Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mites
2.2. Pesticides
2.3. Acute Toxicity to Adult Females
2.4. Sublethal Effects on Offspring
2.5. Data Analysis
3. Results
3.1. Acute Toxicity to Adult Females
3.2. Sublethal Effects on Offspring
3.2.1. Development Time and Survival Rates of Immature Stages
3.2.2. Reproductive Parameters and Adult Longevities
3.2.3. Population Growth Parameters
3.2.4. Age–Stage Survival Rate
3.3. Egg Viability
3.4. IOBC Sublethal Toxicity Classification
3.5. Morphological Characteristics of the Stages
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hartman, G.L.; West, E.D.; Herman, T.K. Soybean: Worldwide production, use, and constraints caused by pathogens and pests. Food Sec. 2011, 3, 5–17. [Google Scholar] [CrossRef]
- Voora, V.; Larrea, C.; Bermudez, S. Global Market Report: Soybeans; International Institute for Sustainable Development (IISD): Winnipeg, MB, Canada, 2020; Available online: https://www.jstor.org/stable/resrep26554 (accessed on 5 February 2023).
- Gaonkar, V.; Rosentrater, K.A. Chapter 4—Soybean. In Integrated Processing Technologies for Food and Agricultural By-Products; Pan, Z., Zhang, R., Zicari, S., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 73–104. [Google Scholar]
- Thrane, M.; Paulsen, P.V.; Orcutt, M.W.; Krieger, T.M. Soy protein: Impacts, production, and applications (Ch. 2). In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 23–45. [Google Scholar]
- USDA, United States Department of Agriculture. Foreign Agricultural Service, World Agricultural Production. Circular Series WAP 7–22 July 2022; Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 7 July 2022).
- CONAB, Companhia Nacional de Abastecimento. Acompanhamento da safra Brasileira de Grãos. Safra 2021/22, 10° Levantamento; Available online: https://www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos (accessed on 23 July 2022).
- Hoffmann-Campo, C.B.; Moscadi, F.; Corrêa-Ferreira, B.S.; Sosa-Gómez, D.R.; Panizzi, A.R.; Corso, I.C.; Gazzoni, D.L.; Oliveira, E.B. Pragas da Soja no Brasil e seu Manejo Integrado; Embrapa Soja: Londrina, Brazil, 2000; 70p. [Google Scholar]
- Bueno, R.C.O.F.; Bueno, A.F.; Moscardi, F.; Parra, J.R.P.; Hoffmann-Campo, C.B. Lepidopteran larva consumption of soybean foliage: Basis for developing multiple-species economic thresholds for pest management decisions. Pest Manag. Sci. 2011, 67, 170–174. [Google Scholar] [CrossRef] [Green Version]
- Bernardi, O.; Malvestiti, G.S.; Dourado, P.M.; Oliveira, W.S.; Martinelli, S.; Berger, G.U.; Head, G.P.; Omoto, C. Assessment of the high dose concept and level of control provided by MON 87701 × MON 89788 soybean against Anticarsia gemmatalis and Pseudoplusia includens (Lepidoptera: Noctuidae) in Brazil. Pest Manag. Sci. 2012, 68, 1083–1091. [Google Scholar] [CrossRef]
- Moscardi, F.; Bueno, A.F.; Sosa-Gómez, D.R.; Roggia, S.; Hoffmann-Campo, C.B.; Aline Pomari, F.; Corso, I.C.; Yano, S.A.C. Artrópodes que atacam as folhas da soja. In Soja: Manejo Integrado de Insetos e Outros Artrópodes-Praga; Hoffman-Campo, C.B., Côrrea-Ferreira, B.S., Moscardi, F., Eds.; Embrapa: Brasília, Brazil, 2012; pp. 213–334. [Google Scholar]
- Czepak, C.; Albernaz, K.C.; Vivan, L.M.; Guimarães, H.O.; Carvalhais, T. Primeiro registro de ocorrência de Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae) no Brasil. Pesqui. Agropecu. Bras. 2013, 43, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Justiniano, W.; Fernandes, M.G.; Viana, C.L.T.P. Diversity, composition and population dynamics of arthropods in the genetically modified soybeans Roundup Ready® RR1 (GT 40-3-2) and Intacta RR2 PRO® (MON87701 × 606 MON89788). J. Agric. Sci. 2014, 6, 33–44. [Google Scholar] [CrossRef]
- Stacke, R.F.; Arnemann, J.A.; Rogers, J.; Stacke, R.S.; Strahl, T.T.; Perini, C.R.; Dossin, M.F.; Pozebon, H.; Cavallin, L.A.; Guedes, J.V.C. Damage assessment of Helicoverpa armigera (Lepidoptera: Noctuidae) in soybean reproductive stages. Crop. Prot. 2018, 112, 10–17. [Google Scholar] [CrossRef]
