Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = acephate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2411 KiB  
Article
Acephate Exposure Induces Transgenerational Ovarian Developmental Toxicity by Altering the Expression of Follicular Growth Markers in Female Rats
by Abeer Alhazmi, Saber Nahdi, Saleh Alwasel and Abdel Halim Harrath
Biology 2024, 13(12), 1075; https://doi.org/10.3390/biology13121075 - 20 Dec 2024
Viewed by 1084
Abstract
Acephate is an organophosphate foliar and soil insecticide that is used worldwide. In this study, the transgenerational ovarian developmental toxicity caused by acephate, along with its in utero reprogramming mechanisms, were explored. Thirty female virgin Wistar albino rats were randomly assigned to three [...] Read more.
Acephate is an organophosphate foliar and soil insecticide that is used worldwide. In this study, the transgenerational ovarian developmental toxicity caused by acephate, along with its in utero reprogramming mechanisms, were explored. Thirty female virgin Wistar albino rats were randomly assigned to three groups: one control group and two acephate treatment groups. The treatment groups received daily low or high doses of acephate (34.2 mg/kg or 68.5 mg/kg body weight, respectively) from gestational day 6 until spontaneous labor, resulting in F1 offspring. At 28 days, a subgroup of F1 females were euthanized. The ovaries were extracted, thoroughly cleaned, and weighed before being fixed for further analysis. The remaining F1 females were mated with normal males to produce the F2 generation. The F1 female offspring presented reduced fertility and body weight, whereas the ovarian weight index and sex ratio increased in a dose-dependent manner. Structural analysis revealed altered follicular abnormalities with ovarian cells displaying pyknotic nuclei. Additionally, the gene and protein expression of Cyp19 decreased, whereas that of Gdf-9 increased in the high-dose treatment group (68.5 mg/kg). We also observed significantly increased expression levels of ovarian estrogen receptor 1 (Esr1) and insulin-like growth factor 1 (Igf1), whereas Insl3 expression was significantly decreased. The F2 female offspring presented reproductive phenotype alterations similar to those of F1 females including decreased fertility, reduced Cyp19 gene and protein expression, and structural ovarian abnormalities similar to those of polycystic ovary syndrome (PCOS). In conclusion, acephate induced ovarian developmental toxicity across two generations of rats, which may be linked to changes in the ovarian Cyp19, Gdf9, Insl3, and Igf1 levels. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

13 pages, 761 KiB  
Article
Insecticide Susceptibilities and Enzyme Activities of Four Stink Bug Populations in Mississippi, USA
by Yuzhe Du, Shane Scheibener, Yu-Cheng Zhu, K. Clint Allen and Gadi V. P. Reddy
Insects 2024, 15(4), 265; https://doi.org/10.3390/insects15040265 - 12 Apr 2024
Cited by 3 | Viewed by 1718
Abstract
In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: [...] Read more.
In Mississippi, the Pentatomidae complex infesting soybean is primarily composed of Euschistus servus, Nezara viridula, Chinavia hilaris, and Piezodorus guildinii. This study employed spray bioassays to evaluate the susceptibilities of these stink bugs to seven commonly used formulated insecticides: oxamyl, acephate, bifenthrin, λ-cyhalothrin, imidacloprid, thiamethoxam, and sulfoxaflor. Stinks bugs were collected from soybeans in Leland, MS, USA during 2022 and 2023, as well as from wild host plants in Clarksdale, MS. There was no significant difference in the susceptibility of C. hilaris to seven insecticides between two years, whereas P. guildinii showed slightly increased susceptibility to neonicotinoids in 2023. Among all four stink bug species, susceptibility in 2022 was ranked as P. guildiniiC. hilarisN. viridula, while in 2023, it was ranked as P. guildiniiC. hilarisE. Servus. Additionally, populations of E. servus and P. guildinii collected from Clarksdale exhibited high tolerance to pyrethroids and neonicotinoids. Moreover, populations of E. servus and P. guildinii from SIMRU-2022 and Clarksdale-2023 showed elevated esterase and cytochrome P450 activity, respectively. These findings from spray bioassays and enzyme activity analyses provide a baseline for monitoring insecticide resistance in Pentatomidae and can guide insecticide resistance management strategies for Mississippi soybean. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Insecticide Resistance)
Show Figures

