Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = absorption water chillers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2720 KiB  
Article
Application of Ice Slurry as a Phase Change Material in Mine Air Cooling System—A Case Study
by Łukasz Mika, Karol Sztekler and Ewelina Radomska
Energies 2025, 18(14), 3782; https://doi.org/10.3390/en18143782 - 17 Jul 2025
Viewed by 309
Abstract
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for [...] Read more.
Fossil fuels, including coal, are a basis of energy systems in many countries worldwide. However, coal mining is associated with several difficulties, which include high temperatures within the coal mining area. It causes a need for cooling for safety reasons and also for the comfort of miners’ work. Typical cooling systems in mines are based on central systems, in which chilled water is generated in the compressor or absorption coolers on the ground and transported via pipelines to the air coolers in the areas of mining. The progressive mining operation causes a gradual increase in the distance between chilled water generators and air coolers, causing a decrease in the efficiency of the entire system and insufficient cooling capacity. As a result, it is necessary to increase the diameter of the chilled water pipelines and increase the cooling capacity of the chillers, which is associated with additional investment and technical problems. One solution to this problem may be the use of so-called ice slurry instead of chilled water in the existing mine cooling system. This article presents the cooling system, located in the mine LW Bogdanka S.A., based on ice slurry. The structure of the system and its key parameters are presented. The results show that switching from cooling water to ice slurry allowed the cooling capacity of the entire system to increase by 50% while maintaining the existing piping. This demonstrates the very high potential for the use of ice slurry, not only in mines, but wherever further increases in piping diameters to maintain the required cooling capacity are not possible or cost-effective. Full article
Show Figures

Figure 1

18 pages, 1480 KiB  
Article
Energy-Environmental Analysis of Retrofitting of a Chilled Water Production System in an Industrial Facility—A Case Study
by Tomasz Mróz and Kacper Fórmaniak
Appl. Sci. 2025, 15(13), 7465; https://doi.org/10.3390/app15137465 - 3 Jul 2025
Viewed by 322
Abstract
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants [...] Read more.
This paper presents a method of evaluating energy and environmental factors before and after chilled water production system retrofitting at an industrial facility. A general algorithm was used for the analysis of chilled water system retrofitting at a pharmaceutics factory. Two retrofitting variants based on dual-stage absorption chillers supplied from an existing gas-fueled co-generation plant were identified. The proposed variants, i.e., tri-generation systems, were compared with the basic variant, which relied on electric compression water chillers. An evaluation of the variants was performed on the basis of two criteria: annual primary energy consumption and annual carbon dioxide emission. Variant 2, i.e., with a 1650 kW dual-stage absorption water chiller supplied from an existing gas fueled co-generation plant, was chosen as the optimal variant. It achieved a 370 MWh annual primary energy consumption reduction and a 1140 Mg annual carbon dioxide emission reduction. It was found that increasing the co-generation ratio for the CHP plant powering the pharmaceutical factory resulted in lower consumption of primary energy in variants in which the cooling energy supply system was retrofitted based on absorption water chillers. The threshold values of the co-generation ratio were e = 0.37 for Variant 1 and e = 0.34 for Variant 2. A literature survey revealed that there is limited interest in the application of such a solution in industrial plants. The performed analysis showed that the evaluated systems may nonetheless be an attractive option for pharmaceutics factories, leading to the reduction of primary energy consumption and carbon dioxide emissions, thereby making more electrical power available for core production. The lessons learned during our analysis could be easily transferred to other industrial facilities requiring chilled water production systems. Full article
Show Figures

