, but not Hsp70, was selectively induced. GADF activated AMPK and p-Raptor, enhanced ACC1 phosphorylation and CPT1, and supported a shift toward fatty acid β-oxidation. Correlation analysis revealed a strong association between Hsp27 and p-p53Ser392, suggesting potential links between barrier proteins and metabolic pathways. In conclusion, GADF preserves barrier integrity and redirects metabolism via AMPK–Hsp27 signaling, thereby promoting colonic homeostasis. These findings highlight grape pomace as a sustainable source of functional ingredients for nutritional strategies to reinforce epithelial defenses and reduce disease risk. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

Back to TopTop