Figure 1

16 pages, 1425 KiB  
Article
Efficacy of Conventional and Biorational Insecticides against the Invasive Pest Thrips parvispinus (Thysanoptera: Thripidae) under Containment Conditions
by Livia M. S. Ataide, German Vargas, Yisell Velazquez-Hernandez, Isamar Reyes-Arauz, Paola Villamarin, Maria A. Canon, Xiangbing Yang, Simon S. Riley and Alexandra M. Revynthi
Insects 2024, 15(1), 48; https://doi.org/10.3390/insects15010048 - 10 Jan 2024
Cited by 8 | Viewed by 8124
Abstract
In 2020, the invasive Thrips parvispinus (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly [...] Read more.
In 2020, the invasive Thrips parvispinus (Karny) was first detected in Florida, United States. In response to the implemented regulatory restrictions, we conducted laboratory experiments under containment conditions. Thrips larvae and adults were exposed to 32 products (conventional and biorational insecticides) either directly or indirectly. Direct exposure was performed using a Spray Potter Tower, while indirect exposure was conducted by evaluating residue toxicity against the thrips. Water served as a control. We assessed mortality and leaf-feeding damage 48 h post-treatment. Among the conventional insecticides, chlorfenapyr, sulfoxaflor-spinetoram, and spinosad caused high mortality across all stages in both direct and residue toxicity assays. Pyridalyl, acetamiprid, tolfenpyrad, cyclaniliprole-flonicamid, acephate, novaluron, abamectin, cyantraniliprole, imidacloprid, cyclaniliprole, spirotetramat, and carbaryl displayed moderate toxicity, affecting at least two stages in either exposure route. Additionally, chlorfenapyr, spinosad, sulfoxaflor-spinetoram, pyridalyl, acetamiprid, cyclaniliprole, cyclaniliprole-flonicamid, abamectin, and acephate inhibited larvae and adult’s leaf-feeding damage in both direct and residue toxicity assays. Regarding biorational insecticides, mineral oil (3%) and sesame oil caused the highest mortality and lowest leaf-feeding damage. Greenhouse evaluations of spinosad, chlorfenapyr, sulfoxaflor-spinetoram, and pyridalyl are recommended. Also, a rotation program incorporating these products, while considering different modes of action, is advised for ornamental growers to avoid resistance and to comply with regulations. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

18 pages, 4991 KiB  
Article
Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy
by Afoua Mufti, Anouar Feriani, María del Mar Contreras, Saber Nehdi, Najla Hfaeidh, Nizar Tlili and Abdel Halim Harrath
Life 2023, 13(12), 2254; https://doi.org/10.3390/life13122254 - 25 Nov 2023
Cited by 1 | Viewed by 1861
Abstract
The aim of the current work was to examine for the first time the nephropreventive capacity of Ephedra alata seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that E. alata supplementation for 28 days (40 [...] Read more.
The aim of the current work was to examine for the first time the nephropreventive capacity of Ephedra alata seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that E. alata supplementation for 28 days (40 mg/kg b.w.) significantly attenuated the nephrotoxicity in adult offspring induced by acephate. In fact, it decreased the levels of creatinine and uric acid and increased the albumin content compared to the intoxicated group. The in utero studies showed that E. alata inhibited the renal oxidative stress generated by acephate exposure by reducing lipid peroxidation and enhancing antioxidant biomarker activities (GSH, CAT, and SOD). The inhibition of DNA fragmentation and the improvement of the ultrastructural changes highlighted the prophylactic effect of E. alata in renal tissue. Additionally, the immunofluorescence study showed the upregulation of LC3 gene expression, suggesting the capacity of E. alata extract to stimulate autophagic processes as a protective mechanism. Molecular docking analysis indicated that hexadecasphinganine, the major compound in E. alata, has a higher affinity toward the Na+/K+-ATPase, epithelial sodium channel (ENaC), and sodium hydrogen exchanger 3 (NHE3) genes than acephate. Hexadecasphinganine could be considered a potential inhibitor of the activity of these genes and therefore exerted its preventive capacity. The obtained findings confirmed that E. alata seed extract exerted nephropreventive capacities, which could be related to its bioactive compounds, which possess antioxidant activities. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