Figure 1

20 pages, 7704 KiB  
Article
Development of Key Components for 5 kW Ammonia–Water Absorption Chiller with Air-Cooled Absorber and Condenser
by Desy Agung, Gabriel Garcia Genta, Arnas Lubis, M. Idrus Alhamid and Nasruddin Nasruddin
Energies 2024, 17(17), 4376; https://doi.org/10.3390/en17174376 - 1 Sep 2024
Cited by 1 | Viewed by 2384
Abstract
An absorption chiller is an alternative cooling system that operates using heat from renewable energy sources and employs environmentally friendly working fluids, such as ammonia–water or lithium bromide–water. Given Indonesia’s high solar energy potential, solar cooling systems using absorption chillers are particularly promising. [...] Read more.
An absorption chiller is an alternative cooling system that operates using heat from renewable energy sources and employs environmentally friendly working fluids, such as ammonia–water or lithium bromide–water. Given Indonesia’s high solar energy potential, solar cooling systems using absorption chillers are particularly promising. Solar thermal energy has been demonstrated to effectively power absorption chiller systems through both simulations and experiments. In Indonesia, there is significant potential to utilize small-capacity solar absorption chillers for buildings, particularly those employing air-cooled condensers and absorbers, which can reduce operational and maintenance costs. This research aimed to design a prototype of a 5 kW solar-assisted ammonia–water absorption chiller system specifically for residential applications. The system will be air-cooled to minimize space requirements compared to traditional water-cooled systems. The study addressed the design and specifications of the system’s components, dimensional considerations, and an analysis of the impact of the measurement instrument on the research outcomes. The results provide precise dimensions and specifications for the system components, offering a reference for the development of more advanced systems in the future. Full article
(This article belongs to the Special Issue Advances in Refrigeration and Heat Pump Technologies)
Show Figures

Figure 1

17 pages, 1748 KiB  
Case Report
Thermoeconomic Evaluation of a High-Performance Solar Biogas Polygeneration System
by José Luciano Batista Moreira, Adriano da Silva Marques, Taynara Geysa Silva do Lago, Victor Carlos de Lima Arruda and Monica Carvalho
Energies 2024, 17(16), 4172; https://doi.org/10.3390/en17164172 - 22 Aug 2024
Cited by 1 | Viewed by 1037
Abstract
Because of the higher efficiencies achieved by polygeneration systems compared with conventional generation systems, they have been increasingly adopted to reduce the consumption of resources and consequent environmental damage. Heat dissipated by equipment can be harnessed and reused in a cascade manner. This [...] Read more.
Because of the higher efficiencies achieved by polygeneration systems compared with conventional generation systems, they have been increasingly adopted to reduce the consumption of resources and consequent environmental damage. Heat dissipated by equipment can be harnessed and reused in a cascade manner. This study applies the Theory of Exergetic Cost (TEC), a thermoeconomic approach, to a high-performance polygeneration system. The system includes a biogas-fueled internal combustion engine, a water–ammonia absorption refrigeration system driven by the engine’s exhaust gases, and a set of photovoltaic panels with a cooling system coupled to solar panels and a hot water storage tank. The pieces of equipment are dimensioned and selected according to the energy demands of a hotel. Then, the temperature, pressure, and energy flows are established for each point of the system. Mass, energy, and exergy balances are developed to determine exergy flows and efficiencies. The main component in terms of exergy and operation costs is the engine, which consumes 0.0613 kg/s of biogas, produces 376.80 kW of electricity, and provides thermal energy for the refrigeration system (101.57 kW) and the hot water tank (232.55 kW), considering the average operating regime throughout the day. The levelized costs are 2.69 USD/h for electricity, 1.70 USD/h for hot water (thermal energy tank), and 1.73 USD/h for chilled water (absorption chiller). The thermoeconomic diagnosis indicated that the hot water tank and the engine are the most sensitive to changes in the maintenance factor. Reducing operating expenses by 20% for the tank and engine lowers energy costs by 10.75% for the tank and 9.81% for the engine. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 3768 KiB  
Article
Thermo-Economic Analysis and Multi-Objective Optimization of a Poly-Generation System Based on Solid Oxide Fuel Cell/Gas Turbine/Multi-Effect Distillation and Absorption Chiller Using Biogas as Fuel
by Yang Liu, Xuechao Yu, Haozheng Lu and Chongyi Tian
Energies 2024, 17(1), 148; https://doi.org/10.3390/en17010148 - 27 Dec 2023
Cited by 1 | Viewed by 1499
Abstract
A poly-generation system for cooling, heating, power, and fresh water is proposed, based on SOFC/GT/MED and an absorption chiller, with biogas as fuel. The performance of the system under the designed condition is analyzed using energy, exergy, and economic methods. An efficiency of [...] Read more.
A poly-generation system for cooling, heating, power, and fresh water is proposed, based on SOFC/GT/MED and an absorption chiller, with biogas as fuel. The performance of the system under the designed condition is analyzed using energy, exergy, and economic methods. An efficiency of 69.02% for comprehensive energy utilization and 35.56% for exergy are demonstrated by simulation results under the designed condition. A freshwater production of 469.93 kg/h is achieved, and a cost rate of 22.51 USD/h is incurred by the system. The effects of various parameters on the system characteristics are examined. Multi-objective optimization methods are employed to determine the final optimum operating condition that yields the best results in two schemes with different objectives. In comparison to the initial design, the optimization of the first scheme results in a 4.58% increase in the comprehensive energy utilization rate and a 2.02% increase in the exergy efficiency. However, the cost rate of the entire system increases by 0.63 USD/h. On the other hand, the optimization of the second scheme leads to a 19.51 kW decrease in the total energy output, a 276.38 kg/h increase in the freshwater production rate, and a 0.42 USD/h decrease in the cost rate of the entire system. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