- Panizzi, A.R.; McPherson, J.E.; James, D.G.; Javahery, M.; McPherson, R.M. Stink bugs (Pentatomidae). In Heteroptera of Economic Importance; Schaefer, C.W., Panizzi, A.R., Eds.; CRC Press: Boca Raton, FL, USA, 2000; pp. 421–474. [Google Scholar]
- Silva, F.A.C.; Da Silva, J.J.; Depieri, R.A.; Panizzi, A.R. Feeding Activity, Salivary Amylase Activity, and Superficial Damage to Soybean Seed by Adult Edessa meditabunda (F.) and Euschistus heros (F.) (Hemiptera: Pentatomidae). Neotrop. Entomol. 2012, 41, 386–390. [Google Scholar] [CrossRef] [Green Version]
- Smaniotto, L.F.; Panizzi, A.R. Interactions of Selected Species of Stink Bugs (Hemiptera: Heteroptera: Pentatomidae) from Leguminous Crops with Plants in the Neotropics. Fla. Entomol. 2015, 98, 7–17. [Google Scholar] [CrossRef]
- Sosa-Gómez, D.R.; Corrêa-Ferreira, B.S.; Kraemer, B.; Pasini, A.; Husch, P.E.; Vieira, C.E.D.; Martinez, C.B.R.; Lopes, I.O.N. Prevalence, damage, management and insecticide resistance of stink bug populations (Hemiptera: Pentatomidae) in commodity crops. Agric. For. Entomol. 2019, 22, 99–118. [Google Scholar] [CrossRef] [Green Version]
- Flechtmann, C.H.W. Ácaros de Importância Agrícola; Nobel: São Paulo, Brazil, 1972; 150p. [Google Scholar]
- Bolland, H.H.R.; Gutierrez, J.; Flechtmann, C.H.W. World Catalogue of the Spider Mite Family (Acari: Tetranychidae); Brill: Leiden, The Netherlands, 1998; 392p. [Google Scholar]
- Navia, D.; Flechtmann, C.H.W. Rediscovery and redescription of Tetranychus gigas (Acari, Prostigmata, Tetranychidae). Zootaxa 2004, 547, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Guedes, J.V.C.; Navia, D.; Lofego, A.C.; Dequech, S.T.B. Ácaros associados à cultura da soja no Rio Grande do Sul, Brasil. Neotrop. Entomol. 2007, 36, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Roggia, S.; Guedes, J.V.C.; Kuss, R.C.R.; Arnemann, J.A.; Navia, D. Spider mites associated to soybean in Rio Grande do Sul, Brazil. Pesqui. Agropecu. Bras. 2008, 43, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Rezende, J.M.; Lofego, A.C.; Návia, D.; Roggia, S. Mites (Acari: Mesostigmata, Sarcoptiformes and Trombidiformes) associated to soybean in Brazil, including new records from the cerrado areas. Fla. Entomol. 2012, 95, 683–693. [Google Scholar] [CrossRef]
- Cavalcante, A.C.C.; Demite, P.R.; Carneiro, M.E.S.; Nunes, L.S.; Pereira, A.I.A. Mites (Acari) associated with soybean culture (Glycine max), in the southeast region of Goiás state. Magistra 2018, 29, 266–272. [Google Scholar]
- Suekane, R.; Degrande, P.E.; de Melo, E.P.; Bertoncello, T.F.; Lima Junior, I.S.; Kodama, C. Damage level of the two-spotted spider mite Tetranychus urticae Koch (Acari: Tetranychidae) in soybeans. Rev. Ceres. 2018, 59, 77–81. [Google Scholar] [CrossRef]
- Arnemann, J.A.; Fiorin, R.A.; Perini, C.R.; Storck, L.; Curioletti, L.E.; Nachman, G.; Guedes, J.V. Density and growth rates of spider mites in relation to phonological stages of soybean cultivars in Brazil. Exp. Appl. Acarol. 2015, 67, 423–440. [Google Scholar] [CrossRef]
- Arnemann, J.A.; Fiorini, R.A.; Guedes, J.V.C.; Pozebon, H.; Marques, R.F.; Perini, R.C.; Storck, L. Assessment of damage caused by the spider mite Mononychellus planki (McGregor) on soybean cultivars in South America. Aust. J. Crop Sci. 2018, 12, 1989–1996. [Google Scholar] [CrossRef]
- Padilha, G.; Fiorini, R.A.; Cargnelutti Filho, A.; Pozebon, H.; Rogers, J.; Marques, R.P.; Castilhos, L.B.; Donatti, A.; Stefanelo, L.; Burtet, L.M.; et al. Damage assessment and economic injury level of the two-spotted spider mite Tetranychus urticae in soybean. Pesqui. Agropecu. Bras. 2020, 55, e01836. [Google Scholar] [CrossRef]
- Talebi, K.; Hosseininaveh, V.; Ghadamyari, M. Ecological impacts of pesticides in agricultural ecosystem. In Pesticides in the Modern World—Risks and Benefits; Stoytcheva, M., Ed.; IntechOpen: London, UK, 2011; pp. 8–169. Available online: https://www.intechopen.com/books/431 (accessed on 13 December 2022).