17 pages, 1499 KiB  
Article
Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae)
by Geovanny Barroso, Lucas Lorena Godoy, Fernando Henrique Iost Filho, Mariana Yamada, Emile Dayara Rabelo Santana, Juliano de Bastos Pazini, Luana Vitória de Queiroz Oliveira and Pedro Takao Yamamoto
Agronomy 2023, 13(4), 1061; https://doi.org/10.3390/agronomy13041061 - 5 Apr 2023
Cited by 4 | Viewed by 3538
Abstract
Pesticides are commonly used to control weeds, diseases, and pests in soybean crops, although natural enemies are also key components of integrated pest management programs protecting soybean from pests. The predatory mite Neoseiulus idaeus Denmark & Muma is commonly found in soybeans associated [...] Read more.
Pesticides are commonly used to control weeds, diseases, and pests in soybean crops, although natural enemies are also key components of integrated pest management programs protecting soybean from pests. The predatory mite Neoseiulus idaeus Denmark & Muma is commonly found in soybeans associated with tetranychid mites. We determined the compatibility of some pesticides used in Brazilian soybean fields with N. idaeus on the basis of their lethal and sub-lethal effects. We assessed the acute toxicity of pesticides that are considered harmless to females of N. idaeus and evaluated the effects on the mite offspring. Acephate as well as imidacloprid and bifenthrin were most toxic to adult females and were classified as harmful. Chlorfenapyr, indoxacarb, and the neonicotinoid and pyrethroid mixtures were classified as slightly to moderately harmful. Immatures of N. idaeus were able to develop and reach the adult stage when treated with chlorantraniliprole, flubendiamide, glyphosate, and teflubenzuron, but immature survival was reduced to 42 and 64% for offspring of females treated with chlorantraniliprole or teflubenzuron, respectively. Reproduction was most affected in females exposed to chlorantraniliprole and teflubenzuron; these females had daily oviposition rates of 0.5 and 0.4 egg/female/day, respectively, and mean fecundities of 2.7 and 5.8 eggs/female, respectively. On the basis of sublethal effects and life table parameters, chlorantraniliprole was classified as moderately harmful, while the other pesticides tested were classified as harmless. In considering the use of pesticides while targeting the conservation of N. idaeus as a predator of important pests in soybean crops, one must prioritize pesticides that will most likely have less harmful effects on this predator in the field. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

6 pages, 1634 KiB  
Proceeding Paper
Batch Adsorption Studies Incorporating Response Surface Methodology for the Elimination of Acephate
by R. Shiny Raj and K. Anoop Krishnan
Environ. Sci. Proc. 2023, 25(1), 98; https://doi.org/10.3390/ECWS-7-14309 - 3 Apr 2023
Cited by 5 | Viewed by 1351
Abstract
Banned pesticides are continuously preferred by the planters of the Idukki District irrespective of their toxicity. Among the banned pesticides, acephate is preferred because of its high solubility in water and persistent character. Unfortunately, it detriments the biota, leading to neurogenic, carcinogenic, and [...] Read more.
Banned pesticides are continuously preferred by the planters of the Idukki District irrespective of their toxicity. Among the banned pesticides, acephate is preferred because of its high solubility in water and persistent character. Unfortunately, it detriments the biota, leading to neurogenic, carcinogenic, and physiological disorders in fish. The plantation near the Periyar River basin is contaminated with residues of pesticides, which eventually drain into the river. There is an urgent need for the removal of acephate. Therefore, we have focused on the removal of acephate into the lab scale. Batch adsorption studies were carried out for the removal of acephate. We selected a material Fe-MMT (Fe3O4-montmorillonite), which is benign and possesses a high adsorption capacity towards acephate. Adsorbent properties were examined by various analytical tools XRD, SEM, FTIR, and a Surface area analyzer. Adsorption followed Langmuir with first-order kinetic. Kinetic plots exhibited multistage adsorption, indicating film diffusion and pore diffusion during the adsorption or the mechanism of adsorption is chemisorption, physisorption, and Lewis’s acid-base interaction. Response surface methodology involving CCD (central composite design) was extracted to maximize the adsorption of acephate onto Fe-MMT. Dosage and concentration seem to be the major parameters that influenced the adsorption. Adsorption achieved a peak (83.18%) at optimum conditions corresponding to pH 6, initial acephate concentration of 2 mg/L, and adsorbent dosage corresponding to 0.5 g/L. Full article
(This article belongs to the Proceedings of The 7th International Electronic Conference on Water Sciences)
Show Figures