22 pages, 4473 KiB  
Article
Approach to Modernizing Residential-Dominated District Heating Systems to Enhance Their Flexibility, Energy Efficiency, and Environmental Friendliness
by Ekaterina Boyko, Felix Byk, Pavel Ilyushin, Lyudmila Myshkina and Sergey Filippov
Appl. Sci. 2023, 13(22), 12133; https://doi.org/10.3390/app132212133 - 8 Nov 2023
Cited by 4 | Viewed by 1633
Abstract
The need to modernize existing district heating systems is due to increased requirements for their flexibility, energy efficiency, and environmental friendliness. The technical policy on district heating pursued in different countries centers on the listed goals and takes account of historical, climatic, and [...] Read more.
The need to modernize existing district heating systems is due to increased requirements for their flexibility, energy efficiency, and environmental friendliness. The technical policy on district heating pursued in different countries centers on the listed goals and takes account of historical, climatic, and regional features of the resource, technology, and economic availability of various thermal energy sources. This study aims to analyze methods designed to improve the flexibility, energy efficiency, and environmental friendliness of district heating systems. The focus of the study is district heating system, which provides heating and hot water supply to consumers and consists of various types of thermal energy sources. The work shows the possibility for the heating system to transition from the third generation to the fourth one, which differ in their level of intellectualization. The establishment of an intelligent control system will ensure the interaction of various heat sources, but this is a separate strand of research. In this study, a model and a methodology were developed to optimize the structure of thermal energy sources and their operating conditions when covering the heat load curve of a territory with a predominance of household consumers. Gas-reciprocating and gas-turbine cogeneration plants are considered as the main thermal energy sources, whose efficiency is boosted through their joint operation with electric boilers, thermal energy storage systems, low-grade heat sources, and absorption chillers. The primary emphasis of the study is on the assessment of the environmental benefit to be gained by using cogeneration plants as a factor of enhancing the investment appeal of the district heating systems. The findings suggest that the transition of district heating systems to the next generation is impossible without changing the institutional environment, strengthening the role of active consumers, and introducing intelligent control for district heating systems. Full article
Show Figures