- Guedes, R.N.; Smagghe, G.; Stark, J.D.; Desneux, D. Pesticide induced stress in arthropod pests for optimized integrated pest management programs. Annu. Rev. Entomol. 2016, 61, 43–62. [Google Scholar] [CrossRef] [Green Version]
- Kogan, M. Integrated Pest Management: Historical Perspectives and Contemporary Developments. Annu. Rev. Entomol. 1998, 43, 243–270. [Google Scholar] [CrossRef]
- Ehler, L.E. Perspective Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Manag. Sci. 2006, 62, 787–789. [Google Scholar] [CrossRef] [PubMed]
- Panizzi, A.R. History and Contemporary Perspectives of the Integrated Pest Management of Soybean in Brazil. Neotrop. Entomol. 2013, 42, 119–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMurtry, J.A.; Croft, B.A. Life-styles of phytoseiid mites and their roles in biological control. Annu. Rev. Entomol. 1997, 42, 291–321. [Google Scholar] [CrossRef] [PubMed]
- Gerson, U.; Smiley, R.L.; Ochoa, R. Mites (Acari) for Pest Control; Blackwell Science: Oxford, UK, 2003; 539p. [Google Scholar]
- McMurtry, J.A.; de Moraes, G.J.; Sourasso, N.F. Revision of the lifestyles of phytoseiid mites (Acari: Phytoseiidae) and implications for biological control strategies. Syst. Appl. Acarol. 2013, 18, 297–320. [Google Scholar] [CrossRef] [Green Version]
- McMurtry, J.A.; Sourassou, N.F.; Demite, P. The Phytoseiidae (Acari: Mesostigmata) as biological control agents. In Prospects for Biological Control of Plant Feeding Mites and Other Harmful Organisms; Carrillo, D., de Moraes, G.J., Peña, J., Eds.; Springer: Cham, UK, 2015; pp. 133–149. [Google Scholar]
- Demite, P.R.; McMurtry, J.A.; de Moraes, G.J. Phytoseiidae Database: A website for taxonomic and distributional information on phytoseiid mites (Acari). Zootaxa 2014, 3795, 571–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demite, P.R.; de Moraes, G.J.; McMurtry, J.A.; Denmark, H.A.; Castilho, R.C. Phytoseiidae Database. Available online: www.lea.esalq.usp.br/phytoseiidae (accessed on 21 July 2022).
- Reichert, M.B.; da Silva, G.L.; Rocha, M.D.S.; Johan, L.; Ferla, N.J. Mite fauna (Acari) in soybean agroecosystem in the northwestern region of Rio Grande do Sul State, Brazil. Syst. Appl. Acarol. 2014, 19, 123–136. [Google Scholar] [CrossRef]
- Reichert, M.B.; Toldi, M.; Ferla, N.J. Feeding preference and predation rate of Neoseiulus idaeus (Acari: Phytotseiidae) feeding on different preys. Syst. Appl. Acarol. 2016, 21, 1631–1640. [Google Scholar] [CrossRef]
- Reichert, M.B.; Toldi, M.; Rode, P.A.; Ferla, J.J.; Ferla, N.J. Biological performance of the predatory mite Neoseiulus idaeus (Phytoseiidae): A candidate for the control of tetranychid mites in Brazilian soybean crops. Braz. J. Biol. 2016, 77, 361–366. [Google Scholar] [CrossRef] [Green Version]
- Collier, K.F.S.; Albuquerque, G.S.; de Lima, J.O.G.; Pallini, A.; Molina-Rugama, A. Neoseiulus idaeus (Acari: Phytoseiidae) as a potential biocontrol agent of the two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae) in papaya: Performance on different prey stage–host plant combinations. Exp. Appl. Acarol. 2007, 41, 27–36. [Google Scholar] [CrossRef]
- Sousa Neto, E.P.; Filgueiras, R.M.C.; Mendes, J.A.; Melo, J.W.S. Functional and numerical responses of Neoseiulus idaeus and Neoseiulus californicus to eggs of Tetranychus urticae. Int. J. Acarol. 2019, 45, 1–4. [Google Scholar]
- Pantaleão, A.A.S.S.; Moreira, J.O.T.; Sato, M.E.; Pionório, J.A.A. Population growth of Tetranychus urticae Koch (Acari: Tetranychidae) and predation rate of the pest mite by Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae) in two grape cultivars. Arq. Inst. Biol. 2019, 88, 1–11. [Google Scholar]
- Sousa Neto, E.P.; Filgueiras, R.M.C.; Mendes, J.A.; Monteiro, N.V.; Lima, D.B.; Pallini, A.; Melo, J.W.S. A drought-tolerant Neoseiulus idaeus (Acari: Phytoseiidae) strain as a potential control agent of two-spotted spider mite, Tetranychus urticae (Acari: Tetranychidae). Biol. Control 2021, 159, 104624. [Google Scholar] [CrossRef]
- McMurtry, J.A.; Scriven, G.T. Insectary Production of Phytoseiid Mites. J. Econ. Entomol. 1965, 58, 282–284. [Google Scholar] [CrossRef]
- Brasil, Ministério da Agricultura, Pecuária e Abastecimento—Agrofit. Available online: http://agrofit.agricultura.gov.br/agrofit_cons/principal_agrofit_cons (accessed on 6 December 2021).
- Hassan, S.A.; Bigler, F.; Bogenschutz, H.; Boller, E.; Brun, J.; Calis, J.N.M.; Coremans Pelseneer, J.; Duso, C.; Grove, A.; Heimbach, U.; et al. Results of the sixth joint pesticide testing programme of the IOBC/WPRS working group ‘pesticides and beneficial organisms’. Entomophaga 1994, 39, 107–119. [Google Scholar] [CrossRef]
- van de Veire, M.; Smagghe, G.; Degheele, D. A laboratory test method to evaluate the effect of 31 pesticides on the predatory bug, Orius laevigatus (Het: Anthocoridae). Entomophaga 1996, 41, 235–243. [Google Scholar] [CrossRef]
- Hassan, S. International Organization for Biological and Integrated Control of Noxious Animals and Plants/Working Group “Pesticides and Beneficial Organisms” 1992. Guidelines for testing the effects of pesticides on beneficial organisms: Description of test methods. IOBC-WPRS Bull. 1992, 15, 3. [Google Scholar]
- Moral, R.A.; Hinde, J.; Demétrio, C.G.B. Half-Normal Plots and Overdispersed Models in R: The hnp Package. J. Stat. Softw. 2017, 81, 1–23. [Google Scholar] [CrossRef] [Green Version]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing, Version 4.1.2; R Foundation for Statistical Computing: Vienna, Austria, 2020.