Figure 1

21 pages, 1724 KiB  
Article
Monitoring Moroccan Honeys: Physicochemical Properties and Contamination Pattern
by Abir Massous, Tarik Ouchbani, Vincenzo Lo Turco, Federica Litrenta, Vincenzo Nava, Ambrogina Albergamo, Angela Giorgia Potortì and Giuseppa Di Bella
Foods 2023, 12(5), 969; https://doi.org/10.3390/foods12050969 - 24 Feb 2023
Cited by 29 | Viewed by 3461
Abstract
The physicochemical traits and an array of organic and inorganic contaminants were monitored in monofloral honeys (i.e., jujube [Ziziphus lotus], sweet orange [Citrus sinensis], PGI Euphorbia [Euphorbia resinifera] and Globularia alyphum) from the Moroccan Béni Mellal-Khénifra [...] Read more.
The physicochemical traits and an array of organic and inorganic contaminants were monitored in monofloral honeys (i.e., jujube [Ziziphus lotus], sweet orange [Citrus sinensis], PGI Euphorbia [Euphorbia resinifera] and Globularia alyphum) from the Moroccan Béni Mellal-Khénifra region (i.e., Khénifra, Beni Méllal, Azlal and Fquih Ben Salah provinces). Moroccan honeys were in line with the physicochemical standards set by the European Union. However, a critical contamination pattern has been outlined. In fact, jujube, sweet orange, and PGI Euphorbia honeys contained pesticides, such as acephate, dimethoate, diazinon, alachlor, carbofuran and fenthion sulfoxide, higher than the relative EU Maximum Residue Levels. The banned 2,3′,4,4′,5-pentachlorobiphenyl (PCB118) and 2,2′,3,4,4′,5,5′-heptachlorobiphenyl (PCB180) were detected in all samples and quantified in jujube, sweet orange and PGI Euphorbia honeys; while polycyclic aromatic hydrocarbons (PAHs), such as chrysene and fluorene, stood out for their higher contents in jujube and sweet orange honeys. Considering plasticizers, all honeys showed an excessive amount of dibutyl phthalate (DBP), when (improperly) considering the relative EU Specific Migration Limit. Furthermore, sweet orange, PGI Euphorbia and G. alypum honeys were characterized by Pb exceeding the EU Maximum Level. Overall, data from this study may encourage Moroccan governmental bodies to strengthen their monitoring activity in beekeeping and to find suitable solutions for implementing more sustainable agricultural practices. Full article
Show Figures

Figure 1

9 pages, 1063 KiB  
Communication
Selectivity of Insecticides to a Pupal Parasitoid, Trichospilus diatraeae (Hymenoptera: Eulophidae), of Soybean Caterpillars
by Helter Carlos Pereira, Fabricio Fagundes Pereira, Vitor Bortolanza Insabrald, Augusto Rodrigues, Jéssica Terilli Lucchetta, Farley William Souza Silva, Winnie Cezario Fernandes, Zenilda de Fatima Carneiro, Pedro Henrique Breda Périgo and José Cola Zanuncio
Insects 2023, 14(3), 217; https://doi.org/10.3390/insects14030217 - 22 Feb 2023
Viewed by 2152
Abstract
Selectivity is an important aspect of modern insecticides to be able to target pests whilst maintaining beneficial entomofauna in the crop. The present objective was to assess the selectivity of different insecticides for the pupal parasitoid of soybean caterpillars, i.e., Trichospilus diatraeae Cherian [...] Read more.
Selectivity is an important aspect of modern insecticides to be able to target pests whilst maintaining beneficial entomofauna in the crop. The present objective was to assess the selectivity of different insecticides for the pupal parasitoid of soybean caterpillars, i.e., Trichospilus diatraeae Cherian & Margabandhu, 1942 (Hymenoptera: Eulophidae). Acephate, azadirachtin, Bacillus thuringiensis (Bt), deltamethrin, lufenuron, teflubenzuron and thiamethoxam + lambda-cyhalothrin at the highest recommended concentrations for the soybean looper Chrysodeixis includens (Walker, [1858]) (Lepidoptera: Noctuidae), as well as water in the control, were used against the pupal parasitoid T. diatraeae. The insecticides and the control were sprayed on the soybean leaves, which were left to dry naturally and placed in cages with T. diatraeae females in each one. Survival data were submitted to analysis of variance (ANOVA) and the means were compared using Tukey’s HSD test (α = 0.05). Survival curves were plotted according to the Kaplan–Meier method, and the pairs of curves were compared using the log-rank test at 5% probability. The insecticides azadirachtin, Bt, lufenuron and teflubenzuron did not affect T. diatraeae survival, while deltamethrin and thiamethoxam + lambda-cyhalothrin presented low toxicity and acephate was highly toxic, causing 100% mortality in the parasitoid. Azadirachtin, Bt, lufenuron and teflubenzuron are selective for T. diatraeae and could be used in IPM programs. Full article
(This article belongs to the Collection Integrated Pest Management Strategies for Horticultural Crops)
Show Figures