Figure 1

16 pages, 6782 KiB  
Article
Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria
by Mykola Radchenko, Zongming Yang, Anatoliy Pavlenko, Andrii Radchenko, Roman Radchenko, Hanna Koshlak and Guozhi Bao
Energies 2023, 16(17), 6105; https://doi.org/10.3390/en16176105 - 22 Aug 2023
Cited by 6 | Viewed by 1442
Abstract
The enhancement of gas turbine (GT) efficiency through inlet air cooling, known as TIAC, in chillers using the heat of exhaust gas is one of the most attractive tendencies in energetics, particularly in thermal engineering. In reality, any combustion engine with cyclic air [...] Read more.
The enhancement of gas turbine (GT) efficiency through inlet air cooling, known as TIAC, in chillers using the heat of exhaust gas is one of the most attractive tendencies in energetics, particularly in thermal engineering. In reality, any combustion engine with cyclic air cooling using waste heat recovery chillers might be considered as a power plant with in-cycle trigeneration focused on enhancing a basic engine efficiency, which results in additional power output or fuel savings, reducing carbon emissions in all cases. The higher the fuel efficiency of the engine, the more efficient its functioning as a source of emissions. The sustainable operation of a GT at stabilized low intake air temperature is impossible without using rational design to determine the cooling capacity of the chiller and TIAC system as a whole to match current duties without overestimation. The most widespread absorption lithium-bromide chillers (ACh) are unable to reduce the GT intake air temperature below 15 °C in a simple cycle because the temperature of their chilled water is approximately 7 °C. Deeper cooling air would be possible by applying a boiling refrigerant as a coolant in ejector chiller (ECh) as the cheapest and simplest in design. However, the coefficients of performance (COP) of EChs are considerably lower than those of AChs: about 0.3 compared to 0.7 of AChs. Therefore, EChs are applied for subsequent cooling of air to less than 15 °C, whereas the efficient ACh is used for ambient air precooling to 15 °C. The application of an absorption–ejector chiller (AECh) enables deeper inlet air cooling and greater effects accordingly. However, the peculiarities of the subtropical climate, characterized by high temperature and humidity and thermal loads, require extended analyses to reveal the character of thermal load and to modify the methodology of designing TIAC systems. The advanced design methodology that can reveal and thereby forecast the peculiarities of the TIAC system’s thermal loading was developed to match those peculiarities and gain maximum effect without oversizing. Full article
(This article belongs to the Special Issue Heat Transfer and Multiphase Flow)
Show Figures

Figure 1

28 pages, 10729 KiB  
Article
Modeling and Performance Evaluation of Hybrid Solar Cooling Systems Driven by Photovoltaic and Solar Thermal Collectors—Case Study: Greenhouses of Andalusia
by Andrés Villarruel-Jaramillo, Josué F. Rosales-Pérez, Manuel Pérez-García, José M. Cardemil and Rodrigo Escobar
Energies 2023, 16(13), 4888; https://doi.org/10.3390/en16134888 - 23 Jun 2023
Cited by 10 | Viewed by 2798
Abstract
Sustainable greenhouses have gained relevance in recent years due to their potential to reduce the carbon footprint of the agricultural sector by being integrated with renewable systems, contributing to the decarbonization of energy. Although solar technologies tend to be more accessible to cover [...] Read more.
Sustainable greenhouses have gained relevance in recent years due to their potential to reduce the carbon footprint of the agricultural sector by being integrated with renewable systems, contributing to the decarbonization of energy. Although solar technologies tend to be more accessible to cover the system’s energy demands, greenhouses are subject to installation area restrictions, limiting their energy potential. This research evaluates the energy advantages of hybridizing solar thermal collector fields with photovoltaic module fields to cover a greenhouse’s cooling and heating demands. For this purpose, the solar thermal field and the photovoltaic solar system were simulated with TRNSYS and MATLAB, respectively, while a method was developed to simulate the performance of a single-effect absorption chiller that was validated using the temperature measurements of a chiller in operation. The results show that the general method maintains differences between measurements and simulation smaller than 5% with set temperatures between 5.5 and 12 degrees Celsius. The hybrid system, with an air-to-water chiller as the main machine and absorption chiller, reached a solar fraction of 0.85 and a fractional energy saving of 83%. This represents a 27% reduction in area concerning an individual solar thermal system. This research highlights that the solar hybrid configuration reduces fossil energy consumption by improving the global efficiency of energy conversion, thereby reducing the area of the solar field. Full article
(This article belongs to the Special Issue Hybrid Solar Photovoltaic/Thermal Systems)
Show Figures