- Abbott, W.S. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 1925, 18, 265–267. [Google Scholar] [CrossRef]
- Chi, H. Life-table analysis incorporating both sexes and variable development rates among individuals. Environ. Entomol. 1988, 17, 26–34. [Google Scholar] [CrossRef]
- Chi, H. TWOSEX-MSChart: A Computer Program for the Age-Stage, Two-Sex Life Table Analysis. 2014. Available online: http://140.120.197.173/Ecology/.%20 (accessed on 5 April 2022).
- Chi, H.; Liu, H. Two new methods for the study of insect population ecology. Bull. Inst. Zool. Acad. Sin. 1985, 24, 225–240. [Google Scholar]
- Huang, Y.B.; Chi, H. Age-stage, two-sex life tables of Bactrocera cucurbitae (Coquillett) (Diptera: Tephritidae) with a discussion on the problem of applying female age-specific life tables to insect populations. Insect Sci. 2012, 19, 263–273. [Google Scholar] [CrossRef]
- Mochizuki, M. Effectiveness and pesticide susceptibility of the pyrethroid resistant predatory mite Amblyseius womersleyi in the integrated pest management of tea pests. BioControl 2003, 48, 207–221. [Google Scholar] [CrossRef]
- Ferla, N.J.; de Moraes, G.J. Seletividade de acaricidas e inseticidas a ácaros predadores (Acari: Phytoseiidae) encontrados em seringueira no centro-oeste do Brasil. Cienc. Rural 2006, 36, 357–362. [Google Scholar] [CrossRef]
- Silva, M.Z.; Sato, M.E.; de Oliveira, C.A.L.; Rais, D.S. Toxicidade diferencial de agrotóxicos utilizados em citros para Neoseiulus californicus, Euseius concordis e Brevipalpus phoenicis. Bragantia 2011, 70, 87–95. [Google Scholar] [CrossRef]
- Barroso, G.; Pazini, J.B.; Iost Filho, F.H.; Barbosa, D.P.L.; de Paiva, A.C.R.; Matioli, T.F.; Yamamoto, P.T. Are Pesticides Used to Control Thrips Harmonious with Soil-Dwelling Predatory Mite Cosmolaelaps sabelis (Mesostigmata: Laelapidae)? J. Econ. Entomol. 2022, 115, 151–159. [Google Scholar] [CrossRef]
- Corbel, V.; Stankiewicz, M.; Bonnet, G.F.; Hougard, J.M.; Lapied, B. Synergism between insecticides permethrin and propoxur occurs through activation of presynaptic muscarinic negative feedback of acetylcholine release in the insect central nervous system. NeuroToxicology 2006, 27, 508–519. [Google Scholar] [CrossRef]
- Cedergreen, N. Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS ONE 2014, 9, e96580. [Google Scholar] [CrossRef]
- Kostromytska, O.S.; Buss, E.A.; Scharf, M.E. Toxicity and neurophysiological 615 effects of selected insecticides on the mole cricket, Scapteriscus vicinus (Orthoptera: Gryllotalpidae). Pestic. Biochem. Phys. 2011, 100, 27–34. [Google Scholar] [CrossRef]
- Zhao, G.-P.; Yang, F.-W.; Li, J.-W.; Xing, H.-Z.; Ren, F.-Z.; Pang, G.-F.; Li, Y.-X. Toxicities of Neonicotinoid-Containing Pesticide Mixtures on Nontarget Organisms. Environ. Toxicol. Chem. 2020, 39, 1884–1893. [Google Scholar] [CrossRef]
- Khambay, B.P.S.; Jewess, P.J. Pyrethroids. In Comprehensive Molecular Insect Science; Gilbert, L.I., Ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 1–29. [Google Scholar]
- Wakeling, E.N.; Neal, A.P.; Atchison, W.D. Pyrethroids and Their Effects on Ion Channels. In Pesticides: Advances in Chemical and Botanical Pesticides; Soundararajan, R.P., Ed.; InTech: Rijeka, Croatia, 2012; pp. 39–66. [Google Scholar]
- Soderlund, D.M. Neurotoxicology of pyrethroid insecticides. In Advances in Neurotoxicology, 4th ed.; Aschner, M., Costa, L.G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 113–165. [Google Scholar]
- Nauen, R.; Ebbinghaus-Kintscher, U.; Elbert, A.; Jeschke, P.; Tietjen, K. Acetylcholine Receptors as Sites for Developing Neonicotinoid Insecticides. In Biochemical Sites of Insecticide Action and Resistance; Ishaaya, I., Ed.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 77–105. [Google Scholar]
- Matsuda, K.; Buckingham, S.D.; Kleier, D.; Rauh, J.J.; Grauso, M.; Sattelle, D.B. Neonicotinoids: Insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 2001, 22, 573–580. [Google Scholar] [CrossRef]