Figure 1

18 pages, 2668 KiB  
Article
Environmental, Human and Ecotoxicological Impacts of Different Rice Cultivation Systems in Northern Thailand
by Patharanun Toolkiattiwong, Noppol Arunrat and Sukanya Sereenonchai
Int. J. Environ. Res. Public Health 2023, 20(3), 2738; https://doi.org/10.3390/ijerph20032738 - 3 Feb 2023
Cited by 15 | Viewed by 3971
Abstract
Sustainable practices in rice cultivation require effective farming management concerning environmental and human health impacts. In this study, three rice cultivation systems, namely low-land, upland, and terraced rice in the Mae Chaem District, Chiang Mai Province, were assessed and the carbon footprint (CF), [...] Read more.
Sustainable practices in rice cultivation require effective farming management concerning environmental and human health impacts. In this study, three rice cultivation systems, namely low-land, upland, and terraced rice in the Mae Chaem District, Chiang Mai Province, were assessed and the carbon footprint (CF), water footprint (WF), and human and ecotoxicological impacts were compared from pesticide application. The results showed that the highest CF intensity was observed in terraced rice with 1.15 kg CO2eq kg−1 rice yield, followed by lowland rice (1.02 kg CO2eq kg−1 rice yield) and upland rice (0.17 kg CO2eq kg−1 rice yield) fields. Moreover, lowland rice cultivation generated the highest total WF with 1701.6 m3 ton−1, followed by terraced rice (1422.1 m3 ton−1) and upland rice (1283.2 m3 ton−1). The lowland rice fields had the most impact on human health and freshwater ecotoxicity, followed by the terraced and upland rice cultivation systems. The results also showed that most of the pesticides remaining in soils were chlorpyrifos (98.88%), butachlor (96.94%), and fipronil (95.33%), respectively. The substances with the greatest distributions in freshwater were acephate (56.74%), glyphosate (50.90%), and metaldehyde (45.65%), respectively. This study indicated that, with more agricultural inputs, higher CF, WF, human health impacts, and freshwater ecotoxicity were generated. Although the use of pesticides in the study areas did not exceed the recommendations on the packaging, glyphosate and chlorpyrifos are restricted in Thailand, so it is necessary to monitor their use due to their long-term health effects. Full article
(This article belongs to the Special Issue Water, Health, and Environment)
Show Figures

Figure 1

13 pages, 3856 KiB  
Article
Maternal Exposure to Acephate Caused Nephrotoxicity in Adult Offspring Rats Mediated by Excessive Autophagy Activation, Oxidative Stress Induction, and Altered Epithelial Sodium Channel and Na+/K+-ATPase Gene Expression
by Afoua Mufti, Maroua Jalouli, Saber Nahdi, Nizar Tlili, Wadha Alqahtani, Lamjed Mansour, Saleh Alwasel and Abdel Halim Harrath
Biology 2023, 12(2), 162; https://doi.org/10.3390/biology12020162 - 20 Jan 2023
Cited by 4 | Viewed by 2383
Abstract
This study examined how maternal exposure to acephate—an organophosphate-based insecticide—affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low [...] Read more.
This study examined how maternal exposure to acephate—an organophosphate-based insecticide—affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low (14 mg/kg) and high (28 mg/kg) doses of acephate from day 6 of pregnancy until delivery, respectively. Further, the offspring of the adult female rats were euthanized in postnatal week 8. Compared with the controls, the adult rat offspring with exposure to low and high doses of acephate exhibited elevated plasma creatinine and blood urea nitrogen levels. Additionally, immunofluorescence analysis revealed the upregulation of autophagic marker genes (Beclin-1 and LC-3) in the acephate-treated rat offspring, thereby suggesting the induction of an autophagic mechanism. Notably, the increased malondialdehyde level, decreased glutathione level, and decreased superoxide dismutase and catalase activities confirmed the ability of acephate to induce oxidative stress and apoptosis in the kidneys of the rat offspring. This may explain the renal histopathological injury detected using hematoxylin and eosin staining. Furthermore, a reverse transcription polymerase chain reaction revealed that the mRNA expression levels of the Na+/K+-ATPase and the epithelial sodium channel (ENaC) genes were significantly higher in the kidney of female offspring than that of controls owing to acephate toxicity. However, there was no significant effect of acephate on the expression of NHE3 in the treatment group compared with the control group. Overall, the present findings suggest that oxidative stress caused by prenatal exposure to acephate causes nephrotoxicity and histopathological alterations in adult rat offspring, likely by actions on renal ENaC and Na+/K+-ATPase genes as well as the autophagic markers Beclin-1 and LC-3. Full article
Show Figures