Figure 1

16 pages, 3027 KiB  
Article
Effects of Coupling Combined Heat and Power Production with District Cooling
by Kertu Lepiksaar, Vladislav Mašatin, Igor Krupenski and Anna Volkova
Energies 2023, 16(12), 4552; https://doi.org/10.3390/en16124552 - 6 Jun 2023
Cited by 8 | Viewed by 1949
Abstract
Over the past decades, combined heat and power production (CHP) has proven itself to be an efficient means of meeting both heat and power demands. However, high efficiency can be achieved with CHP plants when the heat load is sufficient, while lower-priority CHP [...] Read more.
Over the past decades, combined heat and power production (CHP) has proven itself to be an efficient means of meeting both heat and power demands. However, high efficiency can be achieved with CHP plants when the heat load is sufficient, while lower-priority CHP plants must deal with the excess heat associated with power generation. This excess heat can be used for district cooling with absorption chillers. Although the absorption chiller is an efficient technology for using excess heat for cooling generation, its efficiency is very sensitive to driving hot water temperature. This paper provides a detailed analysis of how cooling generation in CHP plants using absorption chillers affects power generation and primary energy consumption. This study is based on the operational parameters of the Mustamäe CHP plant (Tallinn, Estonia) and the cooling demand of the Tehnopol science and business campus and proposes a sufficient cooling production capacity based on the estimation of the campus’ cooling demand. Additional cooling production opportunities to meet district cooling demand are discussed and compared in this paper in terms of primary energy savings and economic profit. The study finds that for the effective use of CHP excess heat and efficient cooling production, the use of an 0.8 MW absorption cooler and 11.6 MW heat pumps is recommended. This system would use 1.9 times less primary energy for cooling generation than local cooling. Full article
(This article belongs to the Special Issue Energy Efficiency Assessments and Improvements)
Show Figures

Figure 1

25 pages, 3979 KiB  
Article
Dynamic Investigation of a Coupled Parabolic Trough Collector–Phase Change Material Tank for Solar Cooling Process in Arid Climates
by Abdelhamid Ajbar, Bilal Lamrani and Emad Ali
Energies 2023, 16(10), 4235; https://doi.org/10.3390/en16104235 - 22 May 2023
Cited by 11 | Viewed by 1930
Abstract
The use of solar energy for cooling processes is advantageous for reducing the energy consumption of conventional air-conditioning systems and protecting the environment. In the present work, a solar-powered cooling system with parabolic trough collectors (PTC) and a phase change material (PCM) tank [...] Read more.
The use of solar energy for cooling processes is advantageous for reducing the energy consumption of conventional air-conditioning systems and protecting the environment. In the present work, a solar-powered cooling system with parabolic trough collectors (PTC) and a phase change material (PCM) tank is numerically investigated in the arid climates of Saudi Arabia. The system contains a 160-kW double-effect absorption chiller powered by solar-heated pressurized water as a heat transfer fluid (HTF) and a shell and tube PCM as a thermal battery. The novelty of this paper is to investigate the feasibility and the potential of using a PTC solar field coupled to a PCM tank for cooling purposes in arid climates. The numerical method is adopted in this work, and a dynamic model is developed based on the lumped approach; it is validated using data from the literature. The functioning of the coupled system is investigated in both sunshine hours (charging period) and off-sunshine hours (discharging period). The PTC area in this work varies from 200 m2 to 260 m2 and the cooling capacity of the chiller ranges from 120 kW to 200 kW. Obtained results showed that the 160-kW chiller is fully driven by the 240 m2-solar PTC during the charging period and about 23% of solar thermal energy is stored in the PCM tank. It was demonstrated that increasing the PTC area from 220 m2 to 260 m2 leads to a reduction in the PCM charging time by up to 45%. In addition, it was found that an increase in the cooling loads from 120 kW to 200 kW induces a decrease in the stored thermal energy in the PCM tank from 450 kWh to 45 kWh. During the discharging period, the PCM tank can continue the cooling process with a stable delivered cooling power of 160 kW and an HTF temperature between 118 °C and 150 °C. The PCM tank used in the studied absorption chiller leads to a reduction of up to 30% in cooling energy consumption during off-sunshine hours. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