- Anadón, A.; Ares, I.; Martínez, M.; Martínez-Larrañaga, M.-R.; Martínez, M.-A. Neurotoxicity of Neonicotinoids. In Advances in Neurotoxicology; Aschner, M., Costa, L.G., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 167–207. [Google Scholar]
- Carlson, G.R.; Dhadialla, T.S.; Hunter, R.; Jansson, R.K.; Jany, C.S.; Lidert, Z.; Slawecki, R.A. The chemical and biological properties of methoxyfenozide, a new insecticidal ecdysteroid agonist. Pest Manag. Sci. 2001, 57, 115–119. [Google Scholar] [CrossRef]
- Kim, D.-S.; Brooks, D.J.; Riedl, H. Lethal and sublethal effects of abamectin, spinosad, methoxyfenozide and acetamiprid on the predaceous plant bug Deraeocoris brevis in the laboratory. BioControl 2006, 51, 465–484. [Google Scholar] [CrossRef]
- Stavrinides, M.C.; Mills, N.J. Demographic effects of pesticides on biological control of pacific spider mite (Tetranychus pacificus) by the western predatory mite (Galendromus occidentalis). Biol. Control 2009, 48, 267–273. [Google Scholar] [CrossRef]
- Colomer, I.; Aguado, P.; Medina, P.; Heredia, R.M.; Fereres, A.; Belda, J.E.; Viñuela, E. Field trial measuring the compatibility of methoxyfenozide and flonicamid with Orius laevigatus Fieber (Hemiptera: Anthocoridae) and Amblyseius swirskii (Athias-Henriot) (Acari: Phytoseiidae) in a commercial pepper greenhouse. Pest Manag. Sci. 2011, 67, 1237–1244. [Google Scholar] [CrossRef] [PubMed]
- Tirello, P.; Pozzebon, A.; Duso, C. The effect of insecticides on the non-target predatory mite Kampimodromus aberrans: Laboratory studies. Chemosphere 2013, 93, 1139–1144. [Google Scholar] [CrossRef] [PubMed]
- Döker, I.; Pappas, M.L.; Samaras, K.; Triantafyllou, A.; Kazak, C.; Broufs, G.D. Compatibility of reduced-risk insecticides with the non-target predatory mite Iphiseius degenerans (Acari: Phytoseiidae). Pest Manag. Sci. 2014, 71, 1267–1273. [Google Scholar] [CrossRef]
- Fountain, M.T.; Medd, N. Integrating pesticides and predatory mites in soft fruit crops. Phytoparasitica 2015, 43, 657–667. [Google Scholar] [CrossRef]
- Passos, L.C.; Soares, M.A.; Collares, L.J.; Malagoli, I.; Desneux, N.; Carvalho, G.A. Lethal, sublethal and transgenerational effects of insecticides on Macrolophus basicornis, predator of Tuta absoluta. Entomol. Gen. 2018, 38, 127–143. [Google Scholar] [CrossRef]
- Silva, T.G.; Souza, J.R.; Moreira, L.B.; Lima, L.L.R.; Carvalho, G.A. Survival, development and reproduction of Harmonia axyridis (Pallas, 1773) (Coleoptera: Coccinellidae) under effects of insecticides used in tomato plants. Ecotoxicology 2021, 30, 863–872. [Google Scholar] [CrossRef]
- Bacci, L.; Lupi, D.; Salvodelli, S.; Rossaro, B. A review of Spinosyns, a derivative of biological acting substances as a class of insecticides with a broad range of action against many insect pests. J. Entomol. Acarol. Res. 2016, 48, 5653. [Google Scholar] [CrossRef] [Green Version]
- Biondi, A.; Mommaerts, V.; Smagghe, G.; Viñuela, E.; Zappalà, L.; Desneux, L. The non-target impact of spinosyns on beneficial arthropods. Pest Manag. Sci. 2012, 68, 1523–1536. [Google Scholar] [CrossRef]
- Van Driesche, R.G.; Lyon, S.; Nunn, C. Compatibility of spinosad with predacious mites (Acari: Phytoseiidae) used to control western flower thrips (Thysanoptera: Thripidae) in greenhouse crops. Fla. Entomol. 2006, 89, 396–401. [Google Scholar] [CrossRef]
- Miles, M.; Dutton, R. Testing the effects of spinosad to predatory mites in laboratory, extended laboratory, semi-field and field studies. Pestic. Benef. Org. IOBC/WPRS Bull. 2003, 26, 9–20. [Google Scholar]
- Cloyd, R.A.; Galle, C.L.; Keith, S.R. Compatibility of Three Miticides with the Predatory Mites Neoseiulus californicus McGregor and Phytoseiulus persimilis Athias-Henriot (Acari: Phytoseiidae). HortScience 2006, 41, 707–710. [Google Scholar] [CrossRef] [Green Version]