Graphical abstract

10 pages, 1424 KiB  
Article
Response of Natural Enemies toward Selective Chemical Insecticides; Used for the Integrated Management of Insect Pests in Cotton Field Plots
by Amir Nadeem, Hafiz Muhammad Tahir, Azhar Abbas Khan, Atif Idrees, Muhammad Faisal Shahzad, Ziyad Abdul Qadir, Naveed Akhtar, Arif Muhammad Khan, Ayesha Afzal and Jun Li
Agriculture 2022, 12(9), 1341; https://doi.org/10.3390/agriculture12091341 - 30 Aug 2022
Cited by 8 | Viewed by 4331
Abstract
Sucking pests of cotton (Gossypium hirsutum L.), such as thrips, or Thrips tabaci Lindeman, and jassid, or Amrasca biguttula Ishida, are among the most threatening insect pests to young cotton plants in Pakistan. New chemical insecticides have been trialed to control their [...] Read more.
Sucking pests of cotton (Gossypium hirsutum L.), such as thrips, or Thrips tabaci Lindeman, and jassid, or Amrasca biguttula Ishida, are among the most threatening insect pests to young cotton plants in Pakistan. New chemical insecticides have been trialed to control their damage in commercial fields. Formulations that show good suppression of these pest’s populations, while sparing bio-controlling agents, are always preferred for obtaining better crop yield. Six different commercially available insecticides, namely Fountain® (fipronil and imidacloprid), Movento Energy® (spirotetramat and imidacloprid), Oshin® (dinotefuran), Concept Plus® (pyriproxyfen, fenpyroximate, and acephate), Maximal® (nitenpyram), and Radiant® (spinetoram) were evaluated in the present study to shortlist the best available insecticide against targeted pests. Harmful impacts of selected insecticides were also evaluated against naturally occurring predators, such as spiders and green lacewings (Chrysoperla carnea). Radiant® (spinetoram) and Movento Energy®, respectively, were best at controlling thrips (with 61% and 56% mortality, respectively) and jassid (62% and 57% mortality, respectively) populations during 2018 and 2019. Radiant® proved itself as the best option and showed minimal harmful effects on both major arthropod predators of cotton fields i.e., spiders (with 8–9% mortality) and green lacewings (with 12–16% mortality). Movento Energy® also showed comparatively less harmful effects (with 15–18% mortality) towards natural predatory fauna of cotton crops, as compared to other selective insecticides used in the study. The findings of current study suggest that the judicious use of target-oriented insecticides can be an efficient and predator-friendly management module in cotton fields. However, the impact of these chemicals is also depended on their timely application, keeping in consideration the ETL of pests and the population of beneficial arthropods. Full article
(This article belongs to the Special Issue Integrated Crop Management in Sustainable Agriculture)
Show Figures