15 pages, 3151 KiB  
Article
Theoretical Analysis of an Integrated, CPVT Membrane Distillation System for Cooling, Heating, Power and Seawater Desalination
by Abeer Abdullah Al Anazi, Mohammed I. Alghamdi, Abdeljelil Chammam, Mustafa Salam Kadhm, Ibrahim H. Al-Kharsan and Reza Alayi
Water 2023, 15(7), 1345; https://doi.org/10.3390/w15071345 - 30 Mar 2023
Cited by 13 | Viewed by 2431
Abstract
Compared to a photovoltaic array, a photovoltaic/thermal concentrator module can produce thermal power for various productions in downstream cycles in addition to electrical energy. In this study, the system for the combined production of electricity, heat and cooling based on a photovoltaic/thermal concentrator [...] Read more.
Compared to a photovoltaic array, a photovoltaic/thermal concentrator module can produce thermal power for various productions in downstream cycles in addition to electrical energy. In this study, the system for the combined production of electricity, heat and cooling based on a photovoltaic/thermal concentrator has been evaluated. In this triple production system, a lithium bromide-water absorption chiller with a cooling capacity of 5 kW was used. In the organic Rankine power generation cycle, the annual exergy rate of the incoming stream was almost 48 MWh, the annual production exergy rate was about 54.4 MWh and the annual exergy destruction rate was ~43.1 MWh. According to the results, the freshwater production rate of the desalination plant was approximately 56.7 m3/year; the lowest month was 3.8 m3 in November. Full article
(This article belongs to the Special Issue Renewable Energy Systems Flexibility for Water Desalination)
Show Figures

Figure 1

17 pages, 2180 KiB  
Article
Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds
by Diana L. Tinoco Caicedo, Myrian Santos Torres, Medelyne Mero-Benavides, Oscar Patiño Lopez, Alexis Lozano Medina and Ana M. Blanco Marigorta
Energies 2023, 16(4), 1816; https://doi.org/10.3390/en16041816 - 11 Feb 2023
Cited by 7 | Viewed by 2452
Abstract
Biofuels have become a source of renewable energy to offset the use of fossil fuels and meet the demand for electricity, heat, and cooling in the industrial sector. This study aims to (a) develop a simulation of a trigeneration system based on a [...] Read more.
Biofuels have become a source of renewable energy to offset the use of fossil fuels and meet the demand for electricity, heat, and cooling in the industrial sector. This study aims to (a) develop a simulation of a trigeneration system based on a gas turbine cycle and an absorption chiller unit, using biomass and syngas from spent coffee grounds (SCGs) to replace the conventional system currently supplying the energy requirements of an instant coffee plant located in Guayaquil, Ecuador, and (b) carry out an exergoeconomic analysis of the simulated system to compare the effects of different fuels. The results showed an increase in the exergetic efficiency from 51.9% to 84.5% when using a trigeneration system based on biomass instead of the conventional non-integrated system. Furthermore, the biomass-based system was found to have the lowest operating costs ($154.7/h) and the lowest heating, cooling, and power costs ($10.3/GJ, $20.2/GJ, and $23.4/GJ, respectively). Therefore, the results of this analysis reveal that using SCGs as biofuel in this instant coffee plant is feasible for producing steam, chilled water, and power. Full article
(This article belongs to the Special Issue Sustainable Energy from Biomass and Waste)
Show Figures

Figure 1

20 pages, 3479 KiB  
Article
Economic and Energetic Assessment and Comparison of Solar Heating and Cooling Systems
by Boris Delač, Branimir Pavković and Vladimir Glažar
Energies 2023, 16(3), 1241; https://doi.org/10.3390/en16031241 - 23 Jan 2023
Cited by 2 | Viewed by 2090
Abstract
Solar heating and cooling (SHC) systems are currently attracting attention, especially in times of increasing energy prices and supply crises. In times of lower energy prices, absorption SHC systems were not competitive to compression cooling supported by photovoltaic (PV) modules due to the [...] Read more.
Solar heating and cooling (SHC) systems are currently attracting attention, especially in times of increasing energy prices and supply crises. In times of lower energy prices, absorption SHC systems were not competitive to compression cooling supported by photovoltaic (PV) modules due to the high investment costs and total energy efficiency. This paper aims to discuss the current changes in energy supply and energy prices in terms of the feasibility of the application of a small absorption SHC system in a mild Mediterranean climate. The existing hospital complex restaurant SHC system with evacuated tube solar collectors and a small single-stage absorption chiller was used as a reference system for extended analysis. Dynamic simulation models based on solar thermal collectors, PV modules, absorption chillers and air-to-water heat pumps were developed for reliable research and system comparison. The results showed that primary energy consumption in SHC systems designed to cover base energy load strongly depends on the additional energy source, e.g., boiler or heat pump. Absorption SHC systems can be price competitive to air-to-water heat pump (AWHP) systems with PV collectors only in the case of reduced investment costs and increased electricity price. To reach acceptable economic viability of the absorption SHC system, investment price should be at least equal to or lower than a comparable AWHP system. Full article
Show Figures

Figure 1

19 pages, 11737 KiB  
Article
Performance Analysis of Low-Capacity Water–LiBr Absorption–Cooling Systems Using Geothermal Heat-Sinks in Hot Climates
by Omar Ketfi, Hamid Abdi, Billel Lounici and Mahmoud Bourouis
Energies 2023, 16(2), 809; https://doi.org/10.3390/en16020809 - 10 Jan 2023
Cited by 4 | Viewed by 1939
Abstract
This paper addresses the use of a geothermal heat-sink to remove the heat released in domestic-sized single and double-effect water–LiBr absorption chillers operating in hot climates. This study is the continuation of a previous work, which demonstrated the operational constraints of these absorption [...] Read more.
This paper addresses the use of a geothermal heat-sink to remove the heat released in domestic-sized single and double-effect water–LiBr absorption chillers operating in hot climates. This study is the continuation of a previous work, which demonstrated the operational constraints of these absorption chillers working in hot Algerian climate-zones. After localizing the non-operation zones for both systems, the thermo-physical properties of the soil at several depths are investigated for the implementation of the underground heat-exchanger. This heat-exchanger is connected to the condenser and the absorber of both systems, to supply cooling water at inlet temperatures of 33 °C in hot climate conditions, with ambient temperatures varying from 38 °C to 42 °C. The results show a steady operation for both absorption chillers in climate conditions which had not previously allowed the two systems to operate in water or air-cooled modes. A maximum coefficient of performance of 0.76 and 1.25 is obtained for single- and double-effect absorption cycles, respectively, with chilled water at 7 °C. The underground-tube length required is between 4.5 and 18 m, depending on the absorption-cycle configuration and the temperature of the chilled water. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

23 pages, 6730 KiB  
Article
A Novel H2O/LiBr Absorption Heat Pump with Condensation Heat Recovery for Combined Heating and Cooling Production: Energy Analysis for Different Applications
by Juan Prieto, Dereje S. Ayou and Alberto Coronas
Clean Technol. 2023, 5(1), 51-73; https://doi.org/10.3390/cleantechnol5010004 - 31 Dec 2022
Cited by 4 | Viewed by 4333
Abstract
The aim of this study is to analyze the feasibility of the single-effect H2O/LiBr absorption heat pump cycle to produce combined heating and cooling. To achieve this, first, the main changes that the absorption cycle requires are described in comparison with [...] Read more.
The aim of this study is to analyze the feasibility of the single-effect H2O/LiBr absorption heat pump cycle to produce combined heating and cooling. To achieve this, first, the main changes that the absorption cycle requires are described in comparison with the conventional single-effect absorption chiller. Then, the cycle’s operational limits in terms of temperature lift and LiBr crystallization are evaluated. In this sense, driving heat temperatures required for these applications range from 85 °C to 120 °C. The energy and exergy performance (in terms of cooling and heating capacities, cooling and heating coefficient of performance, and exergy coefficient of performance) of the cycle is theoretically studied for five different types of applications that require simultaneous heating and cooling: building air conditioning, a 4th generation district heating and cooling network, a sports center with an indoor swimming pool, a hybrid air conditioning system with an absorption heat pump and a desiccant evaporative cooling system, and simultaneous cooling and water purification application for coastal areas. The system performance in terms of the cooling coefficient of performance varies in the range of 0.812–0.842, in terms of heating coefficient of performance from 0.58 to 1.842, and in terms of exergy coefficient of performance from 0.451 to 0.667. The application with the highest exergy coefficient of performance is the 4th generation district heating and cooling network. Full article
(This article belongs to the Special Issue Synergistic Technologies to Advance in Sustainable Refrigeration)
Show Figures

Figure 1

Back to TopTop