- Bostanian, N.J.; Vincent, C.; Hardman, J.M.; Larocque, N. Toxicity of indoxacarb to two species of predacious mites and a predacious mirid. Pest Manag. Sci. 2004, 60, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Bostanian, N.J.; Hardman, J.M.; Racette, G.; Franklin, J.L.; Lasnier, J. Inventory of predacious mites in Quebec commercial apple orchards where integrated pest management programs are implemented. Ann. Entomol. Soc. Am. 2006, 99, 536–544. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.M.; Hafeez, M.; Elgizawy, K.; Wang, H.; Zhao, J.; Cai, W.; Ma, W.; Hua, H. Sublethal effects of chlorantraniliprole on Paederus fuscipes (Staphylinidae: Coleoptera), a general predator in paddle field. Environ. Pollut. 2021, 291, 118171. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, M.; Cai, W.; Jing, Z.; Zhou, X.; Mabubu, J.I.; Hua, H. Toxicity and sublethal effects of chlorantraniliprole on the development and fecundity of a non-specific predator, the multicolored Asian lady beetle, Harmonia axyridis (Pallas). Chemosphere 2017, 178, 496–503. [Google Scholar] [CrossRef]
- de Castro, A.A.; Corrêa, A.S.; Legaspi, J.C.; Guedes, R.N.C.; Serrão, J.E.; Zanuncio, J.C. Survival and behavior of the insecticide-exposed predators Podisus nigrispinus and Supputius cincticeps (Heteroptera: Pentatomidae). Chemosphere 2013, 93, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Gontijo, P.C.; Moscardini, V.F.; Michaud, J.P.; Carvalho, G.A. Non-target effects of chlorantraniliprole and thiamethoxam on Chrysoperla carnea when employed as sunflower seed treatments. J. Pest Sci. 2014, 87, 711–719. [Google Scholar] [CrossRef] [Green Version]
- Gontijo, P.C.; Moscardini, V.F.; Michaud, J.P.; Carvalho, G.A. Non-target effects of two sunflower seed treatments on Orius insidiosus (Hemiptera: Anthocoridae). Pest Manag. Sci. 2015, 71, 515–522. [Google Scholar] [CrossRef]
- Gontijo, P.C.; Abbade Neto, D.O.; Oliveira, R.L.; Michaud, J.P.; Carvalho, G.A. Non-target impacts of soybean insecticidal seed treatments on the life history and behavior of Podisus nigrispinus, a predator of fall armyworm. Chemosphere 2018, 191, 342–349. [Google Scholar] [CrossRef]
- Martinou, A.F.; Seraphides, N.; Stavrinides, M.C. Lethal and behavioral effects of pesticides on the insect predator Macrolophus pygmaeus. Chemosphere 2014, 96, 167–173. [Google Scholar] [CrossRef]
- You, Y.; Lin, T.; Wei, H.; Zeng, Z.; Fu, J.; Liu, X.; Lin, R.; Zhang, Y. Laboratory evaluation of the sublethal effects of four selective pesticides on the predatory mite Neoseiulus cucumeris (Oudemans) (Acari: Phytoseiidae). Syst. Appl. Acarol. 2016, 21, 1506–1514. [Google Scholar] [CrossRef]
- Souza, K.R.; Moreira, L.B.; Lima, L.L.R.; Silva, T.G.; Braga, P.P.M.; Carvalho, G.A. Susceptibility of Chrysoperla externa (Hagen, 1861) (Neuroptera: Chrysopidae) to insecticides used in coffee crops. Ecotoxicology 2021, 29, 1306–1314. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Aguilar, D.A.; Martínez, A.M.; Viñuela, E.; Figueroa, J.I.; Gómez, B.; Morales, S.I.; Tapia, A.; Pineda, S. Impact of the zoophytophagous predator Engytatus varians (Hemiptera: Miridae) on Bactericera cockerelli (Hemiptera: Triozidae) control. Biol. Control 2019, 132, 29–35. [Google Scholar] [CrossRef]
- Gorri, J.E.R.; Pereira, R.C.; Alves, F.M.; Fernandes, F.L.; da Silva, Í.W.; Fernandes, M.E.S. Toxicity Effect of Three Insecticides on Important Pests and Predators in Tomato Plants. Agric. Sci. 2015, 3, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.S.S.; Simmonds, M.S.J.; Blaney, W.M. Influence of a short exposure to teflubenzuron residues on the predation of thrips by Iphiseius degenerans (Acari: Phytoseiidae) and Orius laevigatus (Hemiptera: Anthocoridae). Pest Manag. Sci. 2003, 59, 1255–1259. [Google Scholar] [CrossRef]
- Doucet, D.; Retnakaran, A. Insect chitin: Metabolism, genomics and pest management. In Advances in Insect Physiology: Insect Growth Disruptors; Dhadialla, T.S., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 437–511. [Google Scholar]