Figure 1

46 pages, 7558 KiB  
Article
Hazard Assessment of the Effects of Acute and Chronic Exposure to Permethrin, Copper Hydroxide, Acephate, and Validamycin Nanopesticides on the Physiology of Drosophila: Novel Insights into the Cellular Internalization and Biological Effects
by Eşref Demir, Seyithan Kansız, Mehmet Doğan, Önder Topel, Gökhan Akkoyunlu, Muhammed Yusuf Kandur and Fatma Turna Demir
Int. J. Mol. Sci. 2022, 23(16), 9121; https://doi.org/10.3390/ijms23169121 - 14 Aug 2022
Cited by 9 | Viewed by 4011
Abstract
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its [...] Read more.
New insights into the interactions between nanopesticides and edible plants are required in order to elucidate their impacts on human health and agriculture. Nanopesticides include formulations consisting of organic/inorganic nanoparticles. Drosophila melanogaster has become a powerful model in genetic research thanks to its genetic similarity to mammals. This project mainly aimed to generate new evidence for the toxic/genotoxic properties of different nanopesticides (a nanoemulsion (permethrin nanopesticides, 20 ± 5 nm), an inorganic nanoparticle as an active ingredient (copper(II) hydroxide [Cu(OH)2] nanopesticides, 15 ± 6 nm), a polymer-based nanopesticide (acephate nanopesticides, 55 ± 25 nm), and an inorganic nanoparticle associated with an organic active ingredient (validamycin nanopesticides, 1177 ± 220 nm)) and their microparticulate forms (i.e., permethrin, copper(II) sulfate pentahydrate (CuSO4·5H2O), acephate, and validamycin) widely used against agricultural pests, while also showing the merits of using Drosophila—a non-target in vivo eukaryotic model organism—in nanogenotoxicology studies. Significant biological effects were noted at the highest doses of permethrin (0.06 and 0.1 mM), permethrin nanopesticides (1 and 2.5 mM), CuSO4·5H2O (1 and 5 mM), acephate and acephate nanopesticides (1 and 5 mM, respectively), and validamycin and validamycin nanopesticides (1 and 2.5 mM, respectively). The results demonstrating the toxic/genotoxic potential of these nanopesticides through their impact on cellular internalization and gene expression represent significant contributions to future nanogenotoxicology studies. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

14 pages, 5126 KiB  
Article
Rapid Quantitative Determination of Multiple Pesticide Residues in Mango Fruits by Surface-Enhanced Raman Spectroscopy
by Uyen Thu Pham, Quynh Huong Thi Phan, Linh Phuong Nguyen, Phuong Duc Luu, Tien Duy Doan, Ha Thu Trinh, Cuc Thi Dinh, Tai Van Nguyen, Toan Quoc Tran, Duy Xuan Le, Tri Nhut Pham, Truong Dang Le and Duong Thanh Nguyen
Processes 2022, 10(3), 442; https://doi.org/10.3390/pr10030442 - 22 Feb 2022
Cited by 18 | Viewed by 4356
Abstract
Imidacloprid, acephate, and carbaryl are common insecticides that are extensively used in planting mango, a well-known fruit in Vietnam, to ease mango hopper issues. The accurate detection of pesticide residues is critical for mango export to meet quality criteria. This study developed a [...] Read more.
Imidacloprid, acephate, and carbaryl are common insecticides that are extensively used in planting mango, a well-known fruit in Vietnam, to ease mango hopper issues. The accurate detection of pesticide residues is critical for mango export to meet quality criteria. This study developed a novel SERS platform by using polydimethylsiloxane (PDMS) to simulate the rose petal structure incorporated with a silver coating layer and silver nanoparticles (AgNPs) to detect imidacloprid, acephate, and carbaryl in mango fruits. In this paper, the rose petal PDMS/Ag-AgNPs replica was considered the most efficient substrate for SERS measurement with an EF of 4.7 × 107. The Raman spectra of the three insecticides obtained from the PDMS/Ag-AgNPs substrate were clearly observed with their characteristic peaks of 1105 cm−1 for imidacloprid, 1083 cm−1, and 1579 cm−1 for acephate, and 727 cm−1 and 1378 cm−1 for carbaryl. The application of PDMS/Ag-AgNPs substrate in quantitative analysis of the three pesticides in mango fruit was evaluated. As a result, the limit of detection was 0.02 mg/kg for imidacloprid, 5 × 10−5 mg/kg for acephate, and 5 × 10−3 mg/kg for carbaryl. The SERS result also revealed that the pesticide residues in the mango sample were within an acceptable limit. This suggested the possibility of the rose petal PDMS/Ag-AgNPs replica for rapid quantification of pesticide residues not only in mango fruit but also in many other agricultural products. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

11 pages, 1183 KiB  
Article
Kinetic Study of the Biodegradation of Acephate by Indigenous Soil Bacterial Isolates in the Presence of Humic Acid and Metal Ions
by Simranjeet Singh, Vijay Kumar, Sourav Singla, Minaxi Sharma, Dhananjaya P. Singh, Ram Prasad, Vijay Kumar Thakur and Joginder Singh
Biomolecules 2020, 10(3), 433; https://doi.org/10.3390/biom10030433 - 11 Mar 2020
Cited by 44 | Viewed by 4830
Abstract
Many bacteria have the potential to use specific pesticides as a source of carbon, phosphorous, nitrogen and sulphur. Acephate degradation by microbes is considered to be a safe and effective method. The overall aim of the present study was to identify acephate biodegrading [...] Read more.
Many bacteria have the potential to use specific pesticides as a source of carbon, phosphorous, nitrogen and sulphur. Acephate degradation by microbes is considered to be a safe and effective method. The overall aim of the present study was to identify acephate biodegrading microorganisms and to investigate the degradation rates of acephate under the stress of humic acid and most common metal ions Fe(III) and copper Cu(II). Pseudomonas azotoformanss strain ACP1, Pseudomonas aeruginosa strain ACP2, and Pseudomonas putida ACP3 were isolated from acephate contaminated soils. Acephate of concentration 100 ppm was incubated with separate strain inoculums and periodic samples were drawn for UV—visible, FTIR (Fourier-transform infrared spectroscopy) and MS (Mass Spectrometry) analysis. Methamidophos, S-methyl O-hydrogen phosphorothioamidate, phosphenothioic S-acid, and phosphenamide were the major metabolites formed during the degradation of acephate. The rate of degradation was applied using pseudo-first-order kinetics to calculate the half-life (t1/2) values, which were 14.33–16.72 d−1 (strain(s) + acephate), 18.81–21.50 d−1 (strain(s) + acephate + Cu(II)), 20.06 –23.15 d−1 (strain(s) + acephate + Fe(II)), and 15.05–17.70 d−1 (strains + acephate + HA). The biodegradation efficiency of the three bacterial strains can be ordered as P. aeruginosa > P. putida > P. azotoformans. The present study illustrated the decomposition mechanism of acephate under different conditions, and the same may be applied to the removal of other xenobiotic compounds. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

11 pages, 213 KiB  
Article
Evaluation of Tillage, At-Planting Treatment, and Nematicide on Tobacco Thrips (Thysanoptera: Thripidae) and Reniform Nematode (Tylenchida: Hoplolamidae) Management in Cotton
by Whitney D. Crow, Angus L. Catchot, Jeff Gore, Darrin M. Dodds, Donald R. Cook and Thomas W. Allen
Agronomy 2020, 10(2), 300; https://doi.org/10.3390/agronomy10020300 - 20 Feb 2020
Cited by 2 | Viewed by 2943
Abstract
There are numerous early-season pests of cotton, Gossypium hirsutum L., that are economically important, including tobacco thrips, Frankliniella fusca (Hinds), and reniform nematode, Rotylenchulus reniformis (Linford & Oliveira). Both of these species have the potential to reduce plant growth and delay crop maturity, [...] Read more.
There are numerous early-season pests of cotton, Gossypium hirsutum L., that are economically important, including tobacco thrips, Frankliniella fusca (Hinds), and reniform nematode, Rotylenchulus reniformis (Linford & Oliveira). Both of these species have the potential to reduce plant growth and delay crop maturity, ultimately resulting in reduced yields. A field study was conducted during 2015 and 2016 to evaluate the influence of tillage, at-planting insecticide treatment, and nematicide treatment on pest management, cotton development, and yield. Treatment factors consisted of two levels of tillage (no-tillage and conventional tillage); seven levels of at-planting insecticide treatments (imidacloprid, imidacloprid plus thiodicarb, thiamethoxam, thiamethoxam plus abamectin, acephate plus terbufos, aldicarb, and an untreated control); and two levels of nematicide (no nematicide and 1,3-dichloropropene). There were no significant interactions between tillage, at-planting insecticide treatment, or nematicide for any parameters nor was there a difference in the main effect of nematicide on thrips control or damage. The main effects of tillage and at-planting insecticide treatment impacted thrips densities and damage. The no-tillage treatments and aldicarb in-furrow or acephate seed treatment plus terbufos in-furrow significantly reduced thrips populations. Early-season plant response was impacted by tillage and at-planting insecticide treatment; however, that did not result in significant yield differences. In regard to nematicide treatment, the use of 1,3-dichloropropene resulted in lower yields than the untreated. Full article
(This article belongs to the Special Issue Integrating Pest Management into Agricultural Production Systems)
Back to TopTop