- El-Shenawy, N.S. Oxidative stress responses of rats exposed to Roundup and its active ingredient glyphosate. Environ. Toxicol. Pharmacol. 2009, 28, 279–385. [Google Scholar] [CrossRef] [PubMed]
- de Aguiar, L.M.; Figueira, F.H.; Gottschalk, M.S.; de Rosa, C.E. Glyphosate-based herbicide exposure causes antioxidant defence responses in the fruit fly Drosophila melanogaster. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2016, 185–186, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Strilbytska, O.M.; Semaniuk, U.V.; Strutynska, R.T.; Burdyliuk, N.I.; Tsiumpala, S.; Bubalo, V.; Lushchak, O. Herbicide Roundup shows toxic effects in nontarget organism Drosophila. Arch. Insect Biochem. Physiol. 2022, 110, e21893. [Google Scholar] [CrossRef] [PubMed]
- Lahm, G.P.; Cordova, D.; Barry, J.D. New and selective ryanodine receptor activators for insect control. Bioorg. Med. Chem. 2009, 17, 4127–4133. [Google Scholar] [CrossRef] [PubMed]
Active Ingredient | Trade Name | Chemical Group | Concentration (g or mL. L–1) | |
---|---|---|---|---|
I.A. * | C.P. ** | |||
Acephate | Orthene® 75 SP, UPL Brazil, Ituverava, SP, Brazil. | Organophosphate | 2.50 | 3.20 |
Acetamiprid and fenpropathrin | Bold® EW, Iharabras S.A. Sorocaba, SP, Brazil | Neonicotinoid and pyrethroid | 0.24 + 0.36 | 3.20 |
Acetamiprid and alpha-cypermethrin | Fastac Duo® 40 SC, BASF S.A., São Paulo, SP, Brazil. | Neonicotinoid and pyrethroid | 0.32 + 0.64 | 3.20 |
Chlorantraniliprole | Premio 20 SC, FMC LTDA, Campinas, SP, Brazil. | Anthranilic diamide | 0.64 | 3.20 |
Chlorfenapyr | Pirate 24 SC, BASF S.A., São Paulo, SP, Brazil. | Pyrazole analog | 1.92 | 8.00 |
Flubendiamide | Belt® 48 SC, Bayer S.A., São Paulo, SP, Brazil. | Phthalic acid diamide | 1.68 | 3.50 |
Glyphosate | Roundup Ultra® SL, Monsanto LTDA, São Paulo, SP, Brazil. | Ammonium-salt glyphosate | 2.52 | 3.50 |
Imidacloprid and bifenthrin | Galil® 25 SC, ADAMA SA, Londrina, PR, Brazil. | Neonicotinoid and pyrethroid | 0.10 + 0.02 | 0.40 |
Indoxacarb | Avatar® 15 SC, FMC LTDA, Campinas, SP, Brazil. | Oxadiazine | 0.18 | 1.20 |
Methoxyfenozide and spinetoram | Intrepid® Edge SC, Dow AgroSciences, Barueri, SP, Brazil. | Diacylhydrazine and spinosyn | 0.90 + 0.18 | 3.00 |
Teflubenzuron | Nomolt® 15 SC, BASF S.A., São Paulo, SP, Brazil. | Benzoylurea | 0.22 | 1.5 |
Thiamethoxam and lambda-cyhalothrin | Engeo Pleno® SC, Syngenta LTDA, São Paulo, SP, Brazil. | Pyrethroid and neonicotinoid | 0.14 + 0.10 | 1.00 |
Pesticide | Mortality | |||||||
---|---|---|---|---|---|---|---|---|
24 h | 48 h | Cm (%) ¹ | Class 2 | |||||
Mean | SE | CI | Mean | SE | CI | |||
Control | 10.0 | 0.06 | (03.0–33.0) b | 15.0 | 0.08 | (05.0–38.0) cd | – | – |
Acephate | 100 | 0.00 | (0.0–0.0) * | 100 | 0.00 | (00.0–00.0) * | 100 | 4 |
Acetamiprid and fenpropathrin | 45.0 | 0.11 | (26.0–67.0) ab | 50.0 | 0.11 | (30.0–71.0) bcd | 41 | 2 |
Acetamiprid and alpha-cypermethrin | 40.0 | 0.11 | (22.0–63.0) ab | 65.0 | 0.10 | (43.0–83.0) bc | 59 | 3 |
Chlorantraniliprole | 5.0 | 0.05 | (01.0–29.0) b | 15.0 | 0.08 | (05.0–38.0) cd | 0 | 1 |
Chlorfenapyr | 55.0 | 0.11 | (34.0–65.0) ab | 60.0 | 0.11 | (38.0–79.0) bcd | 53 | 3 |
Flubendiamide | 5.0 | 0.05 | (01.0–29.0) b | 15.0 | 0.08 | (05.0–38.0) cd | 0 | 1 |
Glyphosate | 5.0 | 0.05 | (01.0–29.0) b | 20.0 | 0.09 | (08.0–43.0) abcd | 6 | 1 |
Imidacloprid and bifenthrin | 65.0 | 0.10 | (43.0–83.0) a | 90.0 | 0.06 | (68.0–98.0) b | 88 | 4 |
Indoxacarb | 30.0 | 0.10 | (15.0–53.0) ab | 40.0 | 0.11 | (22.0–63.0) bcd | 29 | 2 |
Methoxyfenozide and spinetoram | 10.0 | 0.06 | (03.0–23.0) b | 35.0 | 0.10 | (18.0–58.0) abcd | 24 | 1 |
Teflubenzuron | 5.0 | 0.05 | (01.0–29.0) b | 10.0 | 0.06 | (03.0–33.0) d | 0 | 1 |
Thiamethoxam and lambda-cyhalothrin | 60.0 | 0.11 | (38.0–79.0) ab | 70.0 | 0.10 | (48.0–86.0) ab | 65 | 3 |
χ2 | 67.24 | 69.29 | – | – | ||||
p-value | <0.00001 | <0.00001 | – | – |
Developmental Stage | Control | Chlorantraniliprole | Flubendiamide | Glyphosate | Teflubenzuron |
---|---|---|---|---|---|
Egg | 1.8 ± 0.2 a (100) | 1.5 ± 0.2 a (69) * | 1.1 ± 0.2 b (100) | 1.8 ± 0.3 a (100) | 1.6 ± 0.2 a (98) |
Larva | 0.7 ± 0.1 ab (100) | 0.9 ± 0.2 a (91) | 0.8 ± 0.1 b (100) | 0.7 ± 0.1 ab (100) | 0.6 ± 0.1 a (100) |
Protonymph | 1.6 ± 0.3 b (100) | 1.8 ± 0.4 b (80) | 1.8 ± 0.3 b (100) | 1.5 ± 0.2 b (86) | 2.2 ± 0.4 a (76) |
Deutonymph | 1.7 ± 0.3 b (98) | 2.0 ± 0.4 ab (84) | 1.7 ± 0.3 b (96) | 2.2 ± 0.4 a (86) | 1.7 ± 0.2 b (86) |
Egg–Adult | 5.5 ± 0.9 a (98) | 5.1 ± 1.2 a (42) * | 5.5 ± 1.0 a (94) | 6.0 ± 1.0 a (74) | 5.4 ± 1.0 a (64) * |
Biological Parameter | Control | Chlorantraniliprole | Flubendiamide | Glyphosate | Teflubenzuron |
---|---|---|---|---|---|
Pre-oviposition a | 1.6 ± 0.3 ab | 3.6 ± 1.1 a | 0.9 ± 0.2 b | 2.7 ± 0.5 ab | 3.2 ± 0.7 a |
Oviposition a | 11.0 ± 2.6 a | 6.4 ± 1.6 b | 7.4 ± 1.7 ab | 8.3 ± 1.6 ab | 6.9 ± 1.4 ab |
Post-oviposition a | 4.6 ± 1.0 a | 2.9 ± 0.9 a | 3.1 ± 0.7 a | 1.9 ± 0.4 a | 3.6 ± 0.8 a |
Total fecundity b | 392 | 51 | 324 | 227 | 128 |
Mean fecundity a | 17.9 ± 1.8 a | 5.5 ± 2.1 b | 16.5 ± 2.4 a | 8.5 ± 1.0 b | 6.1 ± 1.0 b |
Eggs/female/day a | 1.2 ± 0.2 a | 0.5 ± 0.1 a | 0.8 ± 0.2 a | 0.7 ± 0.1 a | 0.5 ± 0.1 a |
Sex ratio | 0.76 | 0.48 | 0.69 | 0.72 | 0.68 |
♀ Longevity a | 12.0 ± 0.5 a | 12.6 ± 1.0 a | 11.6 ± 0.7 a | 13.2 ± 0.5 a | 12.4 ± 0.7 a |
♂ Longevity a | 7.4 ± 0.3 b | 8.4 ± 0.4 ab | 8.8 ± 0.4 ab | 9.3 ± 0.3 a | 8.4 ± 0.3 ab |
Number of ♀ c | 26 | 10 | 22 | 26 | 21 |
Number of ♂ c | 8 | 11 | 10 | 10 | 10 |
Life Table Parameter | Control | Chlorantraniliprole | Flubendiamide | Glyphosate | Teflubenzuron |
---|---|---|---|---|---|
Ro | 8.91 ± 1.49 a | 1.04 ± 0.50 d | 7.90 ± 1.55 a | 4.40 ± 0.78 b | 2.56 ± 0.58 c |
T | 16.93 ± 2.52 ab | 20.12 ± 2.87 a | 16.45 ± 2.57 b | 20.04 ± 2.83 a | 19.28 ± 2.72 a |
λ | 1.14 ± 0.16 a | 1.00 ± 0.42 a | 1.13 ± 0.17 a | 1.08 ± 0.49 a | 1.05 ± 0.18 a |
rm | 0.129 ± 0.019 a | 0.091 ± 0.013 b | 0.127 ± 0.020 a | 0.074 ± 0.010 c | 0.049 ± 0.006 d |
Pesticide | Parental Generation (F0) | Maternal Generation (F1) | ||||
---|---|---|---|---|---|---|
Mean | SE | CI | Mean | SE | CI | |
Control | 100 | 0.00 | (0.0–0.0) * | 96.0 | 0.02 | (85.0–99.0) a |
Chlorantraniliprole | 42.0 | 0.07 | (29.0–56.0) b | 100 | 0.00 | (0.0–0.0) * |
Flubendiamide | 100 | 0.00 | (0.0–0.0) * | 100 | 0.00 | (0.0–0.0) * |
Glyphosate | 100 | 0.00 | (0.0–0.0) * | 98.0 | 0.02 | (87.0–99.0) a |
Teflubenzuron | 98.0 | 0.02 | (87.0–99.0) a | 92.0 | 0.03 | (80.0–96.0) a |
χ2 | 105.63 | 9.09 | ||||
p-value | <0.001 | 0.059 |
Pesticide | * Cm (%) | Er | E% | Class 1 |
---|---|---|---|---|
Chlorantraniliprole | 0.0 | 0.4 | 59 | 3 |
Flubendiamide | 9.0 | 1.0 | 9 | 1 |
Glyphosate | 0.0 | 1.0 | 0 | 1 |
Teflubenzuron | 0.0 | 1.0 | 2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barroso, G.; Godoy, L.L.; Iost Filho, F.H.; Yamada, M.; Santana, E.D.R.; Pazini, J.d.B.; de Queiroz Oliveira, L.V.; Yamamoto, P.T. Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae). Agronomy 2023, 13, 1061. https://doi.org/10.3390/agronomy13041061
Barroso G, Godoy LL, Iost Filho FH, Yamada M, Santana EDR, Pazini JdB, de Queiroz Oliveira LV, Yamamoto PT. Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae). Agronomy. 2023; 13(4):1061. https://doi.org/10.3390/agronomy13041061
Chicago/Turabian StyleBarroso, Geovanny, Lucas Lorena Godoy, Fernando Henrique Iost Filho, Mariana Yamada, Emile Dayara Rabelo Santana, Juliano de Bastos Pazini, Luana Vitória de Queiroz Oliveira, and Pedro Takao Yamamoto. 2023. "Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae)" Agronomy 13, no. 4: 1061. https://doi.org/10.3390/agronomy13041061
APA StyleBarroso, G., Godoy, L. L., Iost Filho, F. H., Yamada, M., Santana, E. D. R., Pazini, J. d. B., de Queiroz Oliveira, L. V., & Yamamoto, P. T. (2023). Predator-Unfriendly Pesticides Harm the Beneficial Mite Neoseiulus idaeus Denmark & Muma (Acari: Phytoseiidae). Agronomy, 13(4), 1061. https://doi.org/10.3390/agronomy